STORMWATER MANAGEMENT ANALYSIS

86-88 PROSPECT STREET, NEWBURYPORT, MA

Prepared for: Blake Wilcox The Joppa Group LLC 10 Harrison Street Newburyport, MA 01950 Prepared by: Design Consultants, Inc. 120 Middlesex Avenue, Suite 20 Somerville, Massachusetts 02145

Project No. 2021-035 June, 2021

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 EXISTING CONDITION	1
2.1 Existing Hydrology	1
2.2 FEMA Flood Insurance Rate Map	1
2.3 Soils	1
3.0 PROPOSED CONDITION	2
3.1 Proposed Hydrology	2
4.0 HYDROLOGIC MODEL	2
Table 4.1: Hydrological Calculation Summary	3
5.0 CONCLUSION	3

APPENDICES

Appendix A	Site Plans
Appendix B	Existing & Proposed Drainage Areas
Appendix C	FEMA Flood Insurance Rate Map
Appendix D	Soils Information
Appendix E	Existing & Proposed Hydrology
Appendix F	Operation & Maintenance Plan

1.0 INTRODUCTION

The Joppa Design Group, LLC is proposing to redevelop the existing 5-unit residential building with a rear 2-story addition, a new 3-car garage and approximately 10 parking spaces. The following report addresses the hydrologic calculations and stormwater management design proposed at the site.

2.0 EXISTING CONDITION

The limit of work for the project is the parcels of land shown in the Town of Newburyport's Assessor's Database as Map 21, Parcel 45 at 86-88 Prospect Street. The parcel is approximately 11,223 SF (0.26 acres). This parcel is bound by Prospect Street to the north, Parsons Street to the east and residential dwellings to the south and west. The existing site consists of a 2-story, 5-unit residential dwelling surrounded by two paved driveways, grass/landscaping and two brick walkways around the site. The existing site is 47% impervious.

2.1 Existing Hydrology

For the design purposes of this study, due to limits of established survey information, the drainage area boundaries have been defined by the edges of the parcel. The topography at the site is very flat, with slight depressions in a couple locations, particularly one located in the center of the back yard. Within the parcel boundaries, there are two design discharge points located at the site.

The first design discharge point is located at a catch basin at the corner of Prospect Street and Parsons Street, at the northeast corner of the site. The northern, northeastern, and eastern portions of the site, including grass/landscaping, pavement, brick, and portions or the roof surface, drain off the site and towards the gutter lines at Parsons Street or Prospect Street where they flow to design point 1. The roof surface runoff also drains via gutters and downspouts off the roofs. At the gutter lines at the curb, the runoff flows to the catch basin where it enters the storm sewer at the corner of Parsons St and Prospect St.

The second design discharge point is located at the rear, western property line. The rear yard is very flat and there appears to be a depression in the center of the backyard. The runoff from the southeastern portion of the site, including roof surface and grass/landscaping likely pools a small amount in the rear yard area and eventually drains across a low point along the west property line to the abutters at 81-83 Lime Street at the design point 2.

2.2 FEMA Flood Insurance Rate Map

According to the FEMA Flood Insurance Rate Map Number 25009C0136G, with an effective date of July 16, 2014, the site is located within a Zone X, which is "areas determined to be outside the 0.2% annual chance floodplain." (*See Appendix C: FEMA Flood Insurance Rate Map*)

2.3 Soils

According to the Natural Resources Conservation Service (NRCS) Web Soil Survey, the soils across the entire site is classified as Merrimac Fine Sandy Loam, 0 to 3 percent slopes. This soil classification is recognized as part of Hydrologic Soil Group A, which was used for the purposes of hydrologic calculations across the entire site. Therefore, an exfiltration rate of 8.2 in/hr was also used in the hydrologic calculations for the dry well.

3.0 PROPOSED CONDITION

The project proposes the redevelopment of the site at 86-88 Prospect Street. The proposed redevelopment includes a 2-story addition, with no changes to the existing dwelling, as well as a 3 car garage and new parking at the existing driveways, which will be converted to permeable pavers and permeable bituminous pavement, shown on the plan.

3.1 Proposed Hydrology

In the proposed design, there will still be two design discharge points:

The first design discharge point will be the same as in the existing conditions, at the catch basin located at the corner of Prospect Street and Parsons Street that drains to the storm sewer. The area that drains to this Design Point 1 within the parcel will also have largely the same boundary. This area will include the northwest roof area as well as the surrounding lawn. The paved parking areas that drained to this Design Point in the existing conditions will be converted to permeable pavers or permeable bituminous pavement in the proposed conditions. The permeable pavers and pavement in the proposed conditions will result in a decrease in impervious area. The front section of the proposed garage will drain off the roof toward Parsons Street.

The location of design point 2 will also remain the same as in the existing conditions, and the drainage boundary will also be largely similar, with the inclusion of the new addition. The runoff from the roof of the new addition will be directed via gutters and downspouts to two 300 gallon drywells (surrounded by 1 FT of 3/4" crushed stone on the bottom and around the sides) set in the backyard. The runoff from the rear section of the garage roof will also be directed via gutters and downspouts to the drywell system in the backyard. The drywell system will have a rim with an overflow grate that will allow any overflow from the system to flow across the backyard to the second design point with the rest of the runoff from the yard. The proposed drywell will mitigate the impact of any additional runoff to the neighbors to the rear as a result of the roof of the new addition.

4.0 HYDROLOGIC MODEL

The hydrologic model was developed in HydroCAD. Both existing and proposed conditions are modeled for the 2-year, 10-year, 25-year, and 100-year 24-hour storm events. HydroCAD allows for variable rainfall intensity throughout the storm duration, peaking near the middle of the Type III, 24-hour storm. The drainage areas' time of concentration (t_c) has been calculated for each catchment area and the T_c paths are shown on the Drainage Areas Plan. Complete calculations, performed using the HydroCAD software, are included in the appendix.

Calculations show that he designated on-site stormwater management system reduces overall off-site flows for all storm events. See Table 4.1 below for the hydrologic calculation summary.

		Design Point 1		Design Point 2		Total	
Rainfall Event		Existing	Proposed	Existing	Proposed	Existing	Proposed
2 Yr	Rate (cfs)	0.31	0.14	0.00	0.00	0.31	0.14
	Volume (cf)	792	414	35	46	828	460
10 Yr	Rate (cfs)	0.60	0.38	0.04	0.05	0.61	0.42
	Volume (cf)	1,526	991	226	223	1,752	1,214
25 Yr	Rate (cfs)	0.83	0.59	0.13	0.13	0.93	0.71
	Volume (cf)	2,142	1,521	463	429	2,605	1,949
100 Yr	Rate (cfs)	1.31	1.07	0.39	0.35	1.65	1.38
	Volume (cf)	3,475	2,739	1,122	1,058	4,597	3,796

Table 4.1: Hydrological Calculation Summary

5.0 CONCLUSION

Based on DCI's analysis of the existing and proposed conditions, the proposed site conditions meet the stormwater management criteria set. Design point runoff volumes have been decreased for the 2-year, 10-year, 25-year and 100-year storm events. Peak flow rates are decreased for the 2-year and 10-year, 25-year and 100-year storm event. DCI concludes that the proposed redevelopment at 86-88 Prospect Street, Newburyport, MA adheres to all applicable stormwater management policies.

Appendix A

SITE PLANS

P:\2021 Projects\2021-035 86-88 Prospect St Newburyport_Drainage\21-035 SW Narrative.docx

2021 Projects\2021-035 86-88 Prospect St Newburyport\Dwg_ENGINEERING\21-035_LAYT_MATL.

3" POROUS ASPHALT LAYER
*2" LAYER OF 3/4" CRUSHED STONE
SMOOTH AND COMPACT EXISTIN SAND AND GRAVEL SUBGRADE

<u>NOTES:</u> 1. * IF DETEMINED BY ENGINEER PAVMENT MAY BE SET ON CLEAN SAND/GRAVEL SUBGRADE 2. SEE OPERATION AND MAINTENANCE PLAN FOR MAINTENANCE REQUIREMENTS OF POROUS PAVEMENT AREAS.

PERMEABLE BITUMINOUS PAVEMENT

NOT TO SCALE

1. CONCRETE: 4,000 PSI MINIMUM AFTER 28 DAYS. 2. DESIGNED FOR AASHTO HS-20 LOADING, 1 TO 3 FT COVER.

3 NOT TO SCALE

EROSION AND SEDIMENT CONTROL NOTES

- ALL WORK PERFORMED AS PART OF THIS PROJECT SHALL CONFORM TO THE STANDARDS OF THE TOWN OF NEWBURYRPORT, DEPT. OF PUBLIC WORKS AND ANY OTHER AGENCY WITH AUTHORITY IN THIS AREA.
- CONTRACTOR TO MAINTAIN WORK AREA IN A CLEAN CONDITION. NO CONSTRUCTION DEBRIS SHALL BE ALLOWED TO ACCUMULATE WITHIN THE WORKSITE AND NO DIRT, GRAVEL, ETC. SHALL BE ALLOWED TO ACCUMULATE ON THE PUBLIC RIGHT-OF-WAY.
- AREAS OUTSIDE THE LIMITS OF PROPOSED WORK DISTURBED BY THE CONTRACTOR'S OPERATIONS SHALL BE RESTORED BY THE CONTRACTOR TO THEIR ORIGINAL CONDITION AT THE CONTRACTOR'S EXPENSE.
- CONTRACTOR SHALL INSTALL SILT SACKS IN ALL CATCH BASINS DOWNGRADE OF SITE PRIOR TO COMMENCEMENT OF WORK
- MINIMIZE TOTAL AREA OF DISTURBANCE AND PROTECT NATURAL FEATURES AND SOIL. 5.
- THE CONTRACTOR SHALL SEQUENCE ALL ACTIVITIES TO MINIMIZE SIMULTANEOUS AREAS OF DISTURBANCE. MASS CLEARINGS AND GRADING OF THE ENTIRE SITE SHALL BE AVOIDED.
- MINIMIZE SOIL EROSION AND CONTROL SEDIMENTATION DURING CONSTRUCTION.
- DIVERT UNCONTAMINATED WATER AROUND DISTURBED AREAS.
- INSTALL AND MAINTAIN ALL EROSION AND SEDIMENT CONTROL MEASURES IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS AND GOOD ENGINEERING PRACTICES OR THE 2008 EPA'S CONSTRUCTION GENERAL PERMIT 9
- 10. PROTECT AND MANAGE ON AND OFF-SITE MATERIAL STORAGE AREAS (OVERBURDEN AND STOCKPILES OF DIRT, BORROW AREAS, OR OTHER AREAS USED SOLELY BY THE PERMITTED PROJECT ARE CONSIDERED A PART OF THE PROJECT).
- COMPLY WITH APPLICABLE FEDERAL, STATE AND LOCAL LAWS AND REGULATIONS INCLUDING WASTE DISPOSAL, SANITARY SEWER OR SEPTIC SYSTEM REGULATIONS, AND AIR QUALITY REQUIREMENTS, INCLUDING DUST CONTROL. 11.
- 12. SEDIMENT SHALL BE REMOVED ONCE THE VOLUME REACHES 1/4 TO 1/2 THE HEIGHT OF THE EROSION CONTROL DEVICE. SEDIMENT SHALL BE REMOVED FROM SILT FENCE PRIOR TO REACHING THE LOAD-BEARING CAPACITY OF THE SILT FENCE WHICH MAY BE LOWER THAN 1/4 TO 1/2 THE HEIGHT.
- 13. SEDIMENT FROM SEDIMENT TRAPS OR SEDIMENTATION PONDS SHALL BE REMOVED WHEN DESIGN CAPACITY HAS BEEN REDUCED BY 50 PERCENT.
- 14. BMPS TO BE USED FOR INFILTRATION AFTER CONSTRUCTION SHALL NOT BE USED AS BMPS DURING CONSTRUCTION UNLESS OTHERWISE APPROVED BY THE BOARD, MANY INFILTRATION TECHNOLOGIES ARE NOT DESIGNED TO HANDLE THE HIGH CONCENTRATIONS OF SEDIMENTS TYPICALLY FOUND IN CONSTRUCTION RUNOFF, AND THUS MUST BE PROTECTED FROM CONSTRUCTION RELATED SEDIMENT LOADINGS.
- 15. SOIL STOCKPILES MUST BE STABILIZED OR COVERED AT THE END OF EACH WORKDAY. STOCKPILE SIDE SLOPES SHALL NOT BE GREATER THAN 2:1. ALL STOCKPILES SHALL BE SURROUNDED BY SEDIMENT CONTROLS.
- 16. FOR ACTIVE CONSTRUCTION AREAS SUCH AS BORROW OR STOCKPILE AREAS, ROADWAY IMPROVEMENTS AND AREAS WITHIN 50 FEET OF A BUILDING UNDER CONSTRUCTION, A PERIMETER SEDIMENT CONTROL SYSTEM SHALL BE INSTALLED AND MAINTAINED TO CONTAIN SOIL.
- 17. A TRACKING PAD OR OTHER APPROVED STABILIZATION METHOD SHALL BE CONSTRUCTED AT ALL ENTRANCE/EXIST POINTS OF THE SITE TO REDUCE THE AMOUNT OF SOIL CARRIED ONTO ROADWAYS AND OFF THE SITE.
- 18. ON THE CUT SIDE OF ROADS, DITCHES SHALL BE STABILIZED IMMEDIATELY WITH ROCK RIP-RAP OR OTHER NON-ERODIBLE LINERS, OR WHERE APPROPRIATE, VEGETATIVE MEASURES SUCH AS HYDROSEEDING OR JUTE MATTING.
- 19. PERMANENT SEEDING SHALL BE UNDERTAKEN IN THE SPRING FROM MARCH THROUGH MAY, AND IN LATE SUMMER AND EARLY FALL FROM AUGUST TO OCTOBER 15. DURING THE PEAK SUMMER MONTHS AND IN THE FALL AFTER OCTOBER 15, WHEN SEEDING IS FOUND TO BE IMPRACTICAL, APPROPRIATE TEMPORARY STABILIZATION SHALL BE APPLIED. PERMANENT SEEDING MAY BE UNDERTAKEN DURING THE SUMMER IF PLANS PROVIDE FOR ADEQUATE MULCHING AND WATERING.
- 20. ALL SLOPES STEEPER THAN 3:1 (H:V, 33.3%), AS WELL AS PERIMETER DIKES, SEDIMENT BASINS OR TRAPS, AND EMBANKMENTS MUST, UPON COMPLETION, BE IMMEDIATELY STABILIZED WITH SOD, SEED AND ANCHORED STRAW MULCH. OR OTHER APPROVED STABILIZATION MEASURES. AREAS OUTSIDE OF THE PERIMETER SEDIMENT CONTROL SYSTEM MUST NOT BE DISTURBED.
- 21. TEMPORARY SEDIMENT TRAPPING DEVICES MUST NOT BE REMOVED UNTIL PERMANENT STABILIZATION IS ESTABLISHED IN ALL CONTRIBUTORY DRAINAGE AREAS.
- 22. ALL TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES SHALL BE REMOVED AFTER FINAL SITE STABILIZATION. DISTURBED SOIL AREAS RESULTING FROM THE REMOVAL OF TEMPORARY MEASURES SHALL BE PERMANENTLY STABILIZED WITHIN 30 DAYS OF REMOVAL.
- 23. PREVENT OFF-SITE VEHICLE TRACKING OF SEDIMENTS.
- 24. DUST SHALL BE CONTROLLED AT THE SITE.
- 25. ALL PREVIOUSLY DISTURBED LAND SHALL BE STABILIZED BY APPROVED METHODS AFTER 14 DAYS IF LEFT UNDISTURBED. THIS INCLUDES STOCKPILES, CONSTRUCTION ENTRANCES, GRADED AREAS AND OTHER CONSTRUCTION ACTIVITY RELATED CLEARING.
- 26. IF WORK IS HALTED OVER WINTER MONTHS THE CONTRACTOR SHALL BE RESPONSIBLE FOR STABILIZING THE AREA THROUGH GROUNDCOVER PRACTICES.

300 GALLON DRY WELL (2)

NORTH		
Des Som OWI KAR GMF PO E	sign Consultant erville - Quincy - Newbu www.dci-ma.com NER: ELIS GARY TRUS CREALTY TRUS BOX 3092	JST &
PROJEC	CT TEAM	
86-8 5-UNI RESII NEWI	8 PROSPECT S IT 2-STORY DENTIAL ADDITION BURYPORT, MA	<u>Γ</u> Ι
PROJEC	CT INFO	
		DATE
STAMP:	STEPHEN B. SAWNER CIVIL	
C D SHEET I	IVIL ETAILS	
SHT NO	C2	
DR BY CHK B PROJ I DATE:	: MCH Y: SBS NO: 21-035 6-9-21	

SCALE: NOT TO SCALE

Appendix B

EXISTING & PROPOSED DRAINAGE AREAS

\2021 Projects\2021-035 86-88 Prospect St Newburyport_Drainage\21-035 DR.d

Appendix C

FEMA FLOOD INSURANCE RATE MAP

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Appendix D

SOILS INFORMATION

P:\2021 Projects\2021-035 86-88 Prospect St Newburyport_Drainage\21-035 SW Narrative.docx

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

	MAP L	EGEND		MAP INFORMATION
Area of Inte	erest (AOI)	8	Spoil Area	The soil surveys that comprise your AOI were mapped at
	Area of Interest (AOI)	<u>^</u>	Stony Spot	1:15,800.
Soils		ő	Verv Stony Spot	Warning: Soil Map may not be valid at this scale.
	Soil Map Unit Polygons	600 100	Wet Spot	Enlargement of maps beyond the scale of mapping can caus
~	Soil Map Unit Lines	¥	Other	misunderstanding of the detail of mapping and accuracy of so
	Soil Map Unit Points			contrasting soils that could have been shown at a more detai
Special F	Point Features	·**	Special Line Features	scale.
అ	Blowout	Water Fea	Streams and Canals	Please rely on the bar scale on each map sheet for map
\boxtimes	Borrow Pit	Transport	totion	measurements.
英	Clay Spot		Rails	Source of Map: Natural Resources Conservation Service
\diamond	Closed Depression	~	Interstate Highways	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
×	Gravel Pit		US Routes	Maps from the Web Soil Survey are based on the Web Mars
	Gravelly Spot		Major Roads	projection, which preserves direction and shape but distorts
0	Landfill	~		distance and area. A projection that preserves area, such as
Ā	Lava Flow	~	Local Roads	accurate calculations of distance or area are required.
14	Marsh or swamp	Backgrou	Aerial Photography	This product is generated from the USDA-NRCS certified da
*			, tohar notography	of the version date(s) listed below.
~	Mine of Quarry			Soil Survey Area: Essex County, Massachusetts, Northern
0				Survey Area Data: Version 16, Jun 9, 2020
0	Perennial water			Soil map units are labeled (as space allows) for map scales 1:50 000 or larger
\sim	Rock Outcrop			Date(s) aerial images were photographed: Dec 31 2009
+	Saline Spot			12, 2016
° °	Sandy Spot			The orthophoto or other base map on which the soil lines we
-	Severely Eroded Spot			compiled and digitized probably differs from the background
\diamond	Sinkhole			shifting of map unit boundaries may be evident.
≫	Slide or Slip			
ø	Sodic Spot			

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
254A	Merrimac fine sandy loam, 0 to 3 percent slopes	7.0	100.0%
Totals for Area of Interest		7.0	100.0%

Appendix E

EXISTING AND PROPOSED HYDROLOGY

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
10,223	39	>75% Grass cover, Good, HSG A (1S, 2S, 10S, 20S)
276	76	Brick (1S, 2S, 10S, 20S)
2,609	98	Paved parking, HSG A (1S)
2,218	55	Perm Pavers/ Perm Bit. (10S)
6,757	98	Roofs, HSG A (1S, 2S, 10S, 20S, 30S, 31S)
404	98	Unconnected pavement, HSG A (2S, 10S)

Soil Listing (all nodes)

Area Soil Subcatchme	ent
(sq-ft) Group Numbers	
19,993 HSG A 1S, 2S, 10S,	, 20S, 30S, 31S
0 HSG B	
0 HSG C	
0 HSG D	
2,494 Other 1S, 2S, 10S,	, 20S

21	-035	DR
----	------	----

Prepared by Design Consultants, Inc. HydroCAD® 10.00-20 s/n 08381 © 2017 HydroCAD Software Solutions LLC Printed 6/17/2021 Page 4

Ground Cover	Total (sq-ft)	Other (sq-ft)	HSG-D (sq-ft)	HSG-C (sq-ft)	HSG-B (sq-ft)	HSG-A (sq-ft)
>75% Grass cover, Good	10,223	0	0	0	0	10,223
Brick	276	276	0	0	0	0
Paved parking	2,609	0	0	0	0	2,609
Perm Pavers/	2,218	2,218	0	0	0	0
Perm Bit.						
Roofs	6,757	0	0	0	0	6,757
Unconnected pavement	404	0	0	0	0	404

Ground Covers (all nodes)

HydroCAD® 10.00-20 s/n 08381 © 2017 Hydr	oCAD Software Solutions LLC Page 5
Time span=0.00 Runoff by SCS TR Reach routing by Stor-Inc	-24.00 hrs, dt=0.01 hrs, 2401 points R-20 method, UH=SCS, Weighted-CN I method - Pond routing by Stor-Ind method
Subcatchment 1S: NW SITE Flow Length=4	Runoff Area=6,063 sf 73.94% Impervious Runoff Depth>1.57" 4' Slope=0.0050 '/' Tc=0.5 min CN=83 Runoff=0.31 cfs 792 cf
Subcatchment 2S: SE SITE Flow Le	Runoff Area=5,168 sf 15.11% Impervious Runoff Depth>0.08" ength=78' Tc=2.0 min UI Adjusted CN=48 Runoff=0.00 cfs 35 cf
Subcatchment 10S: NW SITE Flow Length=4	Runoff Area=6,222 sf 42.74% Impervious Runoff Depth>0.80" 4' Slope=0.0050 '/' Tc=0.6 min CN=70 Runoff=0.14 cfs 414 cf
Subcatchment 20S: SE SITE	Runoff Area=3,968 sf 19.68% Impervious Runoff Depth>0.14" Flow Length=78' Tc=2.0 min CN=51 Runoff=0.00 cfs 46 cf
Subcatchment 30S: ROOF Flow Length=1	Runoff Area=670 sf 100.00% Impervious Runoff Depth>2.92" 1' Slope=0.5000 '/' Tc=0.1 min CN=98 Runoff=0.06 cfs 163 cf
Subcatchment 31S: REAR GARAGE ROOF Flow Length=	Runoff Area=396 sf 100.00% Impervious Runoff Depth>2.92" 11' Slope=0.5000 '/' Tc=0.1 min CN=98 Runoff=0.03 cfs 96 cf
Reach 1R: CB @ PARSONS ST	Inflow=0.31 cfs 792 cf Outflow=0.31 cfs 792 cf
Reach 2R: WESTERN ABUTTERS	Inflow=0.00 cfs 35 cf Outflow=0.00 cfs 35 cf
Reach 3R: TOTAL	Inflow=0.31 cfs 828 cf Outflow=0.31 cfs 828 cf
Reach 10R: CB @ PARSONS ST	Inflow=0.14 cfs 414 cf Outflow=0.14 cfs 414 cf
Reach 20R: WESTERN ABUTTERS	Inflow=0.00 cfs 46 cf Outflow=0.00 cfs 46 cf
Reach 30R: TOTAL	Inflow=0.14 cfs 460 cf Outflow=0.14 cfs 460 cf

21-035 DR

Prepared by Design Consultants, Inc.

Type III 24-hr 2-Year Rainfall=3.15"

Printed 6/17/2021

 Pond 30P: 300 GAL DRY WELL
 Peak Elev=1.35' Storage=55 cf
 Inflow=0.09 cfs
 259 cf

 Discarded=0.02 cfs
 259 cf
 Primary=0.00 cfs
 0 cf
 Outflow=0.02 cfs
 259 cf

Summary for Subcatchment 1S: NW SITE

Runoff = 0.31 cfs @ 12.01 hrs, Volume= 792 cf, Depth> 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.15"

	Area (sf)	CN	Description							
	1,530	39	>75% Gras	s cover, Go	ood, HSG A					
	1,874	98	Roofs, HSC	θA						
	2,609	98	Paved park	ing, HSG A						
*	50	76	Brick	-						
	6,063	83	Weighted A	verage						
	1,580		26.06% Per	26.06% Pervious Area						
	4,483		73.94% lmp	pervious Ar	ea					
(mi	Tc Length n) (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description					
0	.5 44	0.0050) 1.44		Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps					

Subcatchment 1S: NW SITE

Summary for Subcatchment 2S: SE SITE

Runoff = 0.00 cfs @ 14.58 hrs, Volume= 35 cf, Depth> 0.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.15"

	Area (sf)	CN /	Adj Deso	cription						
	4,303	39	>75%	% Grass co	ver, Good, HSG A					
	765	98	Root	fs, HSG A						
	16	98	Unco	nconnected pavement, HSG A						
*	84	76	Brick	K						
	5,168	49	48 Weig	ghted Avera	age, UI Adjusted					
	4,387		84.8	34.89% Pervious Area						
	781		15.1	5.11% Impervious Area						
	16		2.05	.05% Unconnected						
Т	c Length	Slope	Velocity	Capacity	Description					
(min) (feet)	(ft/ft)	(ft/sec)	(cfs)						
2.	0 71	0.0070	0.59		Shallow Concentrated Flow, Grass					
					Short Grass Pasture Kv= 7.0 fps					
0.0	0 7	1.0000	3.83		Sheet Flow, Roof					
					Smooth surfaces n= 0.011 P2= 3.15"					

2.0 78 Total

Subcatchment 2S: SE SITE

Summary for Subcatchment 10S: NW SITE

Runoff = 0.14 cfs @ 12.01 hrs, Volume= 414 cf, Depth> 0.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.15"

	A	rea (sf)	CN	Description						
		1,295	39	>75% Gras	s cover, Go	bod, HSG A				
*		2,218	55	Perm Pave	rs/ Perm Bi	t.				
		2,271	98	Roofs, HSC	θA					
		388	98	Unconnecte	ed pavemer	nt, HSG A				
*		50	76	Brick						
		6,222	70	Weighted A	verage					
		3,563		57.26% Pervious Area						
		2,659		42.74% Imp	pervious Ar	ea				
		388		14.59% Un	connected					
	Тс	Length	Slope	e Velocity	Capacity	Description				
(I	min)	(feet)	(ft/ft	(ft/sec)	(cfs)					
	0.6	44	0.0050	1.14		Shallow Concentrated Flow, Permeable Pavement Unpaved Kv= 16.1 fps				

Subcatchment 10S: NW SITE

Summary for Subcatchment 20S: SE SITE

Runoff = 0.00 cfs @ 12.39 hrs, Volume= 46 cf, Depth> 0.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.15"

	A	rea (sf)	CN	Description		
		3,095	39	>75% Gras	s cover, Go	ood, HSG A
*		92	76	Brick		
		781	98	Roofs, HSC	θA	
		3,968	51	Weighted A	verage	
		3,187		80.32% Per	vious Area	
		781		ea		
	Тс	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	2.0	71	0.007	0.59		Shallow Concentrated Flow, Grass
						Short Grass Pasture Kv= 7.0 fps
	0.0	7	1.000	3.83		Sheet Flow, Roof
						Smooth surfaces n= 0.011 P2= 3.15"
	2.0	78	Total			

Subcatchment 20S: SE SITE

Summary for Subcatchment 30S: ROOF

Runoff = 0.06 cfs @ 12.00 hrs, Volume= 163 cf, Depth> 2.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.15"

Summary for Subcatchment 31S: REAR GARAGE ROOF

Runoff = 0.03 cfs @ 12.00 hrs, Volume= 96 cf, Depth> 2.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.15"

Area (sf) CN Description										
396 98 Roofs, HSG A										
396 100.00% Impervious A	Area									
Tc Length Slope Velocity Capacity	Description									
(min) (feet) (ft/ft) (ft/sec) (cfs)										
0.1 11 0.5000 3.18	Sheet Flow, Roof									
	Smooth surfaces $n = 0.011 P2 = 3.15^{\circ}$									
Subcatchment 31S: REAR GARAGE ROOF										
Gubeaterinient G										
	ograph									
0.036	0.03 cfs									
0.034										
0.028 2-Year Rainfall=3.15 "										
^{0.026} Runoff Area=396 sf										
^{e 0.02} Runoff Depth>2.92"										
[≝] 0.016 Flow Length=11'										
^{0.014} Slope=0.5000 '/'										
0.006 CN=98										
0.004										
0.002										
	11 12 13 14 15 16 17 18 19 20 21 22 23 24									
	Time (hours)									

Summary for Reach 1R: CB @ PARSONS ST

Inflow A	Area	=	6,063 sf,	73.94% Impervious,	Inflow Depth >	1.57"	for 2-	Year event
Inflow	:	=	0.31 cfs @	12.01 hrs, Volume=	792 cf			
Outflow	/	=	0.31 cfs @	12.01 hrs, Volume=	792 cf,	Atten	= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 1R: CB @ PARSONS ST

Summary for Reach 2R: WESTERN ABUTTERS

Inflow Ar	rea =	5,168 sf, 15.11% Impervious,	Inflow Depth > 0.08"	for 2-Year event
Inflow	=	0.00 cfs @ 14.58 hrs, Volume=	35 cf	
Outflow	=	0.00 cfs @ 14.58 hrs, Volume=	35 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 2R: WESTERN ABUTTERS

Summary for Reach 3R: TOTAL

Inflow Ar	ea =	11,231 sf, 46.87% Impervious,	Inflow Depth > 0.88"	for 2-Year event
Inflow	=	0.31 cfs @ 12.01 hrs, Volume=	828 cf	
Outflow	=	0.31 cfs @ 12.01 hrs, Volume=	828 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 3R: TOTAL

Summary for Reach 10R: CB @ PARSONS ST

Inflow A	Area	=		6,222 sf,	, 42.74% In	npervious,	Inflow Depth	n > 0	.80" fo	or 2-	Year event
Inflow		=	0.	14 cfs @	12.01 hrs,	Volume=	41	4 cf			
Outflow	V	=	0.	14 cfs @	12.01 hrs,	Volume=	41	4 cf,	Atten=	0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 10R: CB @ PARSONS ST

Summary for Reach 20R: WESTERN ABUTTERS

Inflow /	Area	=	5,034 sf,	, 36.69% In	npervious,	Inflow Depth >	0.11	" for 2-	Year event
Inflow	:	=	0.00 cfs @	12.39 hrs,	Volume=	46 0	cf		
Outflov	V	=	0.00 cfs @	12.39 hrs,	Volume=	46 0	cf, At	ten= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 20R: WESTERN ABUTTERS

Summary for Reach 30R: TOTAL

Inflow Ar	rea =	11,256 sf, 40.03% Impervious,	Inflow Depth > 0.49"	for 2-Year event
Inflow	=	0.14 cfs @ 12.01 hrs, Volume=	460 cf	
Outflow	=	0.14 cfs @ 12.01 hrs, Volume=	460 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 30R: TOTAL

Summary for Pond 30P: 300 GAL DRY WELL

Inflow Area =		1,066 sf,	100.00% Impe	ervious, I	nflow Depth >	2.92"	for 2-Y	ear event
Inflow	=	0.09 cfs @	12.00 hrs, Vo	lume=	259 cf			
Outflow	=	0.02 cfs @	11.66 hrs, Vo	lume=	259 cf	, Atten	= 81%,	Lag= 0.0 min
Discarded	=	0.02 cfs @	11.66 hrs, Vo	lume=	259 cf			
Primary	=	0.00 cfs @	0.00 hrs, Vo	lume=	0 cf			

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 1.35' @ 12.38 hrs Surf.Area= 90 sf Storage= 55 cf

Plug-Flow detention time= 15.9 min calculated for 259 cf (100% of inflow) Center-of-Mass det. time= 15.7 min (767.0 - 751.3)

Volume	Invert	Avail.Storage	Storage Description
#1	0.00'	67 cf	5.67'W x 8.00'L x 3.67'H Field A
			166 cf Overall x 40.0% Voids
#2	1.00'	105 cf	3.50'W x 4.00'L x 3.75'H Prismatoid x 2 Inside #3
			110 cf Overall - 0.5" Wall Thickness = 105 cf
#3	0.00'	51 cf	4.50'W x 5.00'L x 5.25'H Prismatoid × 2
			236 cf Overall - 110 cf Embedded = 127 cf x 40.0% Voids
		222 cf	Total Available Storage
Device	Routing	Invert Out	let Devices
#1	Primary	4.25' 5.0'	Vert. Orifice/Grate C= 0.600
#2	Discarded	0.00' 8.2 '	10 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.02 cfs @ 11.66 hrs HW=0.05' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge) ☐ 1=Orifice/Grate (Controls 0.00 cfs)

Pond 30P: 300 GAL DRY WELL
21-035 DR	Ty	pe III 24-hr	10-Year Rainfall=4.83"
Prepared by Design Consultants, Inc.	D Software Solutions L		Printed 6/17/2021
TIYUTOCAD® 10.00-20 \$/11 08381 @ 2017 TIYUTOCA	AD SOItware Solutions Li		Fage 20
Time span=0.00-24. Runoff by SCS TR-20 Reach routing by Stor-Ind me	.00 hrs, dt=0.01 hrs, 24) method, UH=SCS, W ethod - Pond routing b	401 points /eighted-CN by Stor-Ind me	ethod
Subcatchment 1S: NW SITE Flow Length=44' S	Runoff Area=6,063 sf 7 lope=0.0050 '/' Tc=0.5	′3.94% Impervi min CN=83	ous Runoff Depth>3.02" Runoff=0.60 cfs 1,526 cf
Subcatchment 2S: SE SITE Flow Length	Runoff Area=5,168 sf 1 =78' Tc=2.0 min UI Ac	5.11% Impervi djusted CN=48	ous Runoff Depth>0.53" Runoff=0.04 cfs 226 cf
Subcatchment 10S: NW SITE Flow Length=44'	Runoff Area=6,222 sf 4 Slope=0.0050 '/' Tc=0.	2.74% Impervi 6 min CN=70	ous Runoff Depth>1.91" Runoff=0.38 cfs 991 cf
Subcatchment 20S: SE SITE	Runoff Area=3,968 sf 1 Flow Length=78' Tc=2.	9.68% Impervi .0 min CN=51	ous Runoff Depth>0.68" Runoff=0.05 cfs 223 cf
Subcatchment 30S: ROOF Flow Length=11'	Runoff Area=670 sf 10 Slope=0.5000 '/' Tc=0.	0.00% Impervi 1 min CN=98	ous Runoff Depth>4.59" Runoff=0.09 cfs 256 cf
Subcatchment 31S: REAR GARAGE ROOF Flow Length=11'	Runoff Area=396 sf 10 Slope=0.5000 '/' Tc=0.	0.00% Impervi 1 min CN=98	ous Runoff Depth>4.59" Runoff=0.05 cfs 152 cf
Reach 1R: CB @ PARSONS ST		C	Inflow=0.60 cfs 1,526 cf Dutflow=0.60 cfs 1,526 cf
Reach 2R: WESTERN ABUTTERS			Inflow=0.04 cfs 226 cf Outflow=0.04 cfs 226 cf
Reach 3R: TOTAL		C	Inflow=0.61 cfs 1,752 cf Dutflow=0.61 cfs 1,752 cf
Reach 10R: CB @ PARSONS ST			Inflow=0.38 cfs 991 cf Outflow=0.38 cfs 991 cf
Reach 20R: WESTERN ABUTTERS			Inflow=0.05 cfs 223 cf Outflow=0.05 cfs 223 cf
Reach 30R: TOTAL		C	Inflow=0.42 cfs 1,214 cf Dutflow=0.42 cfs 1,214 cf
Pond 30P: 300 GAL DRY WELL Discarded=0.	Peak Elev=2.45 02 cfs 408 cf Primary=	Storage=112 c =0.00 cfs 0 cf	of Inflow=0.14 cfs 408 cf Outflow=0.02 cfs 408 cf

Summary for Subcatchment 1S: NW SITE

Runoff = 0.60 cfs @ 12.01 hrs, Volume= 1,526 cf, Depth> 3.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

	Area (sf)	CN	Description					
	1,530	39	>75% Gras	s cover, Go	bod, HSG A			
	1,874	98	Roofs, HSC	θA				
	2,609	98	Paved park	ing, HSG A				
*	50	76	Brick	-				
	6,063	83	Weighted A	verage				
	1,580		26.06% Pervious Area					
	4,483		73.94% lmp	pervious Ar	ea			
- (mi	Tc Length n) (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description			
0	9.5 44	0.0050) 1.44		Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps			

Subcatchment 1S: NW SITE

Summary for Subcatchment 2S: SE SITE

Runoff = 0.04 cfs @ 12.08 hrs, Volume= 226 cf, Depth> 0.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

	Area (sf)	CN /	Adj Deso	cription					
	4,303	39	>75%	% Grass co	ver, Good, HSG A				
	765	98	Root	s, HSG A					
	16	98	Unco	onnected pa	avement, HSG A				
*	84	76	Brick	(
	5,168	49	48 Weig	phted Avera	age, UI Adjusted				
	4,387		84.8	9% Perviou	is Area				
	781		15.1	5.11% Impervious Area					
	16		2.05	% Unconne	ected				
То	c Length	Slope	Velocity	Capacity	Description				
(min) (feet)	(ft/ft)	(ft/sec)	(cfs)					
2.0) 71	0.0070	0.59		Shallow Concentrated Flow, Grass				
					Short Grass Pasture Kv= 7.0 fps				
0.0) 7	1.0000	3.83		Sheet Flow, Roof				
					Smooth surfaces n= 0.011 P2= 3.15"				

2.0 78 Total

Subcatchment 2S: SE SITE

Summary for Subcatchment 10S: NW SITE

Runoff = 0.38 cfs @ 12.01 hrs, Volume= 991 cf, Depth> 1.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

	Area (sf)	CN	Description	l				
	1,295	39	>75% Gras	s cover, Go	bod, HSG A			
*	2,218	55	Perm Pave	rs/ Perm Bi	t.			
	2,271	98	Roofs, HSC	GΑ				
	388	98	Unconnecte	ed pavemer	nt, HSG A			
*	50	76	Brick	-				
	6,222	70	Weighted A	Average				
	3,563		57.26% Pervious Area					
	2,659		42.74% Im	pervious Ar	ea			
	388		14.59% Un	connected				
-	Tc Length	Slope	e Velocity	Capacity	Description			
(mi	n) (feet)	(ft/ft) (ft/sec)	(cfs)				
0	0.6 44	0.005) 1.14		Shallow Concentrated Flow, Permeable Pavement Unpaved Kv= 16.1 fps			

Subcatchment 10S: NW SITE

Summary for Subcatchment 20S: SE SITE

Runoff = 0.05 cfs @ 12.06 hrs, Volume= 223 cf, Depth> 0.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

_	A	rea (sf)	CN	Description		
		3,095	39	>75% Gras	s cover, Go	ood, HSG A
*		92	76	Brick		
_		781	98	Roofs, HSC	ĞΑ	
		3,968	51	Weighted A	verage	
		3,187		80.32% Pe		
		781		19.68% Imp	pervious Ar	ea
	Тс	Length	Slop	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft	t) (ft/sec)	(cfs)	
	2.0	71	0.007	0 0.59		Shallow Concentrated Flow, Grass
						Short Grass Pasture Kv= 7.0 fps
	0.0	7	1.000	0 3.83		Sheet Flow, Roof
_						Smooth surfaces n= 0.011 P2= 3.15"
	2.0	78	Total			

Subcatchment 20S: SE SITE

Summary for Subcatchment 30S: ROOF

Runoff = 0.09 cfs @ 12.00 hrs, Volume= 256 cf, Depth> 4.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

Summary for Subcatchment 31S: REAR GARAGE ROOF

Runoff = 0.05 cfs @ 12.00 hrs, Volume= 152 cf, Depth> 4.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

Summary for Reach 1R: CB @ PARSONS ST

Inflow Ar	ea =	6,063 sf,	73.94% Impervious,	Inflow Depth >	3.02"	for 10-Year event
Inflow	=	0.60 cfs @	12.01 hrs, Volume=	1,526 cf		
Outflow	=	0.60 cfs @	12.01 hrs, Volume=	1,526 cf	, Atten=	= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 1R: CB @ PARSONS ST

Summary for Reach 2R: WESTERN ABUTTERS

Inflow A	Area =	:	5,168 sf,	15.11% li	mpervious,	Inflow Depth >	0.53	" for 10-Year event
Inflow	=		0.04 cfs @	12.08 hrs,	Volume=	226 c	f	
Outflow	/ =		0.04 cfs @	12.08 hrs,	Volume=	226 c	f, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 2R: WESTERN ABUTTERS

Summary for Reach 3R: TOTAL

Inflow Ar	rea =	11,231 sf, 46.87% Impervious,	Inflow Depth > 1.87"	for 10-Year event
Inflow	=	0.61 cfs @ 12.01 hrs, Volume=	1,752 cf	
Outflow	=	0.61 cfs @ 12.01 hrs, Volume=	1,752 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 3R: TOTAL

Summary for Reach 10R: CB @ PARSONS ST

Inflow A	Area =	6,222 sf,	42.74% Im	pervious,	Inflow Depth >	1.91"	for 10)-Year event
Inflow	=	0.38 cfs @	12.01 hrs, \	/olume=	991 c	f		
Outflow	/ =	0.38 cfs @	12.01 hrs, \	/olume=	991 c	f, Atte	n= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 10R: CB @ PARSONS ST

Summary for Reach 20R: WESTERN ABUTTERS

Inflow A	rea =	5,034 sf, 36.0	69% Impervious,	Inflow Depth >	0.53" fo	or 10-Year event
Inflow	=	0.05 cfs @ 12.0	6 hrs, Volume=	223 cf		
Outflow	=	0.05 cfs @ 12.0	6 hrs, Volume=	223 cf	, Atten= (0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 20R: WESTERN ABUTTERS

Summary for Reach 30R: TOTAL

Inflow A	rea =	11,256 sf	, 40.03% Impervious,	Inflow Depth >	1.29"	for 10-Year event
Inflow	=	0.42 cfs @	12.01 hrs, Volume=	1,214 cf		
Outflow	=	0.42 cfs @	12.01 hrs, Volume=	1,214 cf	, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 30R: TOTAL

Summary for Pond 30P: 300 GAL DRY WELL

Inflow Area	a =	1,066 sf,	100.00% Imperv	vious, I	nflow Depth >	4.59"	for 10-	Year event
Inflow	=	0.14 cfs @	12.00 hrs, Volu	me=	408 ct	F		
Outflow	=	0.02 cfs @	11.56 hrs, Volu	me=	408 ct	, Atten	= 88%,	Lag= 0.0 min
Discarded	=	0.02 cfs @	11.56 hrs, Volu	me=	408 ct	-		
Primary	=	0.00 cfs @	0.00 hrs, Volu	me=	0 ct	F		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 2.45' @ 12.47 hrs Surf.Area= 90 sf Storage= 112 cf

Plug-Flow detention time= 36.9 min calculated for 408 cf (100% of inflow) Center-of-Mass det. time= 36.8 min (779.9 - 743.1)

Volume	Invert	Avail.Storage	Storage Description
#1	0.00'	67 cf	5.67'W x 8.00'L x 3.67'H Field A
			166 cf Overall x 40.0% Voids
#2	1.00'	105 cf	3.50'W x 4.00'L x 3.75'H Prismatoid x 2 Inside #3
			110 cf Overall - 0.5" Wall Thickness = 105 cf
#3	0.00'	51 cf	4.50'W x 5.00'L x 5.25'H Prismatoid × 2
			236 cf Overall - 110 cf Embedded = 127 cf x 40.0% Voids
		222 cf	Total Available Storage
Device	Routing	Invert Out	et Devices
#1	Primary	4.25' 5.0 "	Vert. Orifice/Grate C= 0.600
#2	Discarded	0.00' 8.2 1	0 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.02 cfs @ 11.56 hrs HW=0.05' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge)

Pond 30P: 300 GAL DRY WELL

Prepared by Design Consultants, Inc.	CAD Software Solutions LLC	Printed 6/17/2021
Time span=0.00-2 Runoff by SCS TR-2 Reach routing by Stor-Ind n	24.00 hrs, dt=0.01 hrs, 2401 points 20 method, UH=SCS, Weighted-CN method - Pond routing by Stor-Ind method	l lage 35
Subcatchment 1S: NW SITE Flow Length=44'	Runoff Area=6,063 sf 73.94% Impervious Slope=0.0050 '/' Tc=0.5 min CN=83 Runo	Runoff Depth>4.24" off=0.83 cfs 2,142 cf
Subcatchment 2S: SE SITE Flow Lengt	Runoff Area=5,168 sf 15.11% Impervious th=78' Tc=2.0 min UI Adjusted CN=48 Ru	Runoff Depth>1.07" noff=0.13 cfs 463 cf
Subcatchment 10S: NW SITE Flow Length=44'	Runoff Area=6,222 sf 42.74% Impervious Slope=0.0050 '/' Tc=0.6 min CN=70 Runo	Runoff Depth>2.93" off=0.59 cfs 1,521 cf
Subcatchment 20S: SE SITE	Runoff Area=3,968 sf 19.68% Impervious Flow Length=78' Tc=2.0 min CN=51 Ru	Runoff Depth>1.30" noff=0.13 cfs 429 cf
Subcatchment 30S: ROOF Flow Length=11'	Runoff Area=670 sf 100.00% Impervious ' Slope=0.5000 '/' Tc=0.1 min CN=98 Ru	Runoff Depth>5.92" noff=0.11 cfs 331 cf
Subcatchment 31S: REAR GARAGE ROOF Flow Length=11'	Runoff Area=396 sf 100.00% Impervious ' Slope=0.5000 '/' Tc=0.1 min CN=98 Ru	Runoff Depth>5.92" noff=0.07 cfs 195 cf
Reach 1R: CB @ PARSONS ST	Inflc Outflc	w=0.83 cfs 2,142 cf w=0.83 cfs 2,142 cf
Reach 2R: WESTERN ABUTTERS	In Out	flow=0.13 cfs 463 cf flow=0.13 cfs 463 cf
Reach 3R: TOTAL	Inflo Outflo	w=0.93 cfs 2,605 cf w=0.93 cfs 2,605 cf
Reach 10R: CB @ PARSONS ST	Inflc Outflc	w=0.59 cfs 1,521 cf w=0.59 cfs 1,521 cf
Reach 20R: WESTERN ABUTTERS	In Out	flow=0.13 cfs 429 cf flow=0.13 cfs 429 cf
Reach 30R: TOTAL	Inflc Outflc	w=0.71 cfs 1,949 cf w=0.71 cfs 1,949 cf
Pond 30P: 300 GAL DRY WELL Discarded=	Peak Elev=3.37' Storage=160 cf In 0.02 cfs 526 cf Primary=0.00 cfs 0 cf Out	flow=0.18 cfs 526 cf flow=0.02 cfs 526 cf

21-035 DR

Type III 24-hr 25-Year Rainfall=6.16"

Summary for Subcatchment 1S: NW SITE

Runoff = 0.83 cfs @ 12.01 hrs, Volume= 2,142 cf, Depth> 4.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.16"

	Area (sf)	CN	Description					
	1,530	39	>75% Gras	s cover, Go	ood, HSG A			
	1,874	98	Roofs, HSC	θA				
	2,609	98	Paved park	ing, HSG A				
*	50	76	Brick	-				
	6,063	83	Weighted A	verage				
	1,580		26.06% Pervious Area					
	4,483		73.94% Imp	73.94% Impervious Area				
(mi	Гс Length n) (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description			
C	.5 44	0.0050) 1.44		Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps			

Subcatchment 1S: NW SITE

Summary for Subcatchment 2S: SE SITE

Runoff = 0.13 cfs @ 12.05 hrs, Volume= 463 cf, Depth> 1.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.16"

	Area (sf)	CN /	Adj Deso	cription				
	4,303	39	>75%	% Grass co	ver, Good, HSG A			
	765	98	Roof	Roofs, HSG A				
	16	98	Unco	onnected pa	avement, HSG A			
*	84	76	Brick					
	5,168	49	48 Weig	phted Avera	age, UI Adjusted			
	4,387		84.8	9% Perviou	s Area			
	781		15.1	15.11% Impervious Area				
	16		2.05	% Unconne	cted			
Т	c Length	Slope	Velocity	Capacity	Description			
(min) (feet)	(ft/ft)	(ft/sec)	(cfs)				
2.	0 71	0.0070	0.59		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
0.	0 7	1.0000	3.83		Sheet Flow, Roof			
					Smooth surfaces n= 0.011 P2= 3.15"			

2.0 78 Total

Subcatchment 2S: SE SITE

Summary for Subcatchment 10S: NW SITE

Runoff = 0.59 cfs @ 12.01 hrs, Volume= 1,521 cf, Depth> 2.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.16"

	A	rea (sf)	CN	Description		
		1,295	39	>75% Gras	s cover, Go	bod, HSG A
*		2,218	55	Perm Pave	rs/ Perm Bi	t.
		2,271	98	Roofs, HSC	θA	
		388	98	Unconnecte	ed pavemer	nt, HSG A
*		50	76	Brick		
		6,222	70	Weighted A	verage	
		3,563		57.26% Pe	rvious Area	
		2,659		42.74% Imp	pervious Ar	ea
		388		14.59% Un	connected	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.6	44	0.0050	1.14		Shallow Concentrated Flow, Permeable Pavement Unpaved Kv= 16.1 fps

Subcatchment 10S: NW SITE

Summary for Subcatchment 20S: SE SITE

Runoff = 0.13 cfs @ 12.04 hrs, Volume= 429 cf, Depth> 1.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.16"

	A	rea (sf)	CN	Description					
		3,095	39	>75% Gras	s cover, Go	bod, HSG A			
*		92	76	Brick					
		781	98	Roofs, HSC	βA				
		3,968	51	Weighted A	verage				
		3,187		80.32% Per	rvious Area				
		781		19.68% Impervious Area					
	Тс	Length	Slop	e Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	2.0	71	0.007	0.59		Shallow Concentrated Flow, Grass			
						Short Grass Pasture Kv= 7.0 fps			
	0.0	7	1.000	0 3.83		Sheet Flow, Roof			
						Smooth surfaces n= 0.011 P2= 3.15"			
	2.0	78	Total						

Subcatchment 20S: SE SITE

Summary for Subcatchment 30S: ROOF

Runoff = 0.11 cfs @ 12.00 hrs, Volume= 331 cf, Depth> 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.16"

Summary for Subcatchment 31S: REAR GARAGE ROOF

Runoff = 0.07 cfs @ 12.00 hrs, Volume= 195 cf, Depth> 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.16"

Summary for Reach 1R: CB @ PARSONS ST

Inflow A	rea =	6,063 sf, 73.94% Impervious,	Inflow Depth > 4.24"	for 25-Year event
Inflow	=	0.83 cfs @ 12.01 hrs, Volume=	2,142 cf	
Outflow	=	0.83 cfs @ 12.01 hrs, Volume=	2,142 cf, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 1R: CB @ PARSONS ST

Summary for Reach 2R: WESTERN ABUTTERS

Inflow A	Area =	5,168 sf, 15.11% Impervious,	Inflow Depth > 1.07"	for 25-Year event
Inflow	=	0.13 cfs @ 12.05 hrs, Volume=	463 cf	
Outflow	/ =	0.13 cfs @ 12.05 hrs, Volume=	463 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 2R: WESTERN ABUTTERS

Summary for Reach 3R: TOTAL

Inflow Are	ea =	11,231 sf, 46.87% Impervious,	Inflow Depth > 2.78"	for 25-Year event
Inflow	=	0.93 cfs @ 12.01 hrs, Volume=	2,605 cf	
Outflow	=	0.93 cfs @ 12.01 hrs, Volume=	2,605 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 3R: TOTAL

Summary for Reach 10R: CB @ PARSONS ST

Inflow A	rea =	6,222 sf, 42.74% Impervious,	Inflow Depth > 2.93"	for 25-Year event
Inflow	=	0.59 cfs @ 12.01 hrs, Volume=	1,521 cf	
Outflow	=	0.59 cfs @ 12.01 hrs, Volume=	1,521 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 10R: CB @ PARSONS ST

Summary for Reach 20R: WESTERN ABUTTERS

Inflow A	rea =	5,034 sf,	36.69% In	npervious,	Inflow Depth >	1.02"	for 25-Year event
Inflow	=	0.13 cfs @	12.04 hrs,	Volume=	429 c	f	
Outflow	=	0.13 cfs @	12.04 hrs,	Volume=	429 c	f, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 20R: WESTERN ABUTTERS

Summary for Reach 30R: TOTAL

Inflow A	rea =	11,256 sf, 40.03% Impervious,	Inflow Depth > 2.08"	for 25-Year event
Inflow	=	0.71 cfs @ 12.01 hrs, Volume=	1,949 cf	
Outflow	=	0.71 cfs @ 12.01 hrs, Volume=	1,949 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 30R: TOTAL

Summary for Pond 30P: 300 GAL DRY WELL

Inflow Area	a =	1,066 sf,	100.00% Im	Inflow Depth >	5.92"	for 25-	Year event	
Inflow	=	0.18 cfs @	12.00 hrs, \	Volume=	526 ct	F		
Outflow	=	0.02 cfs @	11.49 hrs, \	/olume=	526 ct	, Atten	= 90%,	Lag= 0.0 min
Discarded	=	0.02 cfs @	11.49 hrs, \	/olume=	526 ct	-		
Primary	=	0.00 cfs @	0.00 hrs, \	√olume=	0 ct	F		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 3.37' @ 12.56 hrs Surf.Area= 90 sf Storage= 160 cf

Plug-Flow detention time= 57.5 min calculated for 526 cf (100% of inflow) Center-of-Mass det. time= 57.4 min (796.7 - 739.3)

Volume	Invert	Avail.Storage	Storage Description
#1	0.00'	67 cf	5.67'W x 8.00'L x 3.67'H Field A
			166 cf Overall x 40.0% Voids
#2	1.00'	105 cf	3.50'W x 4.00'L x 3.75'H Prismatoid x 2 Inside #3
			110 cf Overall - 0.5" Wall Thickness = 105 cf
#3	0.00'	51 cf	4.50'W x 5.00'L x 5.25'H Prismatoid × 2
			236 cf Overall - 110 cf Embedded = 127 cf x 40.0% Voids
		222 cf	Total Available Storage
Device	Routing	Invert Out	et Devices
#1	Primary	4.25' 5.0''	Vert. Orifice/Grate C= 0.600
#2	Discarded	0.00' 8.21	0 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.02 cfs @ 11.49 hrs HW=0.05' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge)

Pond 30P: 300 GAL DRY WELL

21-035 DR Prepared by Design Consultants, Inc. HydroCAD® 10.00-20 s/n 08381 © 2017 HydroCA	<i>Type III 24-hr</i> D Software Solutions LLC	100-Year Rainfall=8.94" Printed 6/17/2021 Page 50
Time span=0.00-24.0 Runoff by SCS TR-20 Reach routing by Stor-Ind me	00 hrs, dt=0.01 hrs, 2401 points method, UH=SCS, Weighted-CN thod - Pond routing by Stor-Ind	l method
Subcatchment 1S: NW SITE R Flow Length=44' Slo	unoff Area=6,063 sf 73.94% Impe ope=0.0050 '/' Tc=0.5 min CN=83	rvious Runoff Depth>6.88" 3 Runoff=1.31 cfs 3,475 cf
Subcatchment 2S: SE SITE R Flow Length=78	unoff Area=5,168 sf 15.11% Impe 3' Tc=2.0 min UI Adjusted CN=48	rvious Runoff Depth>2.60" 3 Runoff=0.39 cfs 1,122 cf
Subcatchment 10S: NW SITE R Flow Length=44' Slo	unoff Area=6,222 sf 42.74% Impe ope=0.0050 '/' Tc=0.6 min CN=7(rvious Runoff Depth>5.28") Runoff=1.07 cfs 2,739 cf
Subcatchment 20S: SE SITE	unoff Area=3,968 sf 19.68% Impe low Length=78' Tc=2.0 min CN=	rvious Runoff Depth>2.96" 51 Runoff=0.35 cfs 979 cf
Subcatchment 30S: ROOF Flow Length=11' S	Runoff Area=670 sf 100.00% Impe Slope=0.5000 '/' Tc=0.1 min CN=	rvious Runoff Depth>8.70" 98 Runoff=0.16 cfs 486 cf
Subcatchment 31S: REAR GARAGE ROOF Flow Length=11' S	Runoff Area=396 sf 100.00% Impe Slope=0.5000 '/' Tc=0.1 min CN=	rvious Runoff Depth>8.70" 98 Runoff=0.10 cfs 287 cf
Reach 1R: CB @ PARSONS ST		Inflow=1.31 cfs 3,475 cf Outflow=1.31 cfs 3,475 cf
Reach 2R: WESTERN ABUTTERS		Inflow=0.39 cfs 1,122 cf Outflow=0.39 cfs 1,122 cf
Reach 3R: TOTAL		Inflow=1.65 cfs 4,597 cf Outflow=1.65 cfs 4,597 cf
Reach 10R: CB @ PARSONS ST		Inflow=1.07 cfs 2,739 cf Outflow=1.07 cfs 2,739 cf
Reach 20R: WESTERN ABUTTERS		Inflow=0.35 cfs 1,058 cf Outflow=0.35 cfs 1,058 cf
Reach 30R: TOTAL		Inflow=1.38 cfs 3,796 cf Outflow=1.38 cfs 3,796 cf
Pond 30P: 300 GAL DRY WELL Discarded=0.02	Peak Elev=4.42' Storage=20 2 cfs 694 cf Primary=0.08 cfs 78	2 cf Inflow=0.26 cfs 773 cf cf Outflow=0.10 cfs 773 cf

Summary for Subcatchment 1S: NW SITE

Runoff = 1.31 cfs @ 12.01 hrs, Volume= 3,475 cf, Depth> 6.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.94"

	Area (sf)	CN	Description				
	1,530	39	>75% Gras	s cover, Go	bod, HSG A		
	1,874	98	Roofs, HSC	βA			
	2,609	98	Paved park	ing, HSG A			
*	50	76	Brick	-			
	6,063	83	Weighted A	verage			
	1,580		26.06% Pervious Area				
	4,483		73.94% Impervious Area				
(mi	Tc Length in) (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description		
C).5 44	0.005) 1.44		Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps		

Subcatchment 1S: NW SITE

Summary for Subcatchment 2S: SE SITE

Runoff = 0.39 cfs @ 12.04 hrs, Volume= 1,122 cf, Depth> 2.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.94"

	Area (sf)	CN /	Adj Deso	cription	
	4,303	39	>75%	% Grass co	ver, Good, HSG A
	765	98	Roof	s, HSG A	
	16	98	Unco	onnected pa	avement, HSG A
*	84	76	Brick	ζ. ·	
	5,168	49	48 Weig	phted Avera	age, UI Adjusted
	4,387		84.8	9% Perviou	is Area
	781		15.1	1% Impervi	ous Area
	16		2.05	% Unconne	ected
Т	c Length	Slope	Velocity	Capacity	Description
(mir	n) (feet)	(ft/ft)	(ft/sec)	(cfs)	
2.	0 71	0.0070	0.59		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.	0 7	1.0000	3.83		Sheet Flow, Roof
					Smooth surfaces n= 0.011 P2= 3.15"
-	-				

2.0 78 Total

Subcatchment 2S: SE SITE

Summary for Subcatchment 10S: NW SITE

Runoff = 1.07 cfs @ 12.01 hrs, Volume= 2,739 cf, Depth> 5.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.94"

	Area (sf)	CN	Description					
	1,295	39	>75% Gras	s cover, Go	bod, HSG A			
*	2,218	55	Perm Pave	rs/ Perm Bi	t.			
	2,271	98	Roofs, HSC	θA				
	388	98	Unconnecte	ed pavemer	nt, HSG A			
*	50	76	Brick	-				
	6,222	70	Weighted A	verage				
	3,563		57.26% Pervious Area					
	2,659		42.74% Impervious Area					
	388		14.59% Unconnected					
٦	C Length	Slope	Velocity	Capacity	Description			
(mi	n) (feet)	(ft/ft)	(ft/sec)	(cfs)				
0	.6 44	0.0050	1.14		Shallow Concentrated Flow, Permeable Pavement Unpaved Kv= 16.1 fps			

Subcatchment 10S: NW SITE

Summary for Subcatchment 20S: SE SITE

Runoff = 0.35 cfs @ 12.04 hrs, Volume= 979 cf, Depth> 2.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.94"

_	A	rea (sf)	CN	Description					
		3,095	39	>75% Gras	s cover, Go	ood, HSG A			
*		92	76	Brick					
		781	98	Roofs, HSC	θA				
		3,968	51	Weighted A	verage				
		3,187		80.32% Per	rvious Area				
		781		19.68% Impervious Area					
	Тс	Length	Slop	e Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft	t) (ft/sec)	(cfs)				
	2.0	71	0.007	0 0.59		Shallow Concentrated Flow, Grass			
						Short Grass Pasture Kv= 7.0 fps			
	0.0	7	1.000	0 3.83		Sheet Flow, Roof			
						Smooth surfaces n= 0.011 P2= 3.15"			
	2.0	78	Total						

Subcatchment 20S: SE SITE

Summary for Subcatchment 30S: ROOF

Runoff = 0.16 cfs @ 12.00 hrs, Volume= 486 cf, Depth> 8.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.94"

Summary for Subcatchment 31S: REAR GARAGE ROOF

Runoff = 0.10 cfs @ 12.00 hrs, Volume= 287 cf, Depth> 8.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.94"

Summary for Reach 1R: CB @ PARSONS ST

Inflow A	rea =	6,063 sf, 73.94% Impervious,	Inflow Depth > 6.88"	for 100-Year event
Inflow	=	1.31 cfs @ 12.01 hrs, Volume=	3,475 cf	
Outflow	=	1.31 cfs @ 12.01 hrs, Volume=	3,475 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 1R: CB @ PARSONS ST

Summary for Reach 2R: WESTERN ABUTTERS

Inflow A	rea =	5,168 sf, 15.11% Impervious	Inflow Depth > 2.60"	for 100-Year event
Inflow	=	0.39 cfs @ 12.04 hrs, Volume=	1,122 cf	
Outflow	=	0.39 cfs @ 12.04 hrs, Volume=	1,122 cf, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 2R: WESTERN ABUTTERS

Summary for Reach 3R: TOTAL

Inflow Ar	ea =	11,231 sf, 46.87% Impervious,	Inflow Depth > 4.91"	for 100-Year event
Inflow	=	1.65 cfs @ 12.01 hrs, Volume=	4,597 cf	
Outflow	=	1.65 cfs @ 12.01 hrs, Volume=	4,597 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 3R: TOTAL

Summary for Reach 10R: CB @ PARSONS ST

Inflow A	rea =	6,222 sf, 42.74% Impervious,	Inflow Depth > 5.28"	for 100-Year event
Inflow	=	1.07 cfs @ 12.01 hrs, Volume=	2,739 cf	
Outflow	=	1.07 cfs @ 12.01 hrs, Volume=	2,739 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 10R: CB @ PARSONS ST

Summary for Reach 20R: WESTERN ABUTTERS

Inflow A	rea =	5,034 sf, 36.69% Impervious,	Inflow Depth > 2.52"	for 100-Year event
Inflow	=	0.35 cfs @ 12.04 hrs, Volume=	1,058 cf	
Outflow	=	0.35 cfs @ 12.04 hrs, Volume=	1,058 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 20R: WESTERN ABUTTERS

Summary for Reach 30R: TOTAL

Inflow A	\rea =	11,256 sf, 40.03% Impervious,	Inflow Depth > 4.05"	for 100-Year event
Inflow	=	1.38 cfs @ 12.01 hrs, Volume=	3,796 cf	
Outflow		1.38 cfs @ 12.01 hrs, Volume=	3,796 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 30R: TOTAL

Summary for Pond 30P: 300 GAL DRY WELL

Inflow Area	a =	1,066 sf	,100.00% Im	pervious,	Inflow Depth >	8.70"	for 100	-Year event
Inflow	=	0.26 cfs @	12.00 hrs, \	Volume=	773 ct	F		
Outflow	=	0.10 cfs @	12.15 hrs, \	Volume=	773 ct	, Atten	= 64%,	Lag= 8.8 min
Discarded	=	0.02 cfs @	11.09 hrs, \	Volume=	694 ct	-		
Primary	=	0.08 cfs @	12.15 hrs, \	Volume=	78 cf	F		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 4.42' @ 12.15 hrs Surf.Area= 90 sf Storage= 202 cf

Plug-Flow detention time= 68.8 min calculated for 772 cf (100% of inflow) Center-of-Mass det. time= 68.6 min (803.0 - 734.4)

Volume	Invert	Avail.Storage	Storage Description
#1	0.00'	67 cf	5.67'W x 8.00'L x 3.67'H Field A
			166 cf Overall x 40.0% Voids
#2	1.00'	105 cf	3.50'W x 4.00'L x 3.75'H Prismatoid x 2 Inside #3
		_ / _	110 cf Overall - 0.5" Wall Thickness = 105 cf
#3	0.00'	51 cf	4.50'W x 5.00'L x 5.25'H Prismatoid x 2
			236 cf Overall - 110 cf Embedded = 127 cf x 40.0% Volds
		222 cf	Total Available Storage
Device	Routing	Invert Ou	tlet Devices
	Di		
#1	Primary	4.25 5.0	vert. Orifice/Grate C= 0.600
#2	Discarded	0.00' 8.2	10 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.02 cfs @ 11.09 hrs HW=0.05' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.08 cfs @ 12.15 hrs HW=4.42' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 0.08 cfs @ 1.42 fps)

Pond 30P: 300 GAL DRY WELL

Appendix F

OPERATION & MAINTENANCE PLAN

Operation & Maintenance Plan (Permanent BMPs)

FOR

86-88 Prospect St, Newburyport, MA

Date: June, 2021

Owner/Operator:	Blake Wilcox
	The Joppa Group LLC
	10 Harrison Street
	Newburyport, MA 01950

Inspection and Maintenance Schedule

Facility personnel will inspect the stormwater management system on a routine basis not less than once per month for the first six (6) months of operation and annually thereafter. The estimated cost for this inspection and maintenance schedule is \$800/yr. Refer to project design and as-built plans for stormwater systems and landscaped area locations. Inspection and maintenance shall be performed as follows:

1. Landscaped Areas:

Landscaped areas shall be inspected and maintained on a regular basis. Areas that may be subject to erosion will be stabilized and reseeded immediately. Inspect soil and repair eroded areas monthly. Re-plant void areas as needed. Remove litter and debris monthly. Remove and replace dead vegetation twice per year in spring and fall. Replace soil media if ponding is witnessed more than 48 hours after rainfall event.

2. Roof Drains:

<u>Inspections</u>: The downspout inlets on the roof of the building will need periodic maintenance to ensure proper function. The required interval for this maintenance will vary by season; however, downspout inlets should be inspected for debris before the rainy season. When trees and other deciduous vegetation shed leaves that drop into the gutters, this will inhibit the flow of water and possibly clog downspouts. The leaves and/or debris must be removed in order for the system to work as designed.

<u>Maintenance</u>: Debris, such as leaves and trash, shall be removed by hand. Sediments shall be swept and collected or vacuumed.

3. Dry Well:

<u>Inspections</u>: During first year visually inspect after each major storm (>1.5") and again 72 hours later to verify exfiltration is occurring as designed. Note if water remains in basin after 72 hours. After first year visually inspect twice per year. Infiltration Systems shall be inspected for accumulation of silt, sediment, standing water, or debris on an annual basis. Debris and sediment shall be removed.

Inspection & Maintenance procedure is as follows:

The inspection port is a 24" by 24" grate and frame. When the grate is removed, this will provide access to the inside of the dry well below. From the surface, through this access, the sediment may be measured at this location. A stadia rod may be used to measure the depth of sediment, if any, in this dry well. If the depth of sediment is in excess of 3 inches (76 mm), then this chamber should be cleaned with a vacuum truck, or by hand if possible.

4. Porous Pavement

See Inspection Checklist for Porous Pavement (attached).

Inspection:

- Inspect parking area after precipitation events at a minimum of four times per year to ensure proper drainage. Inspection should preferably occur during extended precipitation events, high-intensity rainfall, and/or rain-on-snow events. If standing water remains on surface of pavement more than 30 minutes after rainfall has ended, cleaning of porous pavement is recommended.
- Inspect for damaged areas.

Cleaning:

- Vacuum sweeping (regenerative air sweepers or vacuum-assisted dry sweepers) shall be performed at minimum four times per year. Recommended cleaning times include spring cleanup after snow melt, after spring seed drop, fall cleanup to remove dead leaves and organic materials, and once mid-winter during a dry period.
- Clogged areas shall be power washed with mid-pressure water (less than 500 psi) prior to vacuuming. Areas that do not allow infiltration after power washing and vacuum sweeping shall be replaced per the general measures listed above.
- The porous pavement parking area abuts a conventional asphalt pavement parking area. Runon and sediment tracking may occur at the transition between conventional and porous asphalt pavements. Additional focus on inspection and cleaning may be needed in this area.

Winter Maintenance:

- No winter sanding shall be allowed on either the porous pavement parking area or the adjacent conventional asphalt pavement parking area, as sand will clog the porous pavement surface.
- To prevent aesthetic damage to the pavement surface (e.g. scaring), consider plowing with rubber skids or raised blades; however, aesthetic damage from plow blades does not affect the integrity of the pavement structure.
- Stockpiling of snow shall not be allowed on the porous pavement parking area as it will lead to premature clogging and additional maintenance and vacuuming of the stockpile areas.
- Liquid anti-icing (salt brine) can be applied before storms as determined necessary by the Owner. Unreduced deicing (salting) loading is 3 pounds per 1,000-square feet of parking area.

According to University of New Hampshire Stormwater Center research, this application may be reduced by up to 75% based upon sun exposure within the parking area. We recommend that the Owner balance the use of salt based on site-specific experience gathered over the winter season.

5. <u>Permeable Pavers</u>:

Inspection:

Inspect parking area after precipitation events at a minimum of four times per year to ensure proper drainage. Inspection should preferably occur during extended precipitation events, high-intensity rainfall, and/or rain-on-snow events. If standing water remains on surface of pavers more than 30 minutes after rainfall has ended, cleaning of porous pavers is recommended.

Cleaning:

In Clogged areas power wash aggregate between joints to a minimum of 1" below paver surface. Refill joints with clean ASTM NO. 8 aggregate material.

Winter Maintenance:

- Salting of the permeable paver driveway is permitted. No winter sanding shall be allowed on either the porous pavement parking area or the adjacent conventional asphalt pavement parking area, as sand will clog the porous pavement surface.
- To prevent aesthetic damage to the paver surface (e.g. scaring), consider plowing with rubber skids or raised blades; however, aesthetic damage from plow blades does not affect the integrity of the paver structure.

Stormwater System Inspection Report

General Information				
Location:				
86-88 Prospect Street, Newbu	Jryport			
Date of Inspection	Start/End Time			
Inspector's Name(s)				
Inspector's Title(s)				
Inspector's Contact Information				
Purpose of Inspection				
Weather Information	Weather Information			
Has it rained since the last inspection? Yes No				
Weather at time of this inspection?				

Site-Specific Stormwater Devices: (See above for inspection frequency)

	Description	Installed and Operating Properly?	Corrective Action Needed	Date for Corrective Action/Responsible Person
1		□Yes □No		
2		□Yes □No		
3		□Yes □No		
4		□Yes □No		
5		□Yes □No		
6		□Yes □No		
7		□Yes □No		

	Description	Installed and Operating Properly?	Corrective Action Needed	Date for Corrective Action/Responsible Person
8		□Yes □No		

Overall Site Issues

	Description		Corrective Action	Date for Corrective Action/Responsible Person
1	Are all slopes properly stabilized?	□Yes □No		
2	Are natural resource areas (e.g., streams, wetlands, etc.) being subjected to erosion?	□Yes □No		
3	Are discharge points free of sediment deposits?	□Yes □No		

Certification Statement:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Print name:

Signature:

Date: