

203 Paige Laboratory 161 Holdsworth Way University of Massachusetts Amherst, MA 01003 Phone: (413) 545-2311 e-mail: soiltest@umass.edu website: soiltest.umass.edu

Sample Information:

Sample ID: 4/10/14 Duffy Front

51211
S200918-311
9/18/2020
10/2/2020

Boston, MA 02129

Soil Test Report

Prepared For: William Brown Brown Sandina 24 Roland St

bbrown@brownsardina.com 617-851-0258

Results

Analysis	Value Found	Optimum Range	Analysis	Value Found	Optimum Range
Soil pH (1:1, H2O)	4.7		Cation Exch. Capacity, meq/100g	8.5	
Modified Morgan extractable, ppm			Exch. Acidity, meq/100g	7.6	
Macronutrients			Base Saturation, %		
Phosphorus (P)	2.1	4-14	Calcium Base Saturation	7	50-80
Potassium (K)	40	100-160	Magnesium Base Saturation	2	10-30
Calcium (Ca)	121	1000-1500	Potassium Base Saturation	1	2.0-7.0
Magnesium (Mg)	19	50-120	Scoop Density, g/cc	1.19	
Sulfur (S)	21.7	>10	Optional tests		
Micronutrients *			Soil Organic Matter (LOI), %	1.9	
Boron (B)	0.1	0.1-0.5			
Manganese (Mn)	2.7	1.1-6.3			
Zinc (Zn)	0.7	1.0-7.6			
Copper (Cu)	0.4	0.3-0.6			
Iron (Fe)	95.9	2.7-9.4			
Aluminum (Al)	95	<75			
Lead (Pb)	1.5	<22			

* Micronutrient deficiencies rarely occur in New England soils; therefore, an Optimum Range has never been defined. Values provided represent the normal range found in soils and are for reference only.

Nutrient	Very Low	Low	Optimum	Above Optimum
Phosphorus (P):				
Potassium (K):				
Calcium (Ca):				
Magnesium (Mg):				

203 Paige Laboratory 161 Holdsworth Way University of Massachusetts Amherst, MA 01003 Phone: (413) 545-2311 e-mail: soiltest@umass.edu website: soiltest.umass.edu

Recommendations for Data only (no recommendations requested)

Comments:

-The lead level in this soil is less than 22 ppm, which falls below the listed optimum level. However, many variables affect this result, and safety thresholds vary by location and soil use. There is still a potential risk of lead exposure for soils used for growing food or as play areas for children. Our Total Sorbed Metals test provides an accurate measurement of soil lead. For more information about lead levels in soil, see the fact sheet entitled "Soil Lead: Testing, Interpretation, & Recommendations," listed under General References at the end of this report. ATTN: The Total Sorbed Metals Test is currently unavailable. We apologize for any inconvenience.

Interpreting Your Soil Test Results	http://soiltest.umass.edu/fact-sheets/interpreting-your-soil-test-results
Soil Lead: Testing, Interpretation & Recommendations	http://ag.umass.edu/soil-plant-nutrient-testing-laboratory/fact-sheets/soil-lead-fact-sheet
For current information and order forms, please visit	http://soiltest.umass.edu/
UMass Extension Nutrient Management	http://ag.umass.edu/agriculture-resources/nutrient-management

203 Paige Laboratory 161 Holdsworth Way University of Massachusetts Amherst, MA 01003 Phone: (413) 545-2311 e-mail: soiltest@umass.edu website: soiltest.umass.edu

Sample Information:

Sample ID: 4/10/14 Duffy Rear

Order Number:	51211
Lab Number:	S200918-315
Area Sampled:	
Received:	9/18/2020
Reported:	10/2/2020

Boston, MA 02129

Soil Test Report

Prepared For: William Brown Brown Sandina 24 Roland St

bbrown@brownsardina.com 617-851-0258

Results

Analysis	Value Found	Optimum Range	Analysis	Value Found	Optimum Range
Soil pH (1:1, H2O)	4.5		Cation Exch. Capacity, meq/100g	9.5	
Modified Morgan extractable, ppm			Exch. Acidity, meq/100g	8.5	
Macronutrients			Base Saturation, %		
Phosphorus (P)	2.3	4-14	Calcium Base Saturation	7	50-80
Potassium (K)	47	100-160	Magnesium Base Saturation	2	10-30
Calcium (Ca)	133	1000-1500	Potassium Base Saturation	1	2.0-7.0
Magnesium (Mg)	21	50-120	Scoop Density, g/cc	1.18	
Sulfur (S)	34.4	>10	Optional tests		
Micronutrients *			Soil Organic Matter (LOI), %	1.9	
Boron (B)	0.1	0.1-0.5			
Manganese (Mn)	4.4	1.1-6.3			
Zinc (Zn)	0.8	1.0-7.6			
Copper (Cu)	0.4	0.3-0.6			
Iron (Fe)	81.9	2.7-9.4			
Aluminum (Al)	94	<75			
Lead (Pb)	1.3	<22			

* Micronutrient deficiencies rarely occur in New England soils; therefore, an Optimum Range has never been defined. Values provided represent the normal range found in soils and are for reference only.

Nutrient	Very Low	Low	Optimum	Above Optimum
Phosphorus (P):				
Potassium (K):				
Calcium (Ca):				
Magnesium (Mg):				

203 Paige Laboratory 161 Holdsworth Way University of Massachusetts Amherst, MA 01003 Phone: (413) 545-2311 e-mail: soiltest@umass.edu website: soiltest.umass.edu

Recommendations for Data only (no recommendations requested)

Comments:

-The lead level in this soil is less than 22 ppm, which falls below the listed optimum level. However, many variables affect this result, and safety thresholds vary by location and soil use. There is still a potential risk of lead exposure for soils used for growing food or as play areas for children. Our Total Sorbed Metals test provides an accurate measurement of soil lead. For more information about lead levels in soil, see the fact sheet entitled "Soil Lead: Testing, Interpretation, & Recommendations," listed under General References at the end of this report. ATTN: The Total Sorbed Metals Test is currently unavailable. We apologize for any inconvenience.

Interpreting Your Soil Test Results	http://soiltest.umass.edu/fact-sheets/interpreting-your-soil-test-results
Soil Lead: Testing, Interpretation & Recommendations	http://ag.umass.edu/soil-plant-nutrient-testing-laboratory/fact-sheets/soil-lead-fact-sheet
For current information and order forms, please visit	http://soiltest.umass.edu/
UMass Extension Nutrient Management	http://ag.umass.edu/agriculture-resources/nutrient-management

203 Paige Laboratory 161 Holdsworth Way University of Massachusetts Amherst, MA 01003 Phone: (413) 545-2311 e-mail: soiltest@umass.edu website: soiltest.umass.edu

Soil Test Report

Prepared For:

William Brown Brown Sandina 24 Roland St Boston, MA 02129

bbrown@brownsardina.com 617-851-0258

Results

Sample Information:

Sample ID: 18/22 Boyd

Order Number:	51211
Lab Number:	S200918-314
Area Sampled:	
Received:	9/18/2020
Reported:	10/2/2020

Analysis	Value Found	Optimum Range	Analysis	Value Found	Optimum Range
Soil pH (1:1, H2O)	4.7		Cation Exch. Capacity, meq/100g	9.7	
Modified Morgan extractable, ppm			Exch. Acidity, meq/100g	8.8	
Macronutrients			Base Saturation, %		
Phosphorus (P)	1.9	4-14	Calcium Base Saturation	6	50-80
Potassium (K)	35	100-160	Magnesium Base Saturation	2	10-30
Calcium (Ca)	126	1000-1500	Potassium Base Saturation	1	2.0-7.0
Magnesium (Mg)	26	50-120	Scoop Density, g/cc	1.26	
Sulfur (S)	16.7	>10	Optional tests		
Micronutrients *			Soil Organic Matter (LOI), %	2.2	
Boron (B)	0.0	0.1-0.5			
Manganese (Mn)	4.5	1.1-6.3			
Zinc (Zn)	0.7	1.0-7.6			
Copper (Cu)	0.3	0.3-0.6			
Iron (Fe)	62.5	2.7-9.4			
Aluminum (Al)	107	<75			
Lead (Pb)	1.3	<22			

* Micronutrient deficiencies rarely occur in New England soils; therefore, an Optimum Range has never been defined. Values provided represent the normal range found in soils and are for reference only.

Nutrient	Very Low	Low	Optimum	Above Optimum
Phosphorus (P):				
Potassium (K):				
Calcium (Ca):				
Magnesium (Mg):				

203 Paige Laboratory 161 Holdsworth Way University of Massachusetts Amherst, MA 01003 Phone: (413) 545-2311 e-mail: soiltest@umass.edu website: soiltest.umass.edu

Recommendations for Data only (no recommendations requested)

Comments:

-The lead level in this soil is less than 22 ppm, which falls below the listed optimum level. However, many variables affect this result, and safety thresholds vary by location and soil use. There is still a potential risk of lead exposure for soils used for growing food or as play areas for children. Our Total Sorbed Metals test provides an accurate measurement of soil lead. For more information about lead levels in soil, see the fact sheet entitled "Soil Lead: Testing, Interpretation, & Recommendations," listed under General References at the end of this report. ATTN: The Total Sorbed Metals Test is currently unavailable. We apologize for any inconvenience.

Interpreting Your Soil Test Results	http://soiltest.umass.edu/fact-sheets/interpreting-your-soil-test-results
Soil Lead: Testing, Interpretation & Recommendations	http://ag.umass.edu/soil-plant-nutrient-testing-laboratory/fact-sheets/soil-lead-fact-sheet
For current information and order forms, please visit	http://soiltest.umass.edu/
UMass Extension Nutrient Management	http://ag.umass.edu/agriculture-resources/nutrient-management

203 Paige Laboratory 161 Holdsworth Way University of Massachusetts Amherst, MA 01003 Phone: (413) 545-2311 e-mail: soiltest@umass.edu website: soiltest.umass.edu

Sample Information:

Sample ID: Common

51211
S200918-313
9/18/2020
10/2/2020

Soil Test Report

Prepared For:

William Brown Brown Sandina 24 Roland St Boston, MA 02129

bbrown@brownsardina.com 617-851-0258

Results

Analysis	Value Found	Optimum Range	Analysis	Value Found	Optimum Range
Soil pH (1:1, H2O)	5.4		Cation Exch. Capacity, meq/100g	8.2	
Modified Morgan extractable, ppm			Exch. Acidity, meq/100g	6.9	
Macronutrients			Base Saturation, %		
Phosphorus (P)	1.6	4-14	Calcium Base Saturation	11	50-80
Potassium (K)	35	100-160	Magnesium Base Saturation	4	10-30
Calcium (Ca)	178	1000-1500	Potassium Base Saturation	1	2.0-7.0
Magnesium (Mg)	38	50-120	Scoop Density, g/cc	1.38	
Sulfur (S)	12.5	>10	Optional tests		
Micronutrients *			Soil Organic Matter (LOI), %	1.8	
Boron (B)	0.0	0.1-0.5			
Manganese (Mn)	2.3	1.1-6.3			
Zinc (Zn)	0.5	1.0-7.6			
Copper (Cu)	0.3	0.3-0.6			
Iron (Fe)	42.8	2.7-9.4			
Aluminum (Al)	61	<75			
Lead (Pb)	0.8	<22			

* Micronutrient deficiencies rarely occur in New England soils; therefore, an Optimum Range has never been defined. Values provided represent the normal range found in soils and are for reference only.

Nutrient	Very Low	Low	Optimum	Above Optimum
Phosphorus (P):				
Potassium (K):				
Calcium (Ca):				
Magnesium (Mg):				

203 Paige Laboratory 161 Holdsworth Way University of Massachusetts Amherst, MA 01003 Phone: (413) 545-2311 e-mail: soiltest@umass.edu website: soiltest.umass.edu

Recommendations for Data only (no recommendations requested)

Comments:

-The lead level in this soil is less than 22 ppm, which falls below the listed optimum level. However, many variables affect this result, and safety thresholds vary by location and soil use. There is still a potential risk of lead exposure for soils used for growing food or as play areas for children. Our Total Sorbed Metals test provides an accurate measurement of soil lead. For more information about lead levels in soil, see the fact sheet entitled "Soil Lead: Testing, Interpretation, & Recommendations," listed under General References at the end of this report. ATTN: The Total Sorbed Metals Test is currently unavailable. We apologize for any inconvenience.

Interpreting Your Soil Test Results	http://soiltest.umass.edu/fact-sheets/interpreting-your-soil-test-results
Soil Lead: Testing, Interpretation & Recommendations	http://ag.umass.edu/soil-plant-nutrient-testing-laboratory/fact-sheets/soil-lead-fact-sheet
For current information and order forms, please visit	http://soiltest.umass.edu/
UMass Extension Nutrient Management	http://ag.umass.edu/agriculture-resources/nutrient-management