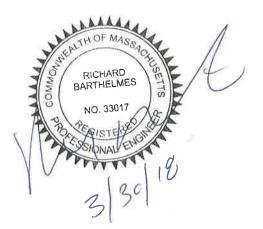
APPLICATION FOR SITE PLAN REVIEW PROPOSED BUILDING EXPANSION 75 PARKER STREET NEWBURYPORT, MASSACHUSETTS

Volume 2 of 2

Prepared For:


Port City Realty, LLC 75 Parker Street Newburyport, Massachusetts 01950

Prepared By:

9F Presidential Way Woburn, MA 01801

March 30, 2018

STORMWATER ANAYLYSIS AND CALCULATIONS PROPOSED BUILDING EXPANSION 75 PARKER STREET NEWBURYPORT, MASSACHUSETTS

Prepared For:

Port City Realty, LLC 75 Parker Street Newburyport, Massachusetts 01950

Prepared By:

9F Presidential Way Woburn, MA 01801

March 30, 2018

SECT	ION 1: STORMWATER ANALYSIS AND CALCULATIONS	1
1.1 1.2 1.3 1.4 1.5	Project Narrative Existing Conditions Analysis Proposed Conditions Analysis Pipe Sizing MassDEP Stormwater Management Standards	1 1 2 4 4

FIGURES

Locus

EX-1 Existing Subcatchment Plan

EX-2 Proposed Subcatchment Plan

ATTACHMENTS

- A. Stormwater Model Calculations
 - A.1 Existing Conditions Analysis
 - A.2 Proposed Conditions Analysis
- B. Massachusetts Stormwater Checklist
- C. Total Suspended Solids (TSS) Removal Calculations
- D. Contech Jellyfish Design Sheets
- E. NRCS Web Soil Survey
- F. Soil Test Pit Logs
- G. Mounding Analysis
- H. Construction Inspection Log Form and Inspection and Maintenance Plan
- I. Stormwater Inspection Report Form and Site Inspection Checklist

1.0 STORMWATER ANALYSIS AND CALCULATIONS

1.1 PROJECT NARRATIVE

The applicant, Port City Realty, LLC, proposes a new building addition constructed at 75 Parker Street, Parcel ID 78-1-A, in Newburyport, Massachusetts. The existing lot consists 98,281 square feet encompassing one commercial building with a loading dock, a single driveway entrance and parking lot, lawn and landscape area. Located in the rear of the building is grass and brush field that slopes south to a vegetated wetland.

The proposed addition will provide additional commercial industrial space. Each space will have a separate designated loading dock designed for a WB-67 type truck (AASHTO 2011). Two additional loading doors will be provided. The current loading dock for the existing structure will be extended to remain accessible. Additional parking spaces, wheelchair accessible ramps, concrete sidewalks and curbing will be constructed for access to the new and existing building entryways. The driveway aisles will be expanded for two-way traffic at the east driveway opening and single lane, exit-only traffic at the west opening. The proposed driveway configuration allows delivery trucks to provide pull-through service by entering through the east and exiting through the west driveway entrances. A new concrete dumpster pad will be provided south of the buildings. A retaining wall and guard rail will be constructed along the west side of driveway and lot line to support the proposed driveway grading.

A portion of the property is located within a vegetated wetland area. Proposed construction includes disturbance within 100 feet of the wetland but outside the 25 foot no disturbance zone. A portion of the property is located within the flood plain of elevation 10.0 feet. The proposed site improvements are located above the flood plain elevation.

Soils for the property are defined as Suffield silt loam (719B) in rear of the building and Udorthents (651 - loamy fill) in front of the building based on the NRCS Web Soil report. The NRCS Web Soil Survey Report is included as Attachment E. Six test pits were dug to verify the soil texture and seasonal high groundwater table. The parent material (C horizon) was a sandy silt loam over fine sand. The top, subsoil, and parent material C1 were classified as an HSG C for HydroCAD runoff calculations. Site test pit logs are included as Attachment F.

1.2 EXISTING CONDITIONS ANALYSIS

The existing lot is predominately grass and mowed brush. There is approximately 12,600 square feet of impervious bituminous concrete driveway and parking lot. The existing impervious roof and removable trailer consist of approximately 5,543 square feet.

There are three (3) subcatchments that flow to three (3) design points. Surface water from the front parking lot, driveway, front lawn, and west side lawn flow overland to Design Point 1, which is a culvert located northwest of the locus property. Design Point 2 is defined as the vegetated wetland to the south of the property. Surface water from the south and west of the building flow overland to Design Point 2 located at the end of an existing grassed swale and edge of the

vegetated wetland. Surface water from east of the building flows overland to Design Point 3 which is defined as the lot east of the locus property. Roof runoff from the existing building was assumed to be dispersed to each of the three subcatchments based on locations of existing downspouts. The total existing impervious area on site is approximately 18,242 square feet. A plan showing the existing condition subcatchments is provided as Attachment A.

The following chart indicates the rainfall amounts based on the Northeast Regional Climate Center Extreme Precipitation Tables used for the existing and proposed calculations as listed in the Town of Newburyport Stormwater Rules and Regulations.

Storm Event	Rainfall Amount (in)
2-year 24 hour storm event	3.1 inches
10-year 24 hour storm event	4.7 inches
25-year 24 hour storm event	5.8 inches
50-year 24 hour storm event	7.1 inches
100-year 24 hour storm event	8.3 inches

The existing condition peak flow analysis to the three Design Points is summarized below.

Storm Event	Design Point #1	Design Point #2	Design Point #3
2 year 24 hour	0.63	1.24	0.55
10-year 24 hour	1.11	3.13	1.19
25-year 24 hour	1.45	4.60	1.66
50-year 24 hour	1.85	6.43	2.23
100-year 24 hour	2.21	8.17	2.76

Existing Peak Rate of Runoff (cfs)

1.3 PROPOSED CONDITIONS ANALYSIS

The proposed construction of additional tenant space, paved parking, driveways, walkways, and loading area will increase the impervious area on site to approximately 47,400 square feet. This equates to an increase of 29,157 square feet of impervious area from the existing condition. Two rain gardens of approximately 7,000 square feet and 1,200 square feet are proposed in the north and east of the existing structure, respectively. The remaining disturbed and non-disturbed areas of the site will consist of landscape plantings, grass and natural brush. Disturbance to areas within the 100-foot wetland buffer zone have been minimized while addressing stormwater mitigation best management practices and Massachusetts Stormwater Standards.

The Proposed Conditions Analysis utilizes the same three (3) design points as the Existing Conditions Analysis in order to compare the peak rate of runoff from existing to proposed conditions. The proposed stormwater management system designed mitigates the rate of runoff and increases the treatment of stormwater runoff compared to existing conditions. The site design and stormwater management system design reduces or maintains the peak rate of runoff to all three design points.

The existing building and a portion of the pavement and lawn area are designed to flow to proposed rain garden #1 located in the front of the lot. An outlet control structure within the rain garden has been designed to mitigate the rate of runoff overflow directed to Design Point #1. Runoff from portions of proposed building

space A, the parking lot, and walkways are directed to rain garden #2. An outlet control structure within the rain garden has been designed to mitigate the runoff overflow directed to Design Point #2. Overflow from rain garden #2 is tied in with the drain system designed for the remaining subcatchments directed to Design Point #2. Runoff from portions of the parking lot, walkways, remainder of proposed building space A and proposed building space B are directed through drainage structures, water treatment units and to an underground chamber storage infiltration system. The overflow from the storage system is directed to Design Point #2. The runoff from an existing portion of lawn to the east of the building will flow to Design Point #3 as it does in the existing condition. A plan showing the proposed condition subcatchments is provided as Attachment A.

The proposed condition peak flow and volume analysis to Design Point #1 is summarized below.

Toposed Teak Rat			
Storm Event	Design Point #1	Design Point #2	Design Point #3
2 year 24 hour	0.21	1.16	0.05
10-year 24 hour	0.59	3.08	0.11
25-year 24 hour	0.82	4.48	0.15
50-year 24 hour	1.19	6.26	0.21
100-year 24 hour	1.92	7.85	0.26

Proposed Peak Rate of Runoff (cfs)

Summary of the net change in peak rate of runoff and volume of runoff from pre to post conditions are provided below.

Design Point #	#1 Peak Flow	Comparison
----------------	--------------	------------

Storm Event	Existing Conditions Peak Rate of Runoff (cfs)	Proposed Conditions Peak Rate of Runoff (cfs)	Net difference in Peak Rate of Runoff (cfs)
2-year 24 hour	0.63	0.21	-0.27
10-year 24 hour	1.11	0.59	-0.33
25-year 24 hour	1.45	0.82	-0.42
50-year 24 hour	1.85	1.19	-0.05
100- year 24 hour	2.21	1.92	-0.09

Design Point #2 Peak Flow Comparison

Storm Event	Existing Conditions Peak Rate of Runoff (cfs)	Proposed Conditions Peak Rate of Runoff (cfs)	Net difference in Peak Rate of Runoff (cfs)
2-year 24 hour	1.24	1.16	-0.08
10-year 24 hour	3.13	3.08	-0.05
25-year 24 hour	4.60	4.48	-0.12
50-year 24 hour	6.43	6.26	-0.17
100- year 24 hour	8.17	7.85	-0.32

Design Point #3 Peak Flow Comparison

Storm Event	Existing Conditions Peak Rate of Runoff (cfs)	Proposed Conditions Peak Rate of Runoff (cfs)	Net difference in Peak Rate of Runoff (cfs)
2-year 24 hour	0.55	0.05	-0.50
10-year 24 hour	1.19	0.11	-1.08
25-year 24 hour	1.66	0.15	-1.51
50-year 24 hour	2.23	0.21	-2.02
100- year 24 hour	2.76	0.26	-2.50

1.4 <u>PIPE SIZING</u>

The proposed pipes have been sized to convey a 50 year 24 hour storm event. In accordance with section B.1.b of the Newburyport Stormwater Management Standards, the following table summarizes the proposed pipe sizes and storm depth from a 10 year 24 hour storm event.

Culvert	Pipe size and	Peak rate of runoff	Peak depth (ft)
	type	(cfs)	
PCB 1	12" HDPE	0.22	0.27
PCB 2	12" HDPE	0.17	0.24
PCB 3	12" HDPE	0.51	0.63
PCB 4	12" HDPE	0.50	0.41
PCB 5	12" HDPE	0.36	0.42
PCB 6	12" HDPE	0.53	0.44
PCB 7	12" HDPE	0.28	0.42
PDMH 1	12" HDPE	0.39	0.38
PDMH 2	12" HDPE	1.01	0.62
PDMH 3	12" HDPE	1.01	0.65
PDMH 4	12" HDPE	1.84	0.79
PDMH 5	12" HDPE	1.84	0.89
PDMH 6	12" HDPE	0.75	0.53
PDMH 7	12" HDPE	1.02	0.56
PDMH 8	12" HDPE	1.46	0.80

1.5 <u>MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION</u> (MASSDEP) STORMWATER MANAGEMENT STANDARDS

Standard 1 - No untreated discharges or erosion to wetlands The proposed site design and stormwater management system includes two discharge points of stormwater runoff. Stormwater runoff is treated through multiple best management practices prior to discharge at both locations, the existing 18" culvert (Design Point #1) and the bordering vegetated wetlands (Design Point #2),

Standard 2 - Peak Rate Attenuation

As detailed above, the stormwater management system has been designed to maintain or reduce the peak rate of runoff during the 2, 10, 25, 50, and 100-year 24-hour storm events.

Standard 3 - Stormwater Recharge. The site is located in a hydrologic soil group C, requiring 0.25" of recharge over impervious areas. The hydrologic soils group is based on NRCS online mapping tool and confirmed by on site observation and soil testing performed by a Massachusetts Title 5 soil evaluator. The test pits logs confirm the top parent material as a silt loam, consistent with a hydrologic soil group C. The proposed site development includes a total impervious area of 47,400 sf. The required recharge amount is 47,400 x .25/12 = 987 cf. Adjusted minimum storage volume: Because the entire impervious area is not directed through the infiltration basin, the MADEP Stormwater Handbook specifies that the minimum required recharge of the infiltration basin be adjusted by the ratio of total to contributing impervious area. The adjusted minimum required recharge volume for the infiltration basin is: 47,400/14,215 = 3.33 x 987 cf = 3,287 cf.

The simple dynamic storage method is utilized to demonstrate the minimum recharge volume is contained in the infiltration basin without any discharge though the primary outlet. As prescribed in the Massachusetts Stormwater Handbook, a subcatchment was defined as the impervious area, 47,400 sf, and a fictional storm event that generated the prescribed adjusted minimum recharge volume (3,287 cf) over the 11-13 hour time span was modeled. The modeled storm of 1.75" generates a runoff volume of 0.076 af (3,310 cf), and the peak elevation of the infiltration basin is 17.89, below the outlet elevation of 17.90, therefore the infiltration pond meets the required recharge volume of Standard 3. The groundwater recharge analysis is provided at the end of Attachment A.

A Mounding Analysis was performed utilizing the Hantush Method as required by the Massachusetts Stormwater Handbook for infiltration basins designed to attenuate peak rates and less than 4' separation to seasonal high groundwater. The infiltration basin is designed to be a minimum 2' above seasonal high groundwater as determined during the on site soil testing. The Mounding analysis demonstrates that the resulting groundwater mound beneath the infiltration system does not reduce the volume capacity of the infiltration basin, is drained out within 72 hours, and does not break out above the land surface. The Mounding Analysis Report is included as Attachment G.

Standard 4 - Water Quality

Total Suspended Solids (TSS) Removal

The stormwater management system is designed to improve the water quality of stormwater runoff leaving the site compared to existing conditions. The existing site development allows runoff to sheet flow off the paved parking lot and truck loading area to either the culvert along Parker Street (design point #1) or a swale discharging to the bordering vegetated wetland (design point #2). Minimal TSS removal occurs in the existing condition. The proposed site design incorporates several best management practices (BMP) including: deep sump catchbasins; water quality units; subsurface infiltration basin; grass swales; and rain gardens. Each BMP has been designed to both mitigate the peak rate of runoff and provide TSS removal. There is one treatment train corresponding to discharge design point 1 and two treatment trains corresponding to discharge design point #2.

Treatment train 1 – discharge to Design Point #1

The area of runoff directed to design point #1 is approximately 25,483 square feet which includes the existing building and the proposed paved area and rain garden. This portion of the site was previously disturbed for construction of the existing site features. Redevelopment of this area provides the opportunity for treatment of the

surface runoff prior to discharge to design point #1. In order to maintain the existing finish floor and loading dock elevations, additional pretreatment is not feasible. However, the proposed redevelopment of the front of the property will remove additional total suspended solids as well as meet or reduce the peak flow of runoff compared to the existing condition for design point 1.

Runoff from the front portion of the site sheet flows into the rain garden proposed in front of the building. Two (2) rip-rap swales are designed to reduce velocity of runoff from the driveway and loading area prior to discharge to the rain garden. The rain garden design incudes a twenty four inch (24") planting soil matrix below the rain garden and specifies a variety of shrubs and groundcovers suitable for planting in rain gardens. Runoff from the rain garden is conveyed through an outlet control structure designed to discharge runoff in a controlled manner to meet or reduce the peak rate of runoff at the design point. The outlet control structure conveys runoff through two 8" HDPE pipes to a grass swale which flows to the existing 18" culvert at Parker Street. The resulting TSS removal rate is 72% for treatment train 1. The redevelopment portion of the site meets standard 4 to the maximum extent practical. The MADEP TSS Removal Calculation Worksheet is attached as Attachment C.

Treatment train 2 – discharge to Design Point #2

Runoff from the rear portion of the paved area is collected by deep sump catchbasins and conveyed to a water quality pretreatment device (Contech Jellyfish Unit). The pretreatment device was sized for a 1" storm event. The runoff is then conveyed to an underground chamber infiltration system (Contech Chambermaxx). Overflow runoff from the infiltration system is allowed to discharge to stone rip-rap and existing grassed slope prior to reaching design point 2. The resulting TSS removal rate is greater than 90% for treatment train 2. The MADEP TSS Removal Calculation Worksheet is attached as Attachment C.

Treatment train 3 – discharge to Design Point #2

Runoff from the north portion of the proposed building tenant space A, and a portion of the parking lot and adjacent walkways flows to the proposed rain garden east of the existing building. The rain garden and outlet control structure have been designed to mitigate the peak flow of runoff prior to discharge to design point 2. Overflow from the rain garden discharges through a 12" HDPE pipe and joins additional runoff conveyance in proposed manhole #2. The runoff is combined with the runoff from the east and west portions of the parking lot collected by deep sump catchbasins and conveyed to a water quality pretreatment device (Contech Jellyfish Unit). The pretreatment device was sized for a 1" storm event. The runoff is then conveyed to an existing stone rip-rap swale and grass channel prior to reaching design point 2. The resulting TSS removal rate is greater than 90% for treatment train 3. The MADEP TSS Removal Calculation Worksheet is attached as Attachment C.

Proprietary Treatment Unit Review

The water quality pretreatment devices are manufactured by Contech Engineered Solutions. Given the site design criteria, Contech provided calculations to support a recommended pretreatment model, the Jellyfish 4-2-1 with offline routing configuration. The Jellyfish unit is a proprietary hydrodynamic separator, housing replaceable filter cartridges in a manhole structure. The offline configuration encompasses a diversion manhole, the treatment structure, and a collection manhole for further conveyance. The diversion manhole allows for bypass conveyance of runoff to the collection manhole when the inflow of surface runoff has exceeded the flow capacity of the pretreatment unit. The pretreatment model is designed to remove at least 80% of the annual post-construction load of TSS. The design calculations provided by Contech are attached in Attachment D.

Water Quality Volume (WQV)

Design Point #1 WQV required = (impervious area) x (0.5" / 12" per ft.) WQV required = 14,260 sf x (0.5"/12" per ft.) = 594 cf WQV provided in rain garden = 934 cf between bottom elevation of rain garden and the lowest invert into the outlet control structure > 594 cf

Design Point #2 WQV required = 33,139 sf x (0.5"/12" per ft.) = 1,381 cf WQV provided in chamber storage system = 741 cf + 793 cf = 1,534 cf WQV provided in stone void storage = 670 cf + 601 cf = 1,271 cf Total WQV provided = 2,805 cf > 1,381 cf required

Approximately 182 cf of additional storage is provided in the infiltration trench pipe and stone voids designed for conveyance to the infiltration chambers.

There is no impervious surface runoff directed to design point #3.

Drawdown within 72 Hours

Time (drawdown)	= Required Recharge Volume / (Rawl's Rate x Bottom Area)
Time drawdown	= (2,986 cf total storage) / [(8.27" per hour, sand infiltration
	rate) x $(1'/12'')$ x $(1,100 \text{ sf bottom area}) = 3.9 \text{ hrs} < 72 \text{ hrs}$

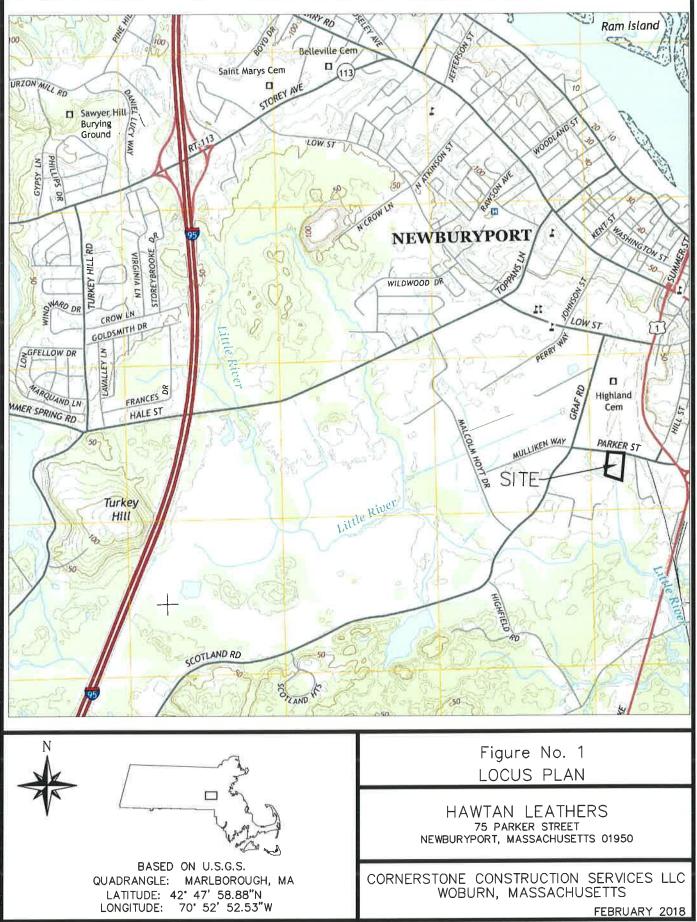
Standard 5 - Land Uses with Higher Potential Pollutant Loads The site is not considered a higher potential pollutant load

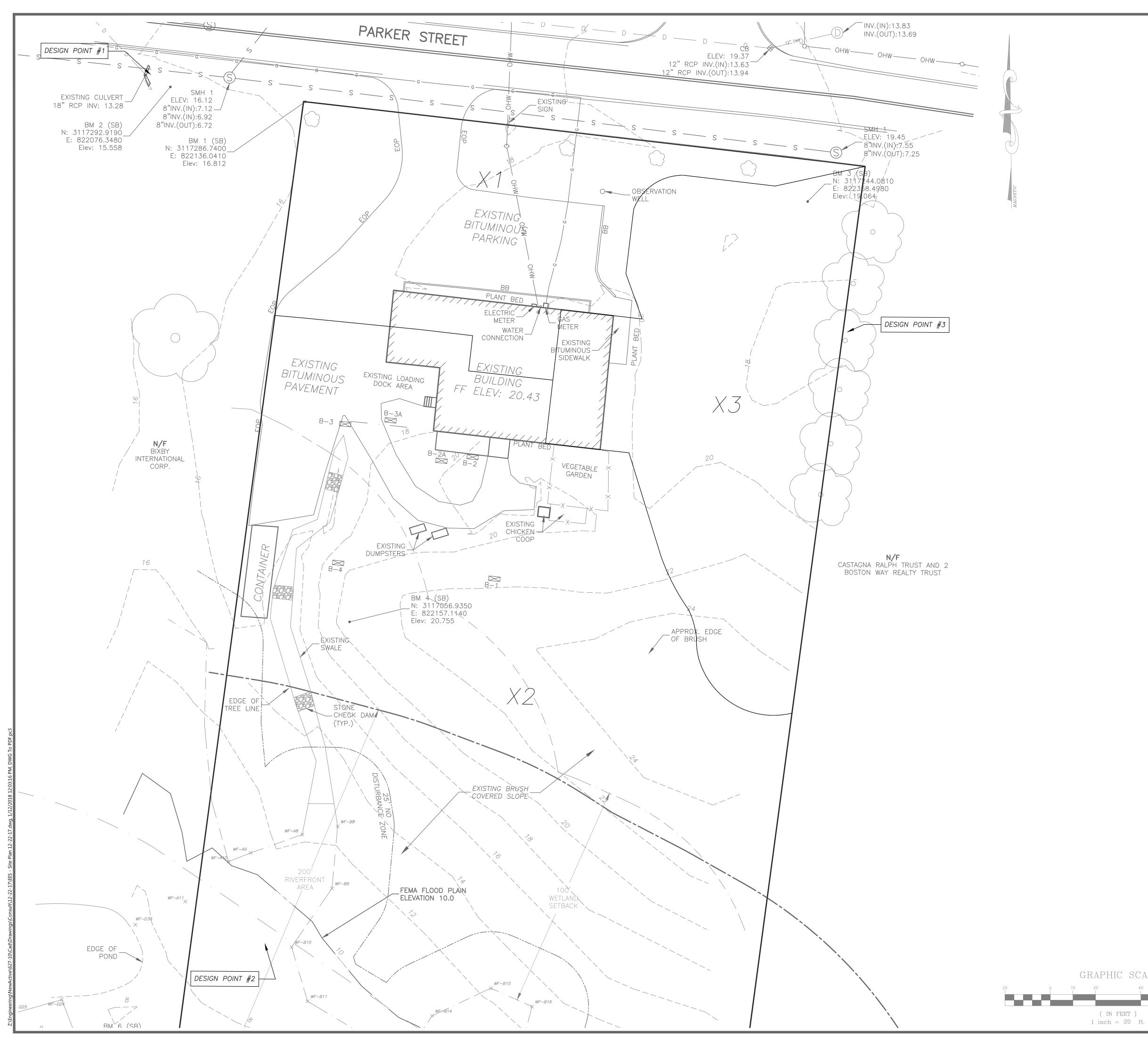
Standard 6 - Critical Areas

The site does not discharge to a critical area.

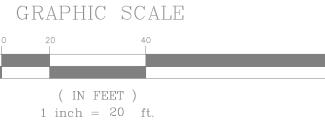
Standard 7 - Redevelopment

A portion of the site is previously developed. The existing development includes the building, parking area, and truck loading area. The site is designed to meet the MassDEP Stormwater Management Standards.


Standard 8 - Construction Period Pollution Prevention and Erosion Control Plan A Stormwater Pollution Prevention Plan (SWPPP) is included in Appendix C of the Report to Accompany the Notice of Intent (NOI).


Standard 9 - Operation and Maintenance Plan An Operation and Maintenance Plan is included. Refer to Attachment H.

Standard 10 - Prohibition of Illicit Discharges


An Illicit Discharge Statement will be provided by a Certifying Professional prior to the discharge of any stormwater to post-construction BMPs. Refer to Attachment B.

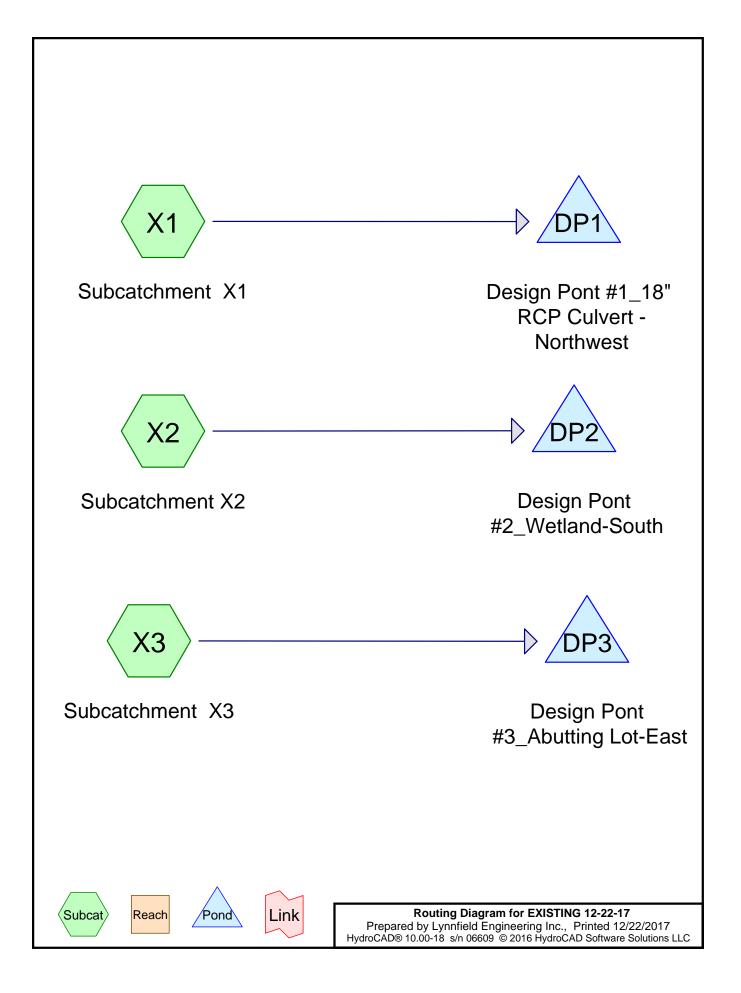
FIGURES

Drawn Br: Bow Br: Bow Drawn Bri Dramant Dram Bri Drawn Bri </th <th></th> <th>CURNERSIONE CUNSIRUCIIUN</th> <th>JEN VIVEJ EFC</th> <th>9F PRESIDENTIAL WAY</th> <th>WUBUKN, MASSACHUSETIS UTÖUT (781) 937-3045</th> <th></th>		CURNERSIONE CUNSIRUCIIUN	JEN VIVEJ EFC	9F PRESIDENTIAL WAY	WUBUKN, MASSACHUSETIS UTÖUT (781) 937-3045	
DRAWN BY: BSM CHECKED BY: KCK No. DATE No. DATE		PROPOSED BUILDING EXPANSION	NEWBURYPORT, MASSACHUSETTS	PKEPAKEU FOR		
DRAWN BY: DRAWN BY: BSM CHECKED BY: KCK SCALE: AS NOTED DATE SCALE: AS NOTED DATE AS NOTED DATE AS NOTED DATE AS NOTED ATE AS NOTED AS NOTED ATE AS NOTED ATE AS NOTED AS NOTED ATE AS NOTED AS N						
DRAWN BY: BSM CHECKED BY: KCK SCALE: AS NOTED SCALE: BSM No. No. No. No.	REVISIONS	DESCRIPTION				
DRAWN BY: BSM CHECKED BY: KCK SCALE: AS NOTED DATE: DATE: FEBRUARY 2018						
ORAWN BY: CHECKED BY: SCALE: AS NC DATE: FEBRUARY 2			EXISTING	SUBCATCHMENT PLAN		
SCALE: DATE:	BSM			AS NOTED		UARY 2018
		ED B)		Ĺ		FEBR
	~			SCALI	DATE	

PRO	DRAWN BY:	BSM			REVISIONS			
JECT				No. DATE	DESCRIPTION	PROJECT BY	PROPOSED BUILDING EXPANSION	CURNERSIONE CUNSIRUCIIUN
	Э.	KCK	PROPOSED				NEWBURYPORT, MASSACHUSETTS	JENVIOLJ LLO
	SCALE:	AS NOTED	SUBCATCHMENT PLAN					9F PRESIDENTIAL WAY
	DATE:							WOBURN, MASSACHUSELLS 01801 (781) 037_3015
7—10		EBRUARY 2018						

IIC	SCALE	
	40 	

4	0 80
FEET)	
1 1 1 1)	
= 20 f	+


ATTACHMENT A

STORMWATER MODEL CALCULATIONS

ATTACHMENT A-1

Existing Conditions Analysis

Existing Conditions Analysis 2-Year 24-Hour Storm Event

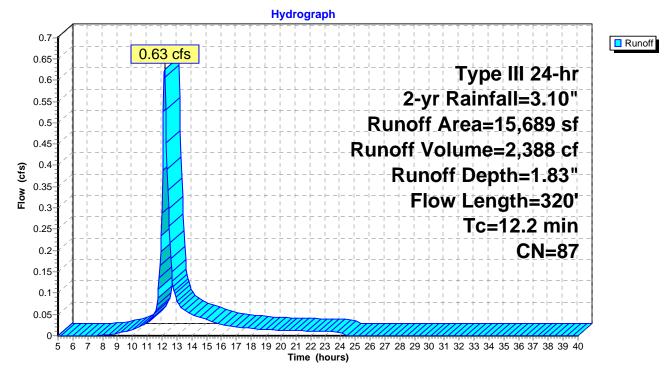
EXISTING 12-22-17 Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
44,459	74	>75% Grass cover, Good, HSG C (X1, X2, X3)
36,544	65	Brush, Good, HSG C (X2)
9,437	65	Brush, Good, HSG C, Wetland Brush (X2)
12,599	98	Paved parking, HSG C (X1, X2, X3)
5,174	98	Roofs, HSG C (X1, X2, X3)
469	98	Unconnected roofs, HSG C, Container (X2)
108,682	74	TOTAL AREA

Runoff by SCS	
	na methoa - Tona toating by Dyn-Stor-Ina methoa
Subcatchment X1: Subcatchment X1	Runoff Area=15,689 sf 52.60% Impervious Runoff Depth=1.83" Flow Length=320' Tc=12.2 min CN=87 Runoff=0.63 cfs 2,388 cf
Subcatchment X2: Subcatchment X2	Runoff Area=72,692 sf 10.40% Impervious Runoff Depth=0.82" Flow Length=386' Tc=10.0 min CN=71 Runoff=1.24 cfs 4,959 cf
Subcatchment X3: Subcatchment X3	Runoff Area=20,301 sf 11.97% Impervious Runoff Depth=1.14" Flow Length=187' Tc=8.1 min CN=77 Runoff=0.55 cfs 1,930 cf
Pond DP1: Design Pont #1_18" RCP Cu	Ivert - NorthwestInflow=0.63 cfs 2,388 cfPrimary=0.63 cfs 2,388 cf
Pond DP2: Design Pont #2_Wetland-So	uth Inflow=1.24 cfs 4,959 cf Primary=1.24 cfs 4,959 cf
Pond DP3: Design Pont #3_Abutting Lo	t-East Inflow=0.55 cfs 1,930 cf Primary=0.55 cfs 1,930 cf

Total Runoff Area = 108,682 sf Runoff Volume = 9,277 cf Average Runoff Depth = 1.02" 83.22% Pervious = 90,440 sf 16.78% Impervious = 18,242 sf


Summary for Subcatchment X1: Subcatchment X1

Runoff = 0.63 cfs @ 12.17 hrs, Volume= 2,388 cf, Depth= 1.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

Α	rea (sf)	CN E	Description		
	7,437	74 >	75% Gras	s cover, Go	bod, HSG C
	6,684	98 F	Paved park	ing, HSG C	
	1,568	98 F	Roofs, HSC	S C	
	15,689	87 V	Veighted A	verage	
	7,437	4	7.40% Pei	vious Area	
	8,252	5	52.60% Imp	pervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.8	100	0.0200	0.17		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.22"
2.4	220	0.0472	1.52		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
12.2	320	Total			

Subcatchment X1: Subcatchment X1

Summary for Subcatchment X2: Subcatchment X2

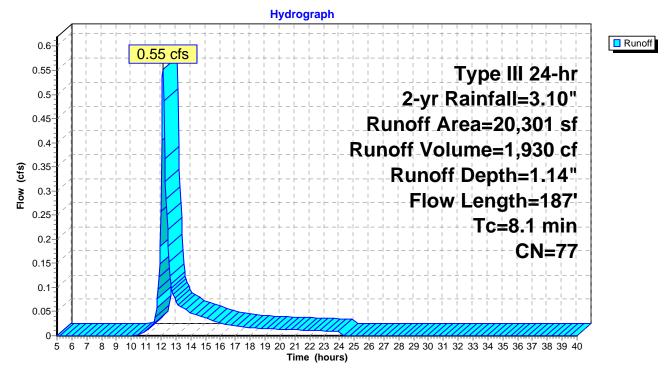
Runoff = 1.24 cfs @ 12.16 hrs, Volume= 4,959 cf, Depth= 0.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

	A	rea (sf)	CN	Description				
		1,427	98	3 Roofs, HSG C				
*		469	98	Unconnecte	ed roofs, H	SG C, Container		
		5,663	98	Paved park	ing, HSG C			
		19,152	74	>75% Gras	s cover, Go	bod, HSG C		
		36,544	65	Brush, Goo				
*		9,437	65	Brush, Goo	<u>d, HSG C,</u>	Wetland Brush		
		72,692	71	Weighted A	0			
		65,133		89.60% Per	vious Area			
		7,559		10.40% Imp		ea		
		469		6.20% Unco	onnected			
	т.	1	01		0	Description		
	Tc	Length	Slope		Capacity	Description		
	(min)	(feet)	(ft/ft	//	(cfs)			
	7.2	100	0.042	5 0.23		Sheet Flow,		
		445	0.0070	. 4.05		Grass: Short n= 0.150 P2= 3.22"		
	1.4	115	0.0370) 1.35		Shallow Concentrated Flow,		
	1 /	171	0.0100	0 2 04		Short Grass Pasture Kv= 7.0 fps		
	1.4	171	0.0180) 2.01		Shallow Concentrated Flow,		
	40.0	000	Tatal			Grassed Waterway Kv= 15.0 fps		
	10.0	386	Total					

Hydrograph Runoff 1.24 cfs Type III 24-hr 2-yr Rainfall=3.10" Runoff Area=72,692 sf 1 Runoff Volume=4,959 cf Flow (cfs) Runoff Depth=0.82" Flow Length=386' Tc=10.0 min CN=71 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time (hours)

Subcatchment X2: Subcatchment X2

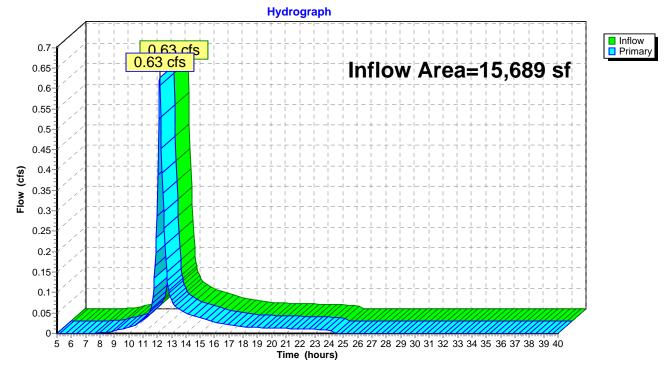

Summary for Subcatchment X3: Subcatchment X3

0.55 cfs @ 12.12 hrs, Volume= 1,930 cf, Depth= 1.14" Runoff _

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

	Area (sf)	CN [Description		
	17,870)	74 >	75% Gras	s cover, Go	bod, HSG C
	252	2	98 F	Paved park	ing, HSG C	
	2,179	9	98 F	Roofs, HSC	S Č	
	20,301	1	77 \	Veighted A	verage	
	17,870)	8	38.03% Pei	vious Area	
	2,431	1	1	1.97% Imp	pervious Ar	ea
Т	c Lengt	th	Slope	Velocity	Capacity	Description
(mir	n) (fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.	8 10	00	0.0500	0.25		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.22"
1.	3 8	37	0.0260	1.13		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
8.	1 18	37	Total			

Subcatchment X3: Subcatchment X3

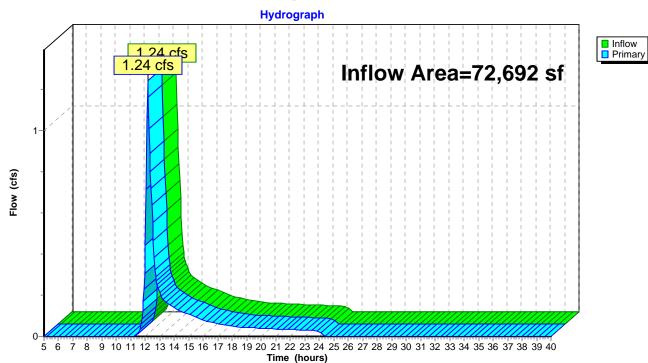

Summary for Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	15,689 sf, 52.60% Impervious, Inflow Depth = 1.83" for 2-yr e	event
Inflow	=	0.63 cfs @ 12.17 hrs, Volume= 2,388 cf	
Primary	=	0.63 cfs @ 12.17 hrs, Volume= 2,388 cf, Atten= 0%, Lag	g= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

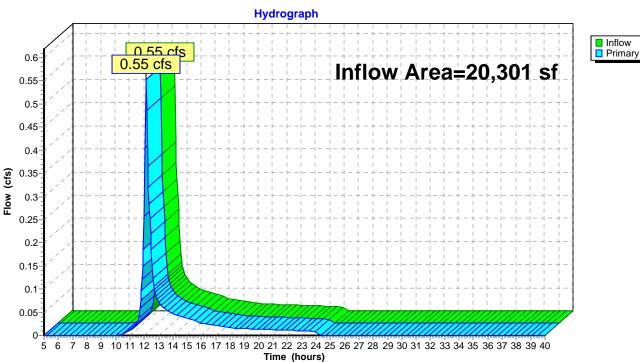


Summary for Pond DP2: Design Pont #2_Wetland-South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	72,692 sf, 10.40% Impervious, Inflow Depth = 0.82" for 2-yr event
Inflow	=	1.24 cfs @ 12.16 hrs, Volume= 4,959 cf
Primary	=	1.24 cfs @ 12.16 hrs, Volume= 4,959 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs


Pond DP2: Design Pont #2_Wetland-South

Summary for Pond DP3: Design Pont #3_Abutting Lot-East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	20,301 sf, 11.97% Impervious, Inflow Depth = 1.14" for 2-yr event	
Inflow	=	0.55 cfs @ 12.12 hrs, Volume= 1,930 cf	
Primary	=	0.55 cfs @ 12.12 hrs, Volume= 1,930 cf, Atten= 0%, Lag= 0.0 min	۱

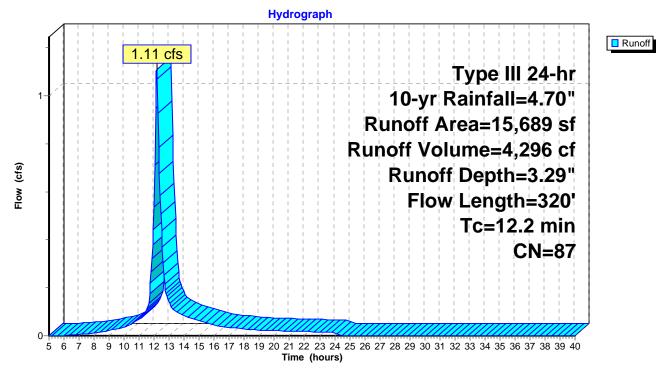
Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

Pond DP3: Design Pont #3_Abutting Lot-East

Existing Conditions Analysis 10-Year 24-Hour Storm Event

EXISTING 12-22-17 Prepared by Lynnfield Engineering Ind HydroCAD® 10.00-18 s/n 06609 © 2016 Hy Time span=5 Runoff by SCS Reach routing by Dyn-Stor-	, 701 points Weighted-CN	
Subcatchment X1: Subcatchment X1	Runoff Area=15,689 sf	52.60% Impervious Runoff Depth=3.29" 2.2 min CN=87 Runoff=1.11 cfs 4,296 cf
Subcatchment X2: Subcatchment X2		10.40% Impervious Runoff Depth=1.89" 0 min CN=71 Runoff=3.13 cfs 11,464 cf
Subcatchment X3: Subcatchment X3		11.97% Impervious Runoff Depth=2.37" 3.1 min CN=77 Runoff=1.19 cfs 4,016 cf
Pond DP1: Design Pont #1_18" RCP Cu	Inflow=1.11 cfs 4,296 cf Primary=1.11 cfs 4,296 cf	
Pond DP2: Design Pont #2_Wetland-So	Inflow=3.13 cfs 11,464 cf Primary=3.13 cfs 11,464 cf	
Pond DP3: Design Pont #3_Abutting Lo	Inflow=1.19 cfs 4,016 cf Primary=1.19 cfs 4,016 cf	
Total Runoff Area = 108 68	2 sf Runoff Volume = 19	776 cf Average Runoff Depth = 2.18

Total Runoff Area = 108,682 sf Runoff Volume = 19,776 cf Average Runoff Depth = 2.18" 83.22% Pervious = 90,440 sf 16.78% Impervious = 18,242 sf


Summary for Subcatchment X1: Subcatchment X1

1.11 cfs @ 12.17 hrs, Volume= 4,296 cf, Depth= 3.29" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

	A	rea (sf)	CN [Description		
		7,437	74 >	75% Gras	s cover, Go	ood, HSG C
		6,684	98 F	Paved park	ing, HSG C	
		1,568	98 F	Roofs, HSC	S Č	
		15,689	87 V	Veighted A	verage	
		7,437	2	7.40% Pei	vious Area	
		8,252	5	52.60% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.8	100	0.0200	0.17		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.22"
	2.4	220	0.0472	1.52		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	12.2	320	Total			

Subcatchment X1: Subcatchment X1

Summary for Subcatchment X2: Subcatchment X2

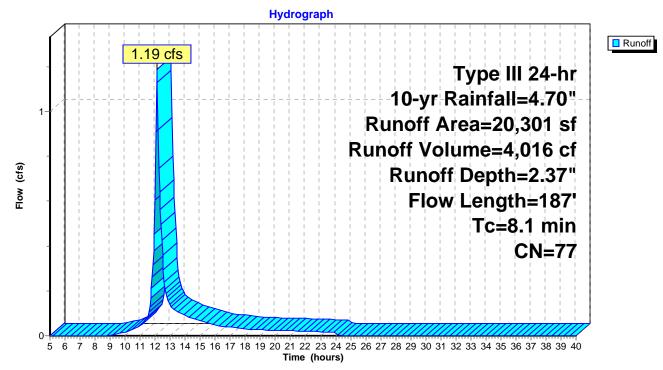
Runoff = 3.13 cfs @ 12.15 hrs, Volume= 11,464 cf, Depth= 1.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

	A	rea (sf)	CN	Description		
		1,427	98	Roofs, HSC	G C	
*		469	98	Unconnecte	ed roofs, HS	SG C, Container
		5,663	98	Paved park	ing, HSG C	
		19,152	74	>75% Gras	s cover, Go	bod, HSG C
		36,544	65	Brush, Goo	d, HSG C	
*		9,437	65	Brush, Goo	d, HSG C,	Wetland Brush
		72,692	71	Weighted A	verage	
		65,133		89.60% Per	vious Area	
		7,559	10.40% Impervious Area			ea
		469		6.20% Unconnected		
	Tç	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	7.2	100	0.0425	5 0.23		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.22"
	1.4	115	0.0370) 1.35		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	1.4	171	0.0180) 2.01		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	10.0	386	Total			

Hydrograph Runoff 3.13 cfs Type III 24-hr 3-10-yr Rainfall=4.70" Runoff Area=72,692 sf Runoff Volume=11,464 cf 2 Runoff Depth=1.89" Flow (cfs) Flow Length=386' Tc=10.0 min CN=71 1 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time (hours)

Subcatchment X2: Subcatchment X2


Summary for Subcatchment X3: Subcatchment X3

Runoff = 1.19 cfs @ 12.12 hrs, Volume= 4,016 cf, Depth= 2.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

	Area (sf)	CN I	Description		
	17,870	74 >75% Grass cover, Good,			bod, HSG C
	252	98 I	Paved park	ing, HSG C	
	2,179	98 I			
	20,301	77 \	Neighted A	verage	
	17,870	8	38.03% Pei	vious Area	
	2,431 11.97% Impervious Area			pervious Ar	ea
Т	c Length	Slope	Velocity	Capacity	Description
(min) (feet)	(ft/ft)	(ft/sec)	(cfs)	
6.8	8 100	0.0500	0.25		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.22"
1.3	3 87	0.0260	1.13		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
8.	1 187	Total			

Subcatchment X3: Subcatchment X3

Summary for Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

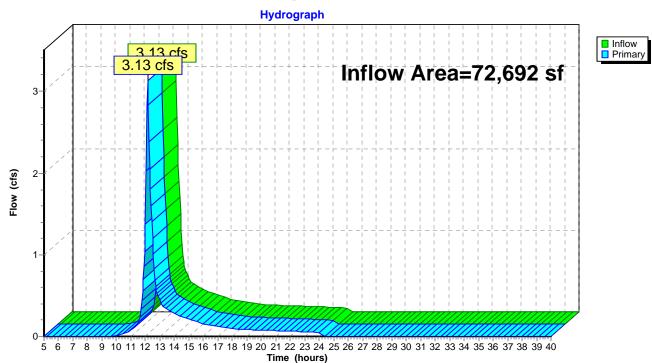
[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		15,689 sf, 52.60% Impervious,	Inflow Depth = 3.29" for 10-yr event
Inflow	=	1.11 cfs @ 12.17 hrs, Volume=	4,296 cf
Primary	=	1.11 cfs @ 12.17 hrs, Volume=	4,296 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

Hydrograph Inflow Primary 1 11 cfs 1.11 cfs Inflow Area=15,689 sf 1 Flow (cfs) 0

Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

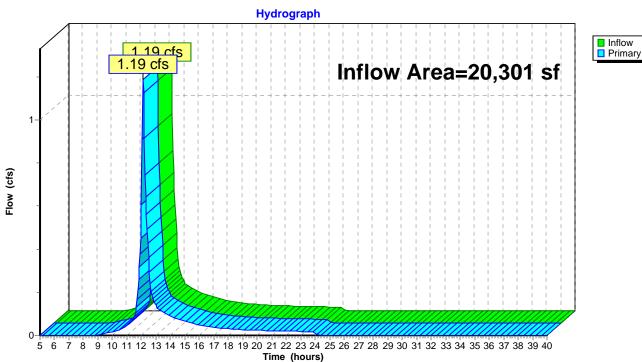

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time (hours)

Summary for Pond DP2: Design Pont #2_Wetland-South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	72,692 sf, 10.40% Impervious, Inflow Depth = 1.89" for 10-yr event	
Inflow	=	3.13 cfs @ 12.15 hrs, Volume= 11,464 cf	
Primary	=	3.13 cfs @ 12.15 hrs, Volume= 11,464 cf, Atten= 0%, Lag= 0.0 min	۱

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs


Pond DP2: Design Pont #2_Wetland-South

Summary for Pond DP3: Design Pont #3_Abutting Lot-East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	20,301 sf, 11.97% Impervious, Inflow Depth = 2.37" for 10-yr event
Inflow	=	1.19 cfs @ 12.12 hrs, Volume= 4,016 cf
Primary	=	1.19 cfs @ 12.12 hrs, Volume= 4,016 cf, Atten= 0%, Lag= 0.0 min

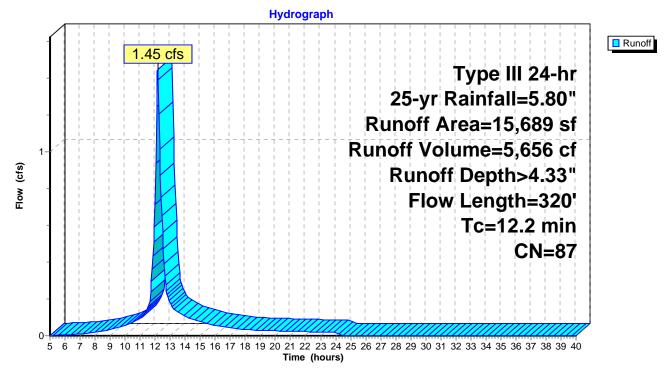
Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

Pond DP3: Design Pont #3_Abutting Lot-East

Existing Conditions Analysis 25-Year 24-Hour Storm Event

EXISTING 12-22-17 Prepared by Lynnfield Engineering Int HydroCAD® 10.00-18 s/n 06609 © 2016 Hy Time span=5 Runoff by SCS Reach routing by Dyn-Stor-	701 points Weighted-CN				
Subcatchment X1: Subcatchment X1		52.60% Impervious Runoff Depth>4.33" 2 min CN=87 Runoff=1.45 cfs 5,656 cf			
Subcatchment X2: Subcatchment X2		10.40% Impervious Runoff Depth=2.74" min CN=71 Runoff=4.60 cfs 16,589 cf			
Subcatchment X3: Subcatchment X3		11.97% Impervious Runoff Depth=3.31" 1 min CN=77 Runoff=1.66 cfs 5,591 cf			
Pond DP1: Design Pont #1_18" RCP Cu	Inflow=1.45 cfs 5,656 cf Primary=1.45 cfs 5,656 cf				
Pond DP2: Design Pont #2_Wetland-So	Inflow=4.60 cfs 16,589 cf Primary=4.60 cfs 16,589 cf				
Pond DP3: Design Pont #3_Abutting Lo	Inflow=1.66 cfs 5,591 cf Primary=1.66 cfs 5,591 cf				
Total Runoff Area = 108.682 sf Runoff Volume = 27.836 cf Average Runoff Depth = 3.07					

Total Runoff Area = 108,682 sf Runoff Volume = 27,836 cf Average Runoff Depth = 3.07" 83.22% Pervious = 90,440 sf 16.78% Impervious = 18,242 sf

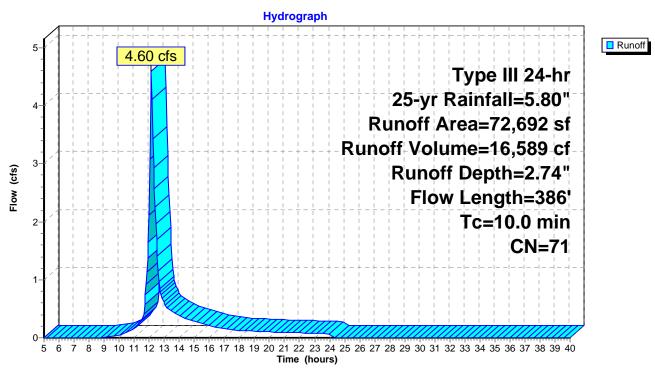

Summary for Subcatchment X1: Subcatchment X1

Runoff = 1.45 cfs @ 12.17 hrs, Volume= 5,656 cf, Depth> 4.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

A	Area (sf)	CN E	Description				
	7,437	74 >	75% Gras	s cover, Go	bod, HSG C		
	6,684	98 F	aved park	ing, HSG C			
	1,568	98 F	1 0				
	15,689	87 V	Veighted A	verage			
	7,437	4	7.40% Per	vious Area			
	8,252	5	2.60% Imp	pervious Ar	ea		
Tc	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
9.8	100	0.0200	0.17		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.22"		
2.4	220	0.0472	1.52		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
12.2	320	Total					

Subcatchment X1: Subcatchment X1



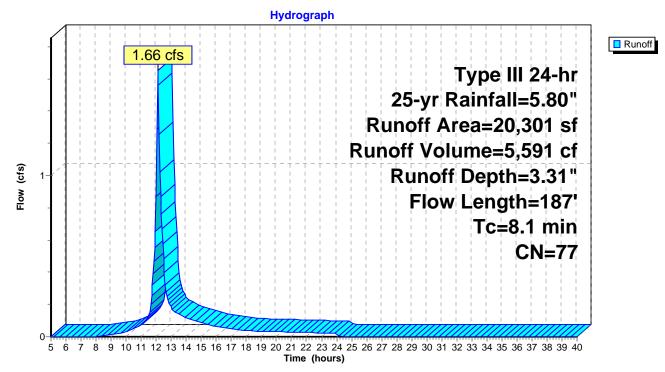
Summary for Subcatchment X2: Subcatchment X2

Runoff = 4.60 cfs @ 12.15 hrs, Volume= 16,589 cf, Depth= 2.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

	A	rea (sf)	CN	Description		
		1,427	98	Roofs, HSC	G C	
*		469	98	Unconnecte	ed roofs, H	SG C, Container
		5,663	98	Paved park	ing, HSG C	
		19,152	74	>75% Gras	s cover, Go	bod, HSG C
		36,544	65	Brush, Goo	d, HSG C	
*		9,437	65	Brush, Goo	<u>d, HSG C,</u>	Wetland Brush
		72,692	71	Weighted A	verage	
		65,133		89.60% Per	vious Area	l
		7,559		10.40% Imp		ea
		469		6.20% Unco	onnected	
	_					
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft		(cfs)	
	7.2	100	0.0425	5 0.23		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.22"
	1.4	115	0.0370) 1.35		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	1.4	171	0.0180) 2.01		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	10.0	386	Total			

Subcatchment X2: Subcatchment X2

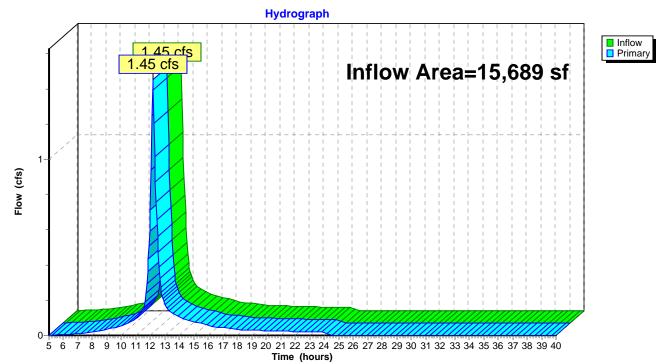

Summary for Subcatchment X3: Subcatchment X3

Runoff = 1.66 cfs @ 12.12 hrs, Volume= 5,591 cf, Depth= 3.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

A	rea (sf)	CN [Description		
	17,870	74 >	>75% Gras	s cover, Go	bod, HSG C
	252	98 F	Paved park	ing, HSG C	
	2,179	98 F	Roofs, HSG	S C	
	20,301	77 \	Veighted A	verage	
	17,870	8	38.03% Per	vious Area	
	2,431	1	1.97% Imp	pervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.8	100	0.0500	0.25		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.22"
1.3	87	0.0260	1.13		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
8.1	187	Total			

Subcatchment X3: Subcatchment X3

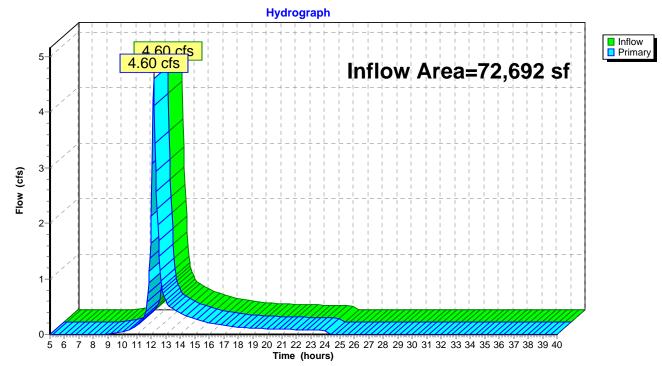

Summary for Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	15,689 sf, 52.60% Impervious, Inflow Depth > 4.33" for 25-yr event	
Inflow	=	1.45 cfs @ 12.17 hrs, Volume= 5,656 cf	
Primary	=	1.45 cfs @ 12.17 hrs, Volume= 5,656 cf, Atten= 0%, Lag= 0.0 min	۱

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

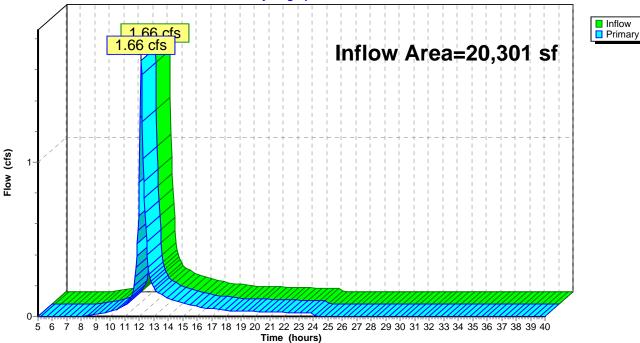
Pond DP1: Design Pont #1_18" RCP Culvert - Northwest


Summary for Pond DP2: Design Pont #2_Wetland-South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	72,692 sf, 10.40% Impervious, Inflow Depth = 2.74" for 25-yr ever	nt
Inflow	=	4.60 cfs @ 12.15 hrs, Volume= 16,589 cf	
Primary	=	4.60 cfs @ 12.15 hrs, Volume= 16,589 cf, Atten= 0%, Lag= 0.	.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs


Summary for Pond DP3: Design Pont #3_Abutting Lot-East

[40] Hint: Not Described (Outflow=Inflow)

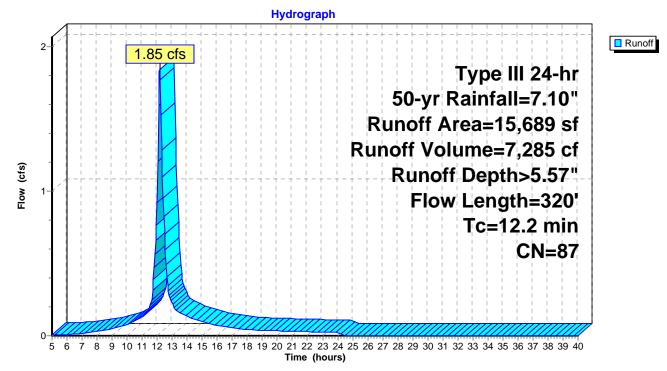
Inflow Are	a =	20,301 sf, 11.97% Impervious, Inflow Depth = 3.31" for 25-yr event	
Inflow	=	1.66 cfs @ 12.12 hrs, Volume= 5,591 cf	
Primary	=	1.66 cfs @ 12.12 hrs, Volume= 5,591 cf, Atten= 0%, Lag= 0.0	min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

Existing Conditions Analysis 50-Year 24-Hour Storm Event

EXISTING 12-22-17 Prepared by Lynnfield Engineering Int HydroCAD® 10.00-18 s/n 06609 © 2016 Hy Time span=5 Runoff by SCS Reach routing by Dyn-Stor-	701 points Veighted-CN				
SubcatchmentX1: Subcatchment X1		52.60% Impervious Runoff Depth>5.57" 2 min CN=87 Runoff=1.85 cfs 7,285 cf			
Subcatchment X2: Subcatchment X2		10.40% Impervious Runoff Depth=3.81" min CN=71 Runoff=6.43 cfs 23,066 cf			
Subcatchment X3: Subcatchment X3		11.97% Impervious Runoff Depth=4.46" 1 min CN=77 Runoff=2.23 cfs 7,538 cf			
Pond DP1: Design Pont #1_18" RCP Cu	Inflow=1.85 cfs 7,285 cf Primary=1.85 cfs 7,285 cf				
Pond DP2: Design Pont #2_Wetland-So	Inflow=6.43 cfs 23,066 cf Primary=6.43 cfs 23,066 cf				
Pond DP3: Design Pont #3_Abutting Lo	Inflow=2.23 cfs 7,538 cf Primary=2.23 cfs 7,538 cf				
Total Runoff Area = 108.682 sf Runoff Volume = 37.889 cf Average Runoff Depth = 4.18					

Total Runoff Area = 108,682 sf Runoff Volume = 37,889 cf Average Runoff Depth = 4.18" 83.22% Pervious = 90,440 sf 16.78% Impervious = 18,242 sf

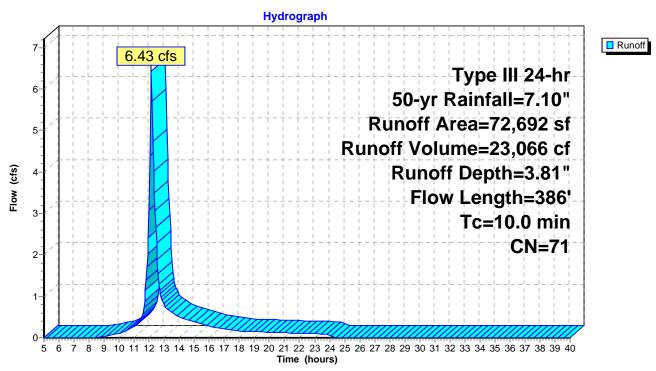

Summary for Subcatchment X1: Subcatchment X1

Runoff 1.85 cfs @ 12.16 hrs, Volume= 7,285 cf, Depth> 5.57" _

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

	A	rea (sf)	CN [Description				
		7,437	74 >	75% Gras	s cover, Go	ood, HSG C		
		6,684	98 F	Paved park	ing, HSG C			
		1,568	98 F	1 0				
		15,689	87 V	Veighted A	verage			
7,437 47.40% Pervious Area								
		8,252	5	52.60% Imp	pervious Ar	ea		
	Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	9.8	100	0.0200	0.17		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.22"		
	2.4	220	0.0472	1.52		Shallow Concentrated Flow,		
						Short Grass Pasture Kv= 7.0 fps		
	12.2	320	Total					

Subcatchment X1: Subcatchment X1



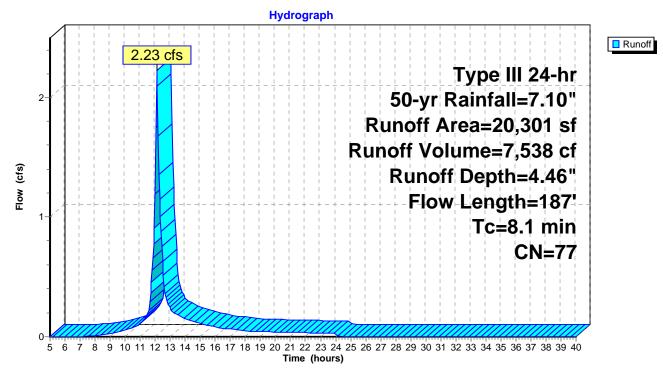
Summary for Subcatchment X2: Subcatchment X2

Runoff = 6.43 cfs @ 12.15 hrs, Volume= 23,066 cf, Depth= 3.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

	A	rea (sf)	CN	Description		
		1,427	98	Roofs, HSG	G C	
*		469	98	Unconnecte	ed roofs, HS	SG C, Container
		5,663	98	Paved park	ing, HSG C	
		19,152	74	>75% Gras	s cover, Go	bod, HSG C
		36,544		Brush, Goo		
*		9,437	65	Brush, Goo	d, HSG C,	Wetland Brush
		72,692	71	Weighted A	verage	
		65,133		89.60% Pei	vious Area	l de la constante de
		7,559		10.40% Imp	pervious Ar	ea
		469		6.20% Unco	onnected	
	Тс	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.2	100	0.0425	0.23		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.22"
	1.4	115	0.0370) 1.35		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	1.4	171	0.0180) 2.01		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	10.0	386	Total			

Subcatchment X2: Subcatchment X2

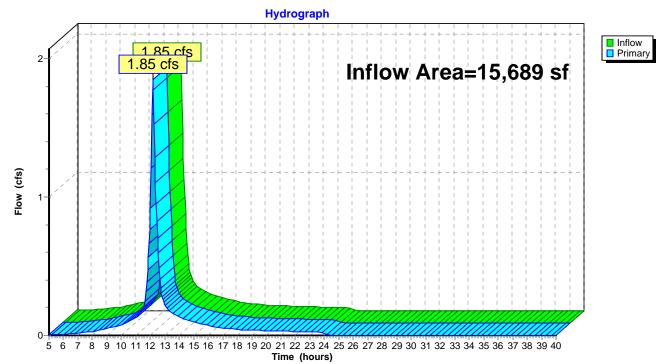

Summary for Subcatchment X3: Subcatchment X3

Runoff = 2.23 cfs @ 12.12 hrs, Volume= 7,538 cf, Depth= 4.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

	Area (sf)	CN [Description		
	17,870)	74 >	75% Gras	s cover, Go	bod, HSG C
	252	2	98 F	Paved park	ing, HSG C	
	2,179	9	98 F	Roofs, HSC	S Č	
	20,301	1	77 \	Veighted A	verage	
	17,870)	8	38.03% Pei	vious Area	
	2,431	1	1	1.97% Imp	pervious Ar	ea
Т	c Lengt	th	Slope	Velocity	Capacity	Description
(mir	n) (fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.	8 10	00	0.0500	0.25		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.22"
1.	3 8	37	0.0260	1.13		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
8.	1 18	37	Total			

Subcatchment X3: Subcatchment X3

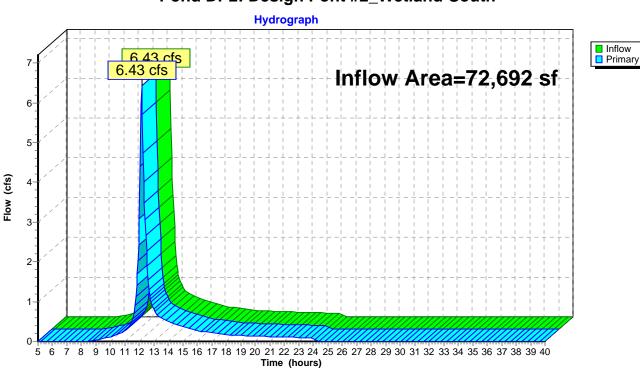

Summary for Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	15,689 sf, 52.60% Impervious	, Inflow Depth > 5.57"	for 50-yr event
Inflow	=	1.85 cfs @ 12.16 hrs, Volume=	7,285 cf	
Primary	=	1.85 cfs @ 12.16 hrs, Volume=	7,285 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

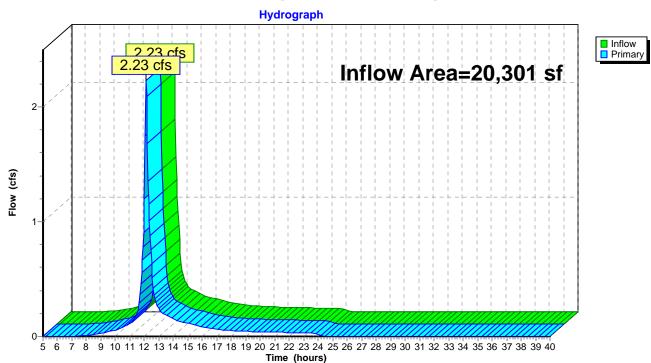


Summary for Pond DP2: Design Pont #2_Wetland-South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	72,692 sf,	10.40% Impervious	, Inflow Depth = 3.81 "	for 50-yr event
Inflow	=	6.43 cfs @	12.15 hrs, Volume=	23,066 cf	
Primary	=	6.43 cfs @	12.15 hrs, Volume=	23,066 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs


Pond DP2: Design Pont #2_Wetland-South

Summary for Pond DP3: Design Pont #3_Abutting Lot-East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	20,301 sf,	11.97% Impervious	Inflow Depth = 4.46"	for 50-yr event
Inflow	=	2.23 cfs @	12.12 hrs, Volume=	7,538 cf	
Primary	=	2.23 cfs @	12.12 hrs, Volume=	7,538 cf, Atter	n= 0%, Lag= 0.0 min

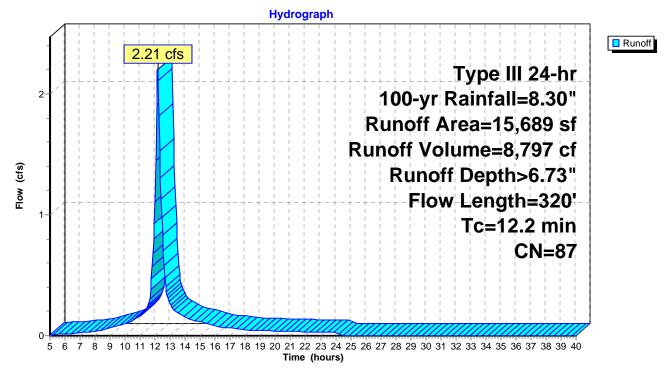
Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

Pond DP3: Design Pont #3_Abutting Lot-East

Existing Conditions Analysis 100-Year 24-Hour Storm Event

	C.	. <u>C</u> 01 points	100-yr Rainfall=8.30" Printed 12/22/2017 Page 35	
	Ind method - Pond routing b		l method	
SubcatchmentX1: Subcatchment X1	Runoff Area=15,689 sf 5 Flow Length=320' Tc=12.2	•	•	
Subcatchment X2: Subcatchment X2	Runoff Area=72,692 sf 1 Flow Length=386' Tc=10.0 r	•	•	
Subcatchment X3: Subcatchment X3	Runoff Area=20,301 sf 1 Flow Length=187' Tc=8.1			
Pond DP1: Design Pont #1_18" RCP Cu	ulvert - Northwest		nflow=2.21 cfs 8,797 cf imary=2.21 cfs 8,797 cf	
Pond DP2: Design Pont #2_Wetland-So	outh		flow=8.17 cfs 29,324 cf nary=8.17 cfs 29,324 cf	
Pond DP3: Design Pont #3_Abutting Lo	ot-East		nflow=2.76 cfs 9,390 cf imary=2.76 cfs 9,390 cf	
Total Runoff Area = 108.682 sf_Runoff Volume = 47.511 cf_Average Runoff Depth = 5.25				

Total Runoff Area = 108,682 sf Runoff Volume = 47,511 cf Average Runoff Depth = 5.25" 83.22% Pervious = 90,440 sf 16.78% Impervious = 18,242 sf

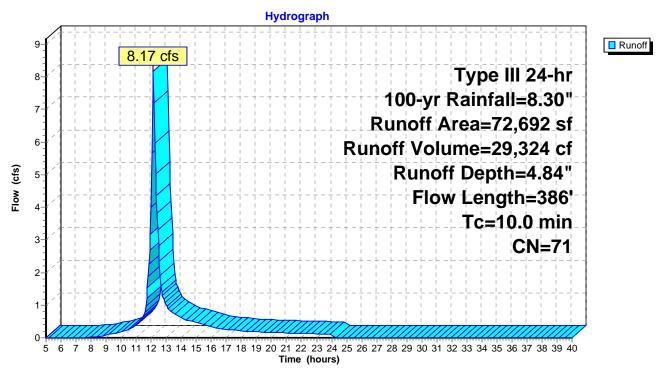

Summary for Subcatchment X1: Subcatchment X1

Runoff = 2.21 cfs @ 12.16 hrs, Volume= 8,797 cf, Depth> 6.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

	A	rea (sf)	CN [Description		
		7,437	74 >	75% Gras	s cover, Go	ood, HSG C
		6,684	98 F	Paved park	ing, HSG C	
		1,568	98 F	Roofs, HSC	S Č	
		15,689	87 V	Veighted A	verage	
		7,437	2	7.40% Pei	vious Area	
		8,252	5	52.60% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.8	100	0.0200	0.17		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.22"
	2.4	220	0.0472	1.52		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	12.2	320	Total			

Subcatchment X1: Subcatchment X1



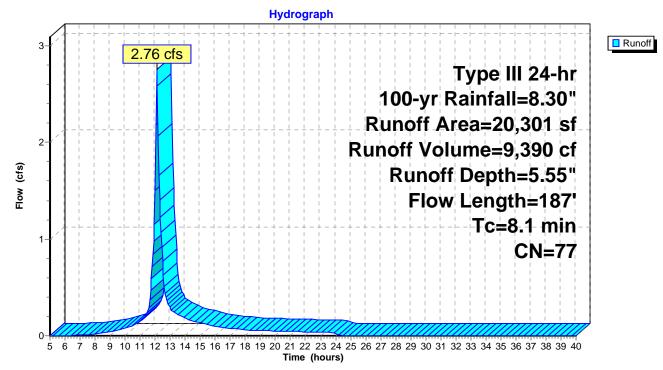
Summary for Subcatchment X2: Subcatchment X2

Runoff = 8.17 cfs @ 12.14 hrs, Volume= 29,324 cf, Depth= 4.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

	A	rea (sf)	CN	Description		
		1,427	98	Roofs, HSC	G C	
*		469	98	Unconnecte	ed roofs, H	SG C, Container
		5,663	98	Paved park	ing, HSG C	
		19,152	74	>75% Gras	s cover, Go	bod, HSG C
		36,544	65	Brush, Goo	d, HSG C	
*		9,437	65	Brush, Goo	<u>d, HSG C,</u>	Wetland Brush
		72,692	71	Weighted A	verage	
		65,133		89.60% Per	vious Area	l
		7,559		10.40% Imp		ea
		469		6.20% Unco	onnected	
	_					
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft		(cfs)	
	7.2	100	0.0425	5 0.23		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.22"
	1.4	115	0.0370) 1.35		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	1.4	171	0.0180) 2.01		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	10.0	386	Total			

Subcatchment X2: Subcatchment X2

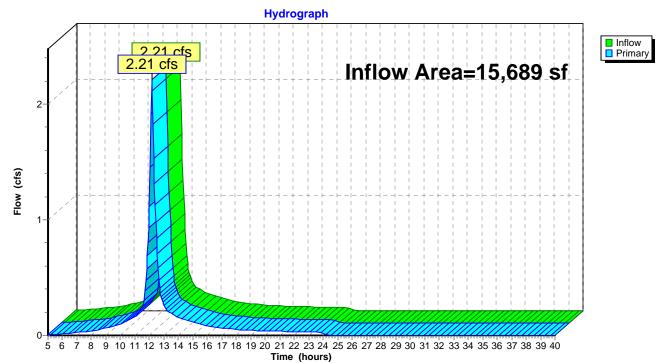

Summary for Subcatchment X3: Subcatchment X3

Runoff = 2.76 cfs @ 12.11 hrs, Volume= 9,390 cf, Depth= 5.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

A	rea (sf)	CN [Description		
	17,870	74 >	>75% Gras	s cover, Go	bod, HSG C
	252	98 F	Paved park	ing, HSG C	
	2,179	98 F	Roofs, HSG	S C	
	20,301	77 \	Veighted A	verage	
	17,870	8	38.03% Per	vious Area	
	2,431	1	1.97% Imp	pervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.8	100	0.0500	0.25		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.22"
1.3	87	0.0260	1.13		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
8.1	187	Total			

Subcatchment X3: Subcatchment X3

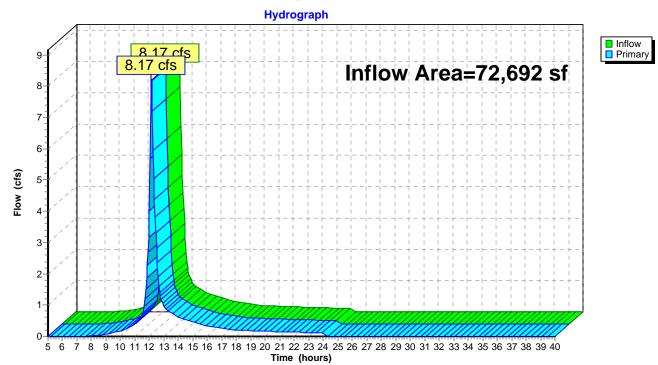

Summary for Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	15,689 sf, 52.60% Impervious, Inflow Depth > 6.73" for 100-yr event	
Inflow	=	2.21 cfs @ 12.16 hrs, Volume= 8,797 cf	
Primary	=	2.21 cfs @ 12.16 hrs, Volume= 8,797 cf, Atten= 0%, Lag= 0.0 mir	n

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

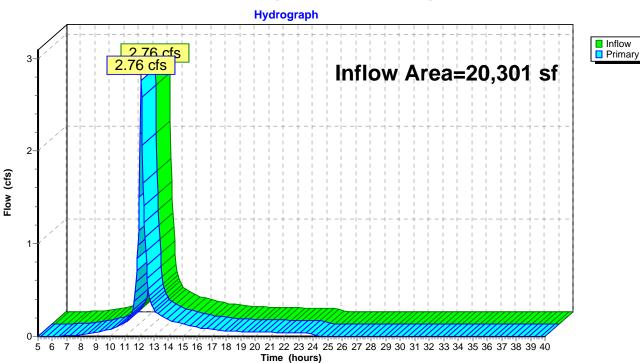


Summary for Pond DP2: Design Pont #2_Wetland-South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	72,692 sf, 10.40% Impervious, Inflow Depth = 4.84" for 100-yr event	
Inflow	=	8.17 cfs @ 12.14 hrs, Volume= 29,324 cf	
Primary	=	8.17 cfs @ 12.14 hrs, Volume= 29,324 cf, Atten= 0%, Lag= 0.0 min	

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

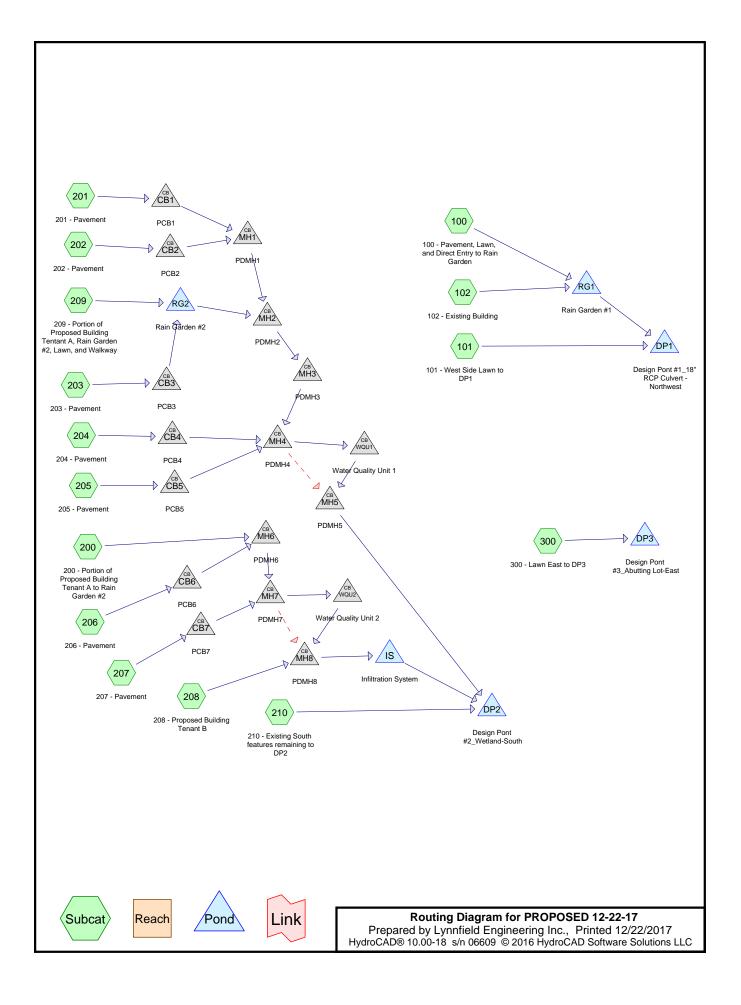

Pond DP2: Design Pont #2_Wetland-South

Summary for Pond DP3: Design Pont #3_Abutting Lot-East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	20,301 sf, 11.97% Impervious, Inflow Dep	oth = 5.55" for 100-yr event
Inflow	=	2.76 cfs @ 12.11 hrs, Volume= 9,	390 cf
Primary	=	2.76 cfs @ 12.11 hrs, Volume= 9,	390 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs



Pond DP3: Design Pont #3_Abutting Lot-East

ATTACHMENT A-2

Proposed Conditions Analysis

Proposed Conditions Analysis 2-Year 24-Hour Storm Event

PROPOSED 12-22-17

Prepared by Lynnfield Engineering Inc.	
HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC	;

Area Listing (all nodes)

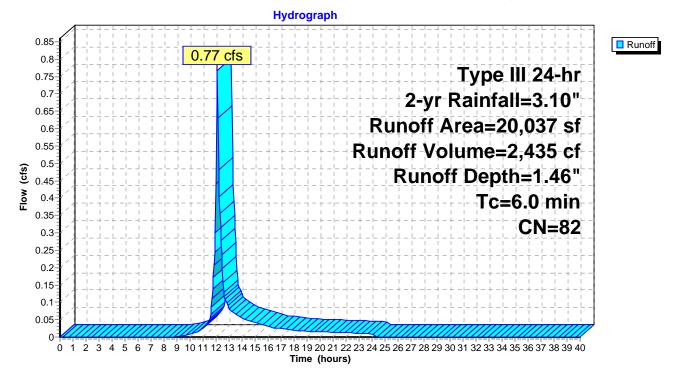
Area	CN	Description
(sq-ft)		(subcatchment-numbers)
2,078	79	50-75% Grass cover, Fair, HSG C (209)
7,225	74	>75% Grass cover, Good, HSG C (100, 101, 201, 203, 300)
35,498	65	Brush, Good, HSG C (210)
9,437	65	Brush, Good, HSG C, Wetland Brush (210)
33,796	98	Paved parking, HSG C (100, 201, 202, 203, 204, 205, 206, 207)
876	65	Rain Garden Surface Area (209)
6,173	65	Rain Garden surface area (100)
4,287	98	Roofs, HSG C (208)
5,175	98	Roofs, HSG C, Existing Building (102)
2,107	98	Roofs, HSG C, Half Prop. Building A (200)
84	98	Unconnected pavement, HSG C (209)
1,952	98	Unconnected roofs, HSG C (209)

PROPOSED 12-22-17 Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 Hydro	<i>Type III 24-hr 2-yr Rainfall=3.10"</i> Printed 12/22/2017 CAD Software Solutions LLC Page 3
Runoff by SCS TR-	40.00 hrs, dt=0.05 hrs, 801 points 20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment 100: 100 - Pavement, Lawn,	Runoff Area=20,037 sf 45.35% Impervious Runoff Depth=1.46" Tc=6.0 min CN=82 Runoff=0.77 cfs 2,435 cf
Subcatchment 101: 101 - West Side Lawn t	Runoff Area=271 sf 0.00% Impervious Runoff Depth=0.97" Tc=6.0 min CN=74 Runoff=0.01 cfs 22 cf
Subcatchment 102: 102 - Existing Building	Runoff Area=5,175 sf 100.00% Impervious Runoff Depth=2.87" Tc=6.0 min CN=98 Runoff=0.35 cfs 1,237 cf
Subcatchment 200: 200 - Portion of	Runoff Area=2,107 sf 100.00% Impervious Runoff Depth=2.87" Tc=6.0 min CN=98 Runoff=0.14 cfs 504 cf
Subcatchment 201: 201 - Pavement	Runoff Area=2,187 sf 95.93% Impervious Runoff Depth=2.76" Tc=6.0 min CN=97 Runoff=0.15 cfs 503 cf
Subcatchment 202: 202 - Pavement	Runoff Area=1,651 sf 100.00% Impervious Runoff Depth=2.87" Tc=6.0 min CN=98 Runoff=0.11 cfs 395 cf
Subcatchment 203: 203 - Pavement	Runoff Area=5,013 sf 96.69% Impervious Runoff Depth=2.76" Tc=6.0 min CN=97 Runoff=0.33 cfs 1,152 cf
Subcatchment 204: 204 - Pavement	Runoff Area=4,813 sf 100.00% Impervious Runoff Depth=2.87" Tc=6.0 min CN=98 Runoff=0.32 cfs 1,150 cf
Subcatchment 205: 205 - Pavement	Runoff Area=3,480 sf 100.00% Impervious Runoff Depth=2.87" Tc=6.0 min CN=98 Runoff=0.23 cfs 832 cf
Subcatchment 206: 206 - Pavement	Runoff Area=5,141 sf 100.00% Impervious Runoff Depth=2.87" Tc=6.0 min CN=98 Runoff=0.35 cfs 1,229 cf
Subcatchment 207: 207 - Pavement	Runoff Area=2,680 sf 100.00% Impervious Runoff Depth=2.87" Tc=6.0 min CN=98 Runoff=0.18 cfs 640 cf
Subcatchment 208: 208 - Proposed	Runoff Area=4,287 sf 100.00% Impervious Runoff Depth=2.87" Tc=6.0 min CN=98 Runoff=0.29 cfs 1,025 cf
Subcatchment 209: 209 - Portion of	Runoff Area=4,990 sf 40.80% Impervious Runoff Depth=1.60" Tc=6.0 min CN=84 Runoff=0.21 cfs 665 cf
Subcatchment 210: 210 - Existing South F	Runoff Area=44,935 sf 0.00% Impervious Runoff Depth=0.55" low Length=210' Tc=10.6 min CN=65 Runoff=0.42 cfs 2,069 cf
Subcatchment 300: 300 - Lawn East to DP3	8 Runoff Area=1,921 sf 0.00% Impervious Runoff Depth=0.97" Tc=6.0 min CN=74 Runoff=0.05 cfs 156 cf
Pond CB1: PCB1 12.0" Rour	Peak Elev=16.81' Inflow=0.15 cfs 503 cf nd Culvert n=0.013 L=21.0' S=0.0095 '/' Outflow=0.15 cfs 503 cf

PROPOSED 12-22-17Type III 24-hr2-yr Rainfall=3.1Prepared by Lynnfield Engineering Inc.Printed 12/22/201HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLCPage					
Pond CB2: PCB2		eak Elev=16.78' Inflow=0.11 cfs 395 cf ' S=0.0095 '/' Outflow=0.11 cfs 395 cf			
Pond CB3: PCB3	Pea 12.0" Round Culvert n=0.013 L=64.0	k Elev=18.32' Inflow=0.33 cfs 1,152 cf S=0.0063 '/' Outflow=0.33 cfs 1,152 cf			
Pond CB4: PCB4	Pea 12.0" Round Culvert n=0.013 L=94.0	k Elev=15.42' Inflow=0.32 cfs 1,150 cf S=0.0085 '/' Outflow=0.32 cfs 1,150 cf			
Pond CB5: PCB5		eak Elev=15.10' Inflow=0.23 cfs 832 cf ' S=0.0054 '/' Outflow=0.23 cfs 832 cf			
Pond CB6: PCB6	Pea 12.0" Round Culvert n=0.013 L=78.0	k Elev=20.25' Inflow=0.35 cfs 1,229 cf S=0.0051 '/' Outflow=0.35 cfs 1,229 cf			
Pond CB7: PCB7		eak Elev=19.21' Inflow=0.18 cfs 640 cf ' S=0.0091 '/' Outflow=0.18 cfs 640 cf			
Pond DP1: Design Pont #1_1	8" RCP Culvert - Northwest	Inflow=0.21 cfs 2,715 cf Primary=0.21 cfs 2,715 cf			
Pond DP2: Design Pont #2_V	Vetland-South	Inflow=1.16 cfs 6,075 cf Primary=1.16 cfs 6,075 cf			
Pond DP3: Design Pont #3_A	Abutting Lot-East	Inflow=0.05 cfs 156 cf Primary=0.05 cfs 156 cf			
Pond IS: Infiltration System	Peak Elev=16.83' St Discarded=0.28 cfs 3,397 cf Primary=0	torage=556 cf Inflow=0.96 cfs 3,397 cf 0.00 cfs 0 cf Outflow=0.28 cfs 3,397 cf			
Pond MH1: PDMH1		eak Elev=16.58' Inflow=0.26 cfs 897 cf ' S=0.0059 '/' Outflow=0.26 cfs 897 cf			
Pond MH2: PDMH2	Pea 12.0" Round Culvert n=0.013 L=115.0	k Elev=16.04' Inflow=0.35 cfs 2,024 cf S=0.0052 '/' Outflow=0.35 cfs 2,024 cf			
Pond MH3: PDMH3	Pea 12.0" Round Culvert n=0.013 L=138.0	k Elev=15.36' Inflow=0.35 cfs 2,024 cf S=0.0051 '/' Outflow=0.35 cfs 2,024 cf			
Pond MH4: PDMH4	Pea Primary=0.72 cfs 3,924 cf Secondary=0.7	k Elev=14.71' Inflow=0.82 cfs 4,006 cf 10 cfs 82 cf Outflow=0.82 cfs 4,006 cf			
Pond MH5: PDMH5	Pea 12.0" Round Culvert n=0.013 L=23.0	k Elev=14.13' Inflow=0.82 cfs 4,006 cf S=0.0087 '/' Outflow=0.82 cfs 4,006 cf			
Pond MH6: PDMH6	Pea 12.0" Round Culvert n=0.013 L=120.0	k Elev=19.81' Inflow=0.49 cfs 1,732 cf S=0.0050 '/' Outflow=0.49 cfs 1,732 cf			
Pond MH7: PDMH7	Pea Primary=0.57 cfs 2,321 cf Secondary=0.0	k Elev=19.16' Inflow=0.67 cfs 2,373 cf 09 cfs 52 cf Outflow=0.67 cfs 2,373 cf			
Pond MH8: PDMH8		k Elev=18.71' Inflow=0.96 cfs 3,397 cf S=0.0111 '/' Outflow=0.96 cfs 3,397 cf			

PROPOSED 12-22-17

Pond RG1: Rain Garden #1	Peak Elev=15.68' Storage=1,849 cf Inflow=1.12 cfs 3,671 cf
	Outflow=0.21 cfs 2,693 cf
Pond RG2: Rain Garden #2	Peak Elev=18.29' Storage=850 cf Inflow=0.54 cfs 1,817 cf
	Outflow=0.24 cfs 1,127 cf
Pond WQU1: Water Quality Unit 1	Peak Elev=14.33' Inflow=0.72 cfs 3,924 cf
12.0" Round (Culvert n=0.013 L=9.0' S=0.0111 '/' Outflow=0.72 cfs 3,924 cf
Pond WQU2: Water Quality Unit 2	Peak Elev=18.82' Inflow=0.57 cfs 2,321 cf
12.0" Round (Culvert n=0.013 L=6.0' S=0.0167 '/' Outflow=0.57 cfs 2,321 cf

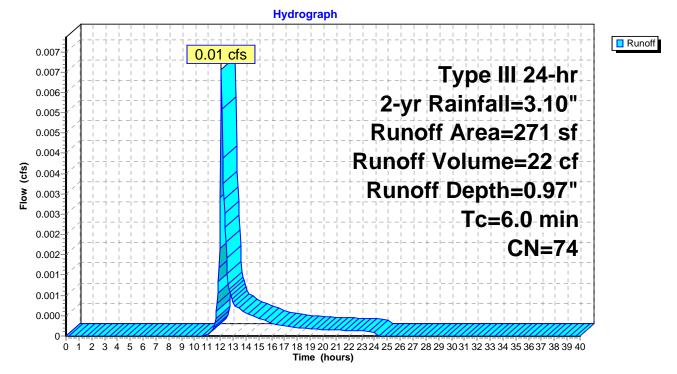

Summary for Subcatchment 100: 100 - Pavement, Lawn, and Direct Entry to Rain Garden

Runoff = 0.77 cfs @ 12.09 hrs, Volume= 2,435 cf, Depth= 1.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

	Area (s	sf) CN	Description					
	4,77	78 74	>7	>75% Grass cover, Good, HSG C				
*	6,17	73 65	Ra	Rain Garden surface area				
	9,08	36 98	Paved parking, HSG C					
	20,03	87 82	82 Weighted Average					
	10,9	51	54.65% Pervious Area					
	9,08	36	45.35% Impervious Area					
	Tc Len	0		Velocity	Capacity			
((min) (fe	et) (f	t/ft)	(ft/sec)	(cfs)			
	6.0					Direct Entry,		

Subcatchment 100: 100 - Pavement, Lawn, and Direct Entry to Rain Garden

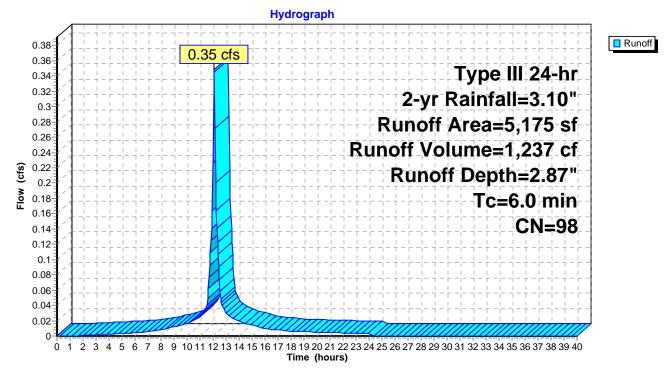

Summary for Subcatchment 101: 101 - West Side Lawn to DP1

Runoff = 0.01 cfs @ 12.10 hrs, Volume= 22 cf, Depth= 0.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

Area (sf)	CN	N Description				
271	74	74 >75% Grass cover, Good, HSG C				
271		100.00% Pervious Area				
Tc Lengtł (min) (feet			Capacity (cfs)			
6.0				Direct Entry,		

Subcatchment 101: 101 - West Side Lawn to DP1

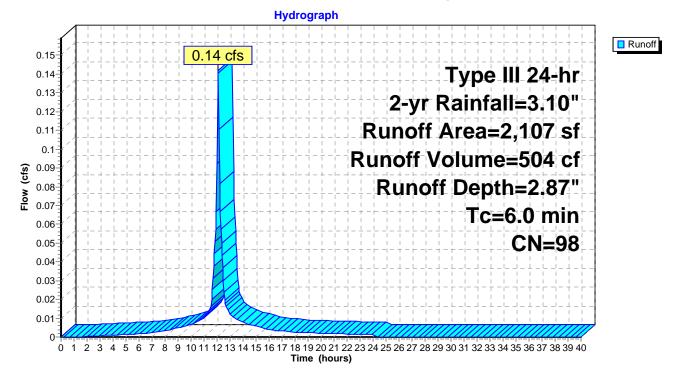

Summary for Subcatchment 102: 102 - Existing Building

0.35 cfs @ 12.09 hrs, Volume= 1,237 cf, Depth= 2.87" Runoff _

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

	A	rea (sf)	CN	Description					
*		5,175	98	Roofs, HSG	GC, Existin	ng Building			
		5,175	100.00% Impervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	6.0					Direct Entry,			

Subcatchment 102: 102 - Existing Building

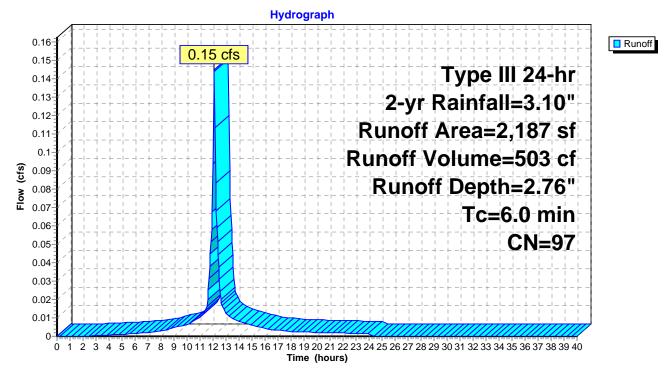

Summary for Subcatchment 200: 200 - Portion of Proposed Building Tenant A to Rain Garden #2

Runoff = 0.14 cfs @ 12.09 hrs, Volume= 504 cf, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

_	A	rea (sf)	CN I	Description		
*		2,107	98 I	Roofs, HSG	GC, Half Pr	rop. Building A
		2,107		100.00% In	npervious A	Area
	Tc (min)	Length	Slope			Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Future
	6.0					Direct Entry,

Subcatchment 200: 200 - Portion of Proposed Building Tenant A to Rain Garden #2

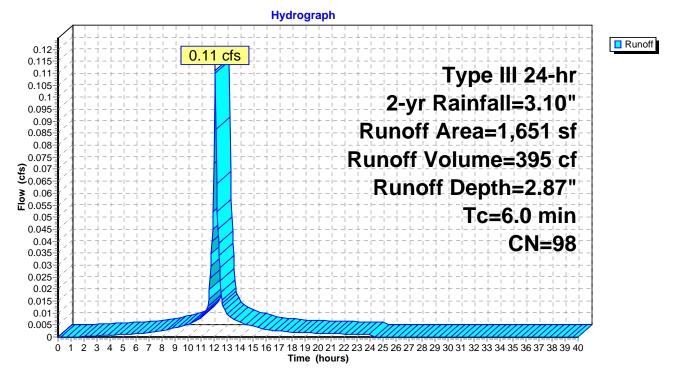

Summary for Subcatchment 201: 201 - Pavement

Runoff = 0.15 cfs @ 12.09 hrs, Volume= 503 cf, Depth= 2.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

A	rea (sf)	CN	Description						
	2,098	98	Paved parking, HSG C						
	89	74	>75% Grass cover, Good, HSG C						
	2,187	97	Weighted Average						
	89		4.07% Pervious Area						
	2,098		95.93% Imp	pervious Ar	rea				
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
6.0					Direct Entry,				

Subcatchment 201: 201 - Pavement

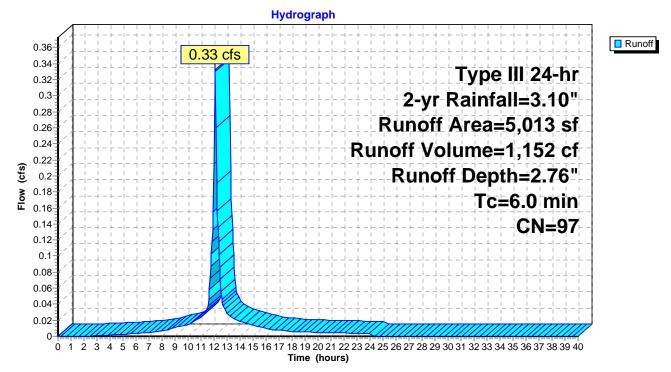

Summary for Subcatchment 202: 202 - Pavement

Runoff = 0.11 cfs @ 12.09 hrs, Volume= 395 cf, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

Α	rea (sf)	CN	Description							
	1,651	98	98 Paved parking, HSG C							
	1,651	1,651 100.00% Impervious Area								
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description					
6.0					Direct Entry,					
			• •							

Subcatchment 202: 202 - Pavement


Summary for Subcatchment 203: 203 - Pavement

Runoff = 0.33 cfs @ 12.09 hrs, Volume= 1,152 cf, Depth= 2.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

A	rea (sf)	CN	Description						
	4,847	98	Paved parking, HSG C						
	166	74	>75% Grass cover, Good, HSG C						
	5,013	97	Weighted Average						
	166		3.31% Pervious Area						
	4,847		96.69% Imp	pervious Ar	rea				
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
6.0					Direct Entry,				

Subcatchment 203: 203 - Pavement

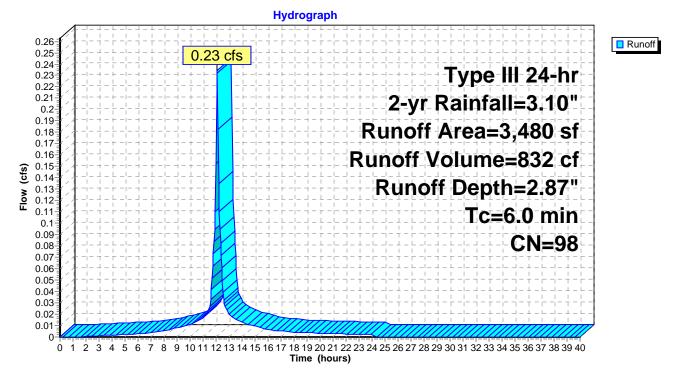
Summary for Subcatchment 204: 204 - Pavement

Runoff = 0.32 cfs @ 12.09 hrs, Volume= 1,150 cf, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

A	rea (sf)	CN	Description						
	4,813	98	Paved park	ing, HSG C	2				
	4,813	4,813 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
6.0					Direct Entry,				
	Subcatchment 204: 204 - Pavement								

Hydrograph 0.36 Runoff 0.32 cfs 0.34 Type III 24-hr 0.32 0.3 2-yr Rainfall=3.10" 0.28 Runoff Area=4,813 sf 0.26 0.24 Runoff Volume=1,150 cf 0.22 Flow (cfs) Runoff Depth=2.87" 0.2 0.18 Tc=6.0 min 0.16 0.14 **CN=98** 0.12 0.1 0.08 0.06 0.04 0.02 0-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time (hours)

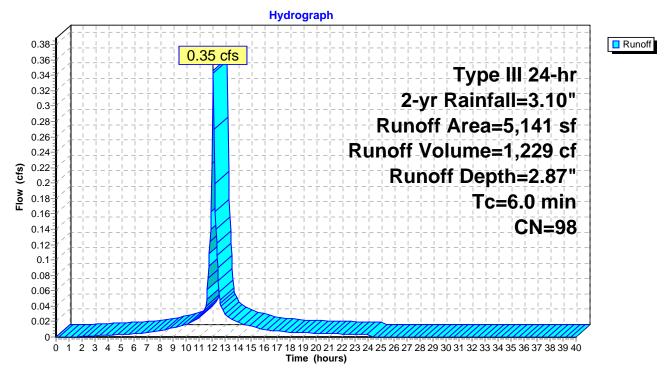

Summary for Subcatchment 205: 205 - Pavement

Runoff = 0.23 cfs @ 12.09 hrs, Volume= 832 cf, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

A	rea (sf)	CN	Description						
	3,480	98	98 Paved parking, HSG C						
	3,480	3,480 100.00% Impervious Area							
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description				
6.0					Direct Entry,				

Subcatchment 205: 205 - Pavement

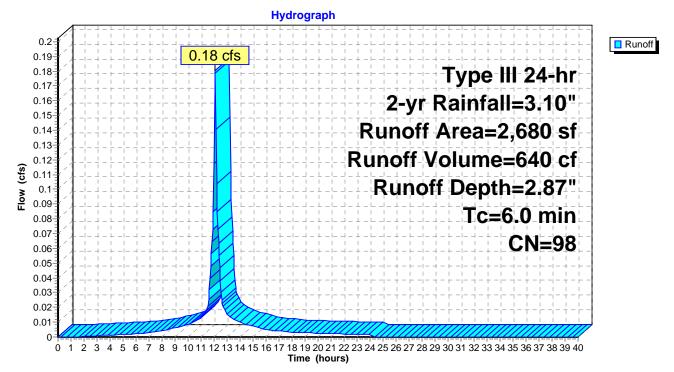

Summary for Subcatchment 206: 206 - Pavement

Runoff = 0.35 cfs @ 12.09 hrs, Volume= 1,229 cf, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

Α	rea (sf)	CN	Description						
	5,141	98	98 Paved parking, HSG C						
	5,141 100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description				
6.0					Direct Entry,				

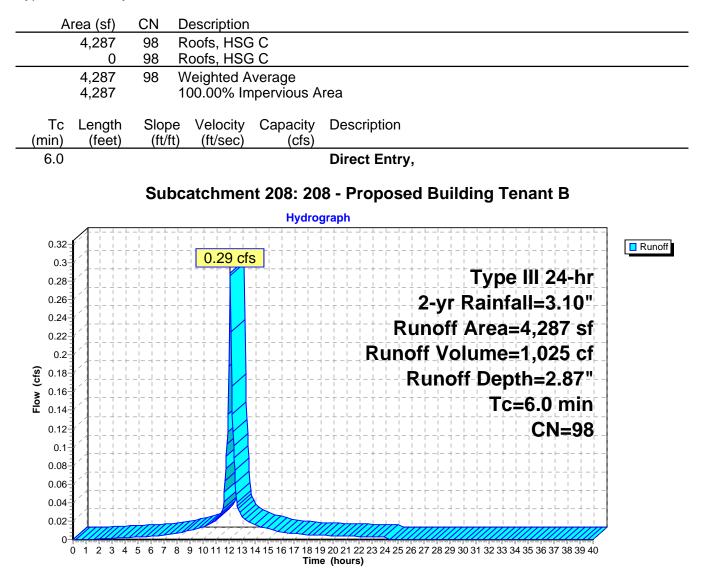
Subcatchment 206: 206 - Pavement


Summary for Subcatchment 207: 207 - Pavement

Runoff = 0.18 cfs @ 12.09 hrs, Volume= 640 cf, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

A	rea (sf)	CN	Description					
	2,680	98	Paved park	ing, HSG C				
	2,680	2,680 100.00% Impervious Area						
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description			
6.0			· · · ·		Direct Entry,			


Subcatchment 207: 207 - Pavement

Summary for Subcatchment 208: 208 - Proposed Building Tenant B

Runoff = 0.29 cfs @ 12.09 hrs, Volume= 1,025 cf, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

mary for Subcatchment 209: 209 - Portion of Proposed Building Tentant A, Rain Garden #2, Lawn, and V

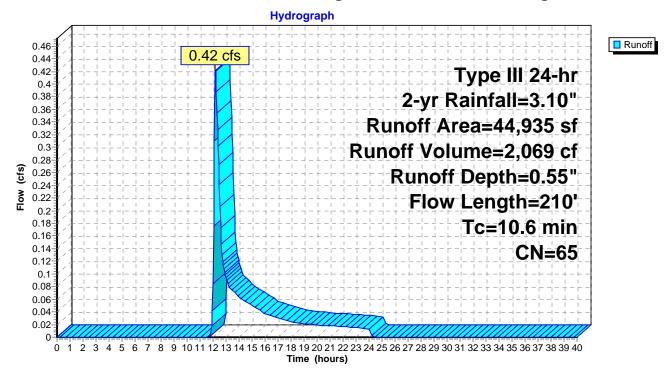
Runoff = 0.21 cfs @ 12.09 hrs, Volume= 665 cf, Depth= 1.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

	Area (sf)	CN	Description						
*	876	65	Rain Garde	n Surface /	Area				
	2,078	79			, Fair, HSG C				
	84	98	Unconnecte	ed pavemer	ent, HSG C				
	1,952	98	Unconnecte	ed roofs, HS	HSG C				
	4,990	84	Weighted Average						
	2,954		59.20% Per	vious Area	a				
	2,036		40.80% Imp	ervious Ar	Area				
	2,036		100.00% Ur	nconnected	ed				
(mi	Tc Length		Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)						
<u>`</u>	_//	(11/1	t) (ft/sec)	(cfs)					
6	6.0				Direct Entry,				

Subcatchment 209: 209 - Portion of Proposed Building Tentant A, Rain Garden #2, Lawn, and Walkwa

Time (hours)

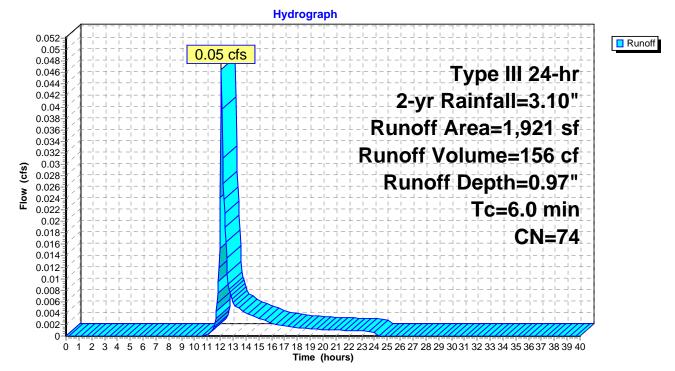

Summary for Subcatchment 210: 210 - Existing South features remaining to DP2

Runoff = 0.42 cfs @ 12.19 hrs, Volume= 2,069 cf, Depth= 0.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

_	A	rea (sf)	CN [Description			
		35,498	65 E	Brush, Goo	d, HSG C		
*		9,437	65 E	Brush, Goo	d, HSG C, '	Wetland Brush	
		44,935	65 \	Veighted A	verage		
		44,935	1	00.00% Pe	ervious Are	a	
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	9.2	100	0.0600	0.18		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 3.22"	
	1.4	110	0.0360	1.33		Shallow Concentrated Flow,	
						Short Grass Pasture Kv= 7.0 fps	
	10.6	210	Total				

Subcatchment 210: 210 - Existing South features remaining to DP2

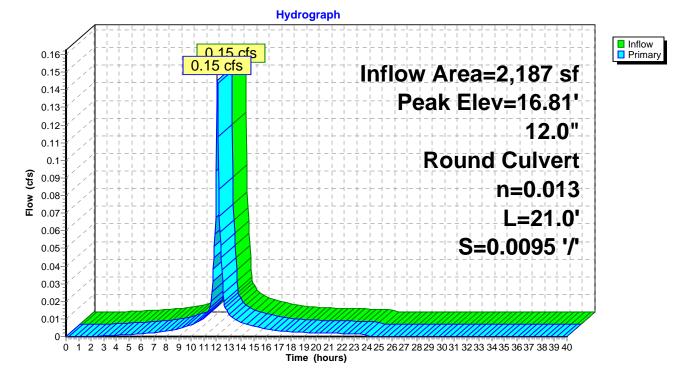

Summary for Subcatchment 300: 300 - Lawn East to DP3

Runoff = 0.05 cfs @ 12.10 hrs, Volume= 156 cf, Depth= 0.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2-yr Rainfall=3.10"

A	rea (sf)	CN	Description							
	1,921	74	74 >75% Grass cover, Good, HSG C							
	1,921 100.00% Pervious Area									
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description					
6.0					Direct Entry,					

Subcatchment 300: 300 - Lawn East to DP3

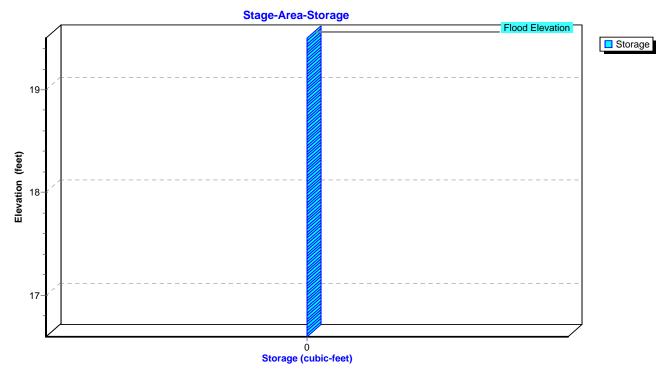

Summary for Pond CB1: PCB1

Inflow Area =2,187 sf, 95.93% Impervious, Inflow Depth =2.76" for 2-yr eventInflow =0.15 cfs @12.09 hrs, Volume =503 cfOutflow =0.15 cfs @12.09 hrs, Volume =503 cf, Atten = 0%, Lag = 0.0 minPrimary =0.15 cfs @12.09 hrs, Volume =503 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.81' @ 12.09 hrs Flood Elev= 19.50'

#1 Primary 16.60' 12.0" Round Culvert L= 21.0' CPP, projecting, no headwall, Ke= 0.900	Device	Routing	Invert	Outlet Devices
n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		<u> </u>		12.0" Round Culvert L= 21.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 16.60' / 16.40' S= 0.0095 '/' Cc= 0.900

Primary OutFlow Max=0.14 cfs @ 12.09 hrs HW=16.81' TW=16.58' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.14 cfs @ 1.84 fps)



Pond CB1: PCB1

PROPOSED 12-22-17

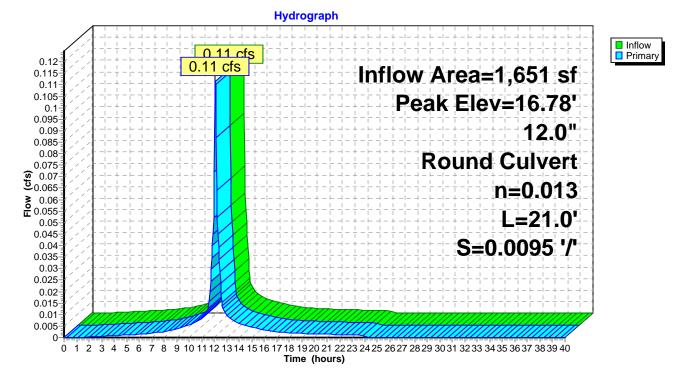
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB1: PCB1

Summary for Pond CB2: PCB2

 Inflow Area =
 1,651 sf,100.00% Impervious, Inflow Depth = 2.87" for 2-yr event

 Inflow =
 0.11 cfs @ 12.09 hrs, Volume=
 395 cf

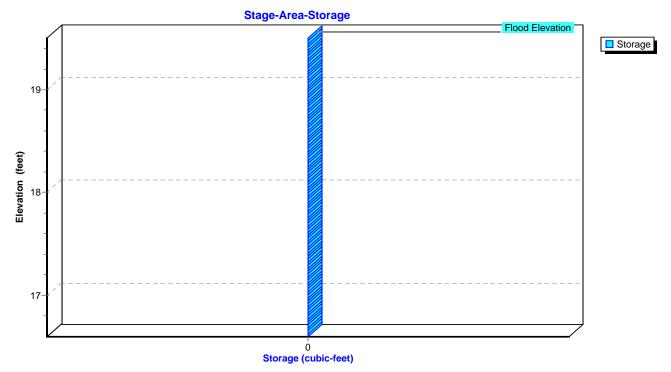

 Outflow =
 0.11 cfs @ 12.09 hrs, Volume=
 395 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.11 cfs @ 12.09 hrs, Volume=
 395 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.78' @ 12.09 hrs Flood Elev= 19.50'

Device	Routing	Invert	Outlet Devices
-	Primary	16.60'	12.0" Round Culvert L= 21.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $16.60' / 16.40'$ S= $0.0095 '/$ ' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.11 cfs @ 12.09 hrs HW=16.78' TW=16.58' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.11 cfs @ 1.65 fps)

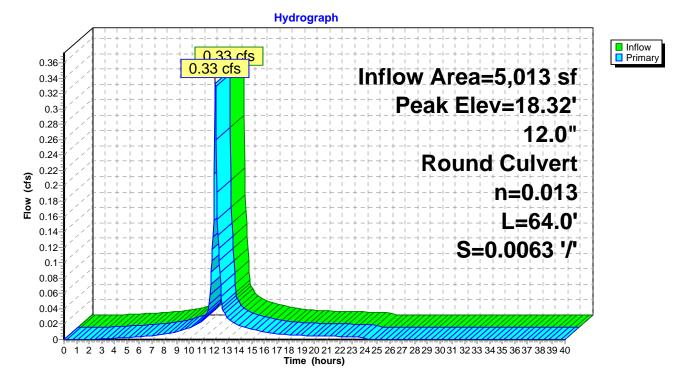


Pond CB2: PCB2

PROPOSED 12-22-17

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

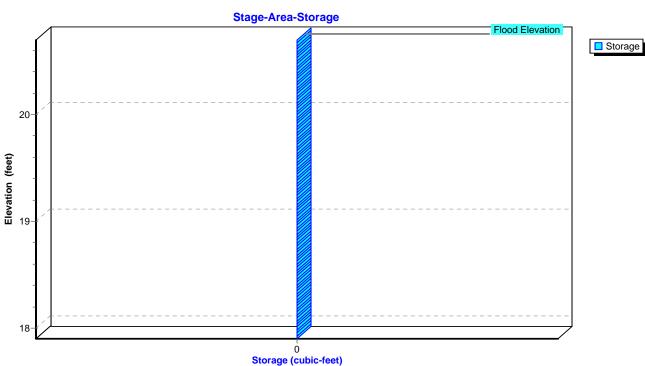
Pond CB2: PCB2


Summary for Pond CB3: PCB3

Inflow Area = 5,013 sf, 96.69% Impervious, Inflow Depth = 2.76" for 2-yr event Inflow 0.33 cfs @ 12.09 hrs. Volume= 1,152 cf = 12.09 hrs, Volume= Outflow 0.33 cfs @ 1,152 cf, Atten= 0%, Lag= 0.0 min = Primary 0.33 cfs @ 12.09 hrs, Volume= = 1,152 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.32' @ 12.30 hrs Flood Elev= 20.70'

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 64.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 17.90' / 17.50' S= 0.0063 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.25 cfs @ 12.09 hrs HW=18.27' TW=18.10' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.25 cfs @ 1.40 fps)

Pond CB3: PCB3

PROPOSED 12-22-17

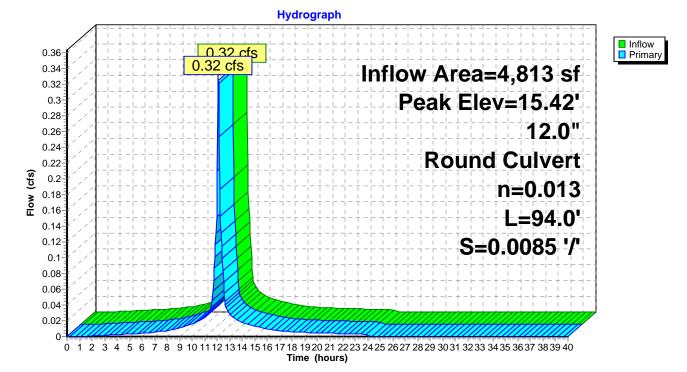
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB3: PCB3

Summary for Pond CB4: PCB4

 Inflow Area =
 4,813 sf,100.00% Impervious, Inflow Depth =
 2.87" for 2-yr event

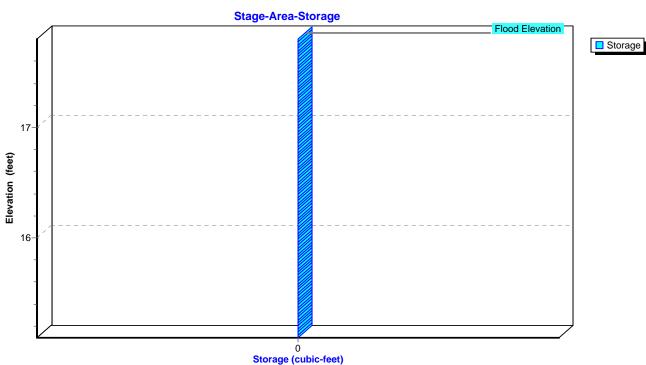
 Inflow =
 0.32 cfs @
 12.09 hrs, Volume=
 1,150 cf


 Outflow =
 0.32 cfs @
 12.09 hrs, Volume=
 1,150 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.32 cfs @
 12.09 hrs, Volume=
 1,150 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.42' @ 12.09 hrs Flood Elev= 17.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	15.10'	12.0" Round Culvert L= 94.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= $15.10' / 14.30'$ S= $0.0085 '/$ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

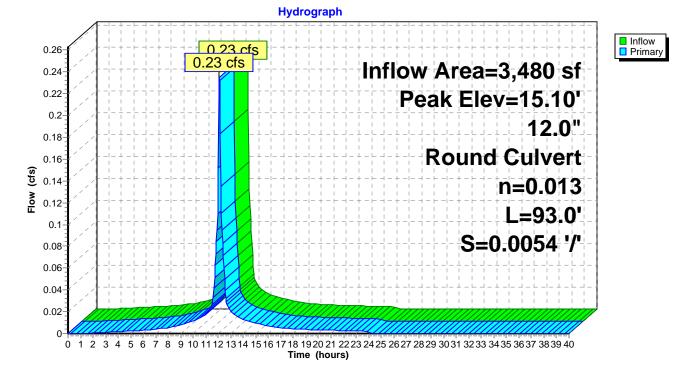

Primary OutFlow Max=0.32 cfs @ 12.09 hrs HW=15.41' TW=14.70' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.32 cfs @ 1.50 fps)

Pond CB4: PCB4

PROPOSED 12-22-17

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB4: PCB4

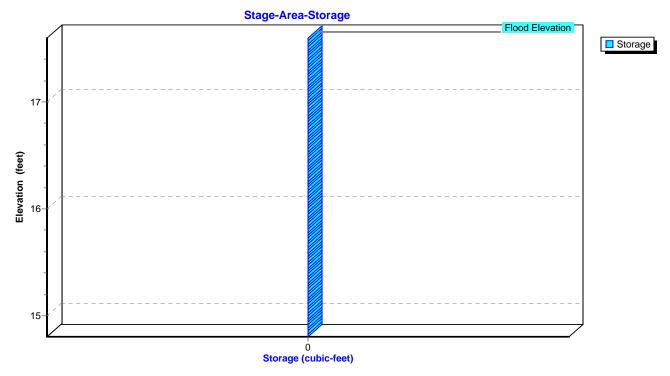

Summary for Pond CB5: PCB5

Inflow Area =	3,480 sf,100.00% Impervious,	Inflow Depth = 2.87" for 2-yr event
Inflow =	0.23 cfs @ 12.09 hrs, Volume=	832 cf
Outflow =	0.23 cfs @ 12.09 hrs, Volume=	832 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.23 cfs @ 12.09 hrs, Volume=	832 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.10' @ 12.10 hrs Flood Elev= 17.60'

Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 93.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 14.80' / 14.30' S= 0.0054 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

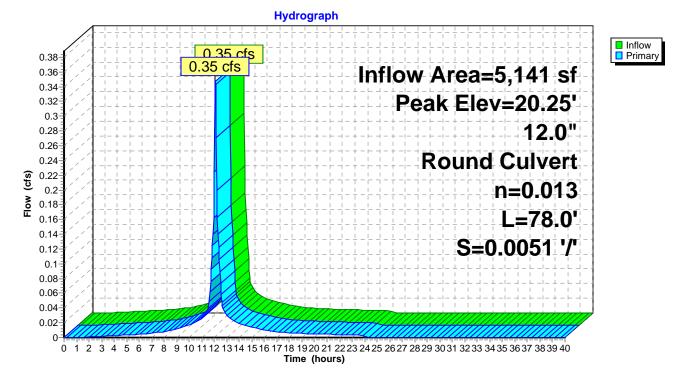
Primary OutFlow Max=0.22 cfs @ 12.09 hrs HW=15.09' TW=14.70' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.22 cfs @ 1.70 fps)



Pond CB5: PCB5

PROPOSED 12-22-17

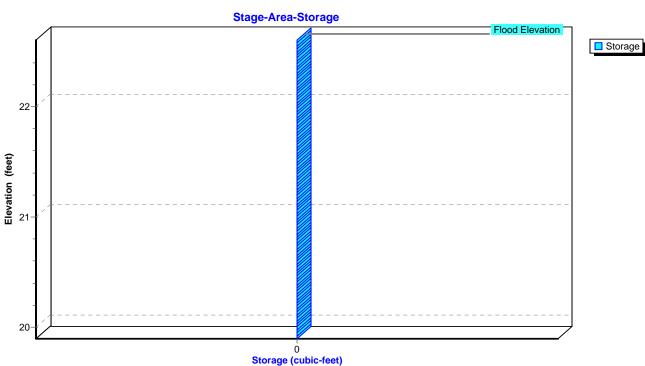
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC


Summary for Pond CB6: PCB6

Inflow Area = 5,141 sf,100.00% Impervious, Inflow Depth = 2.87" for 2-yr event Inflow 0.35 cfs @ 12.09 hrs. Volume= 1.229 cf = 12.09 hrs, Volume= Outflow 0.35 cfs @ 1,229 cf, Atten= 0%, Lag= 0.0 min = 0.35 cfs @ 12.09 hrs, Volume= Primary = 1,229 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 20.25' @ 12.09 hrs Flood Elev= 22.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	19.90'	12.0" Round Culvert L= 78.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 19.90' / 19.50' S= 0.0051 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

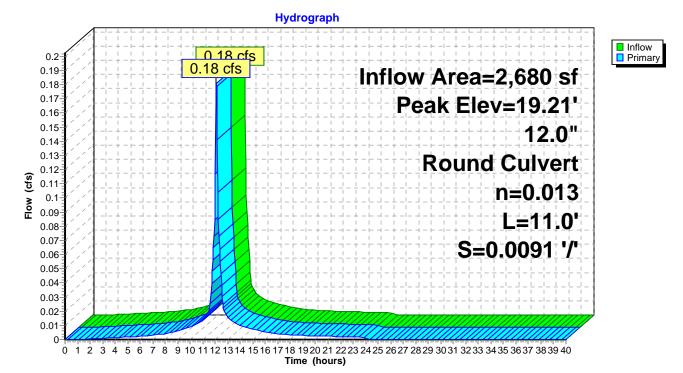

Primary OutFlow Max=0.33 cfs @ 12.09 hrs HW=20.24' TW=19.81' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.33 cfs @ 2.04 fps)

Pond CB6: PCB6

PROPOSED 12-22-17

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

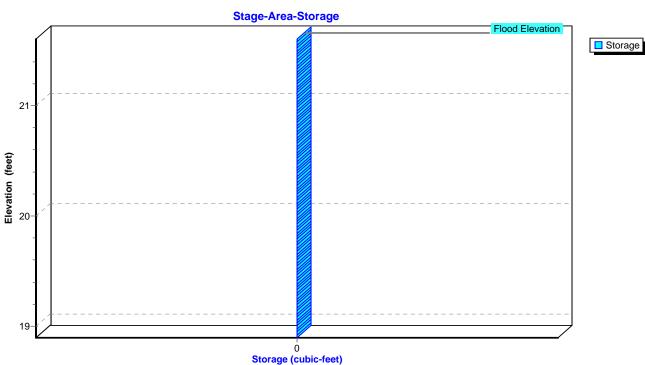
Pond CB6: PCB6


Summary for Pond CB7: PCB7

Inflow Area =	2,680 sf,100.00% Impervious,	Inflow Depth = 2.87" for 2-yr event
Inflow =	0.18 cfs @ 12.09 hrs, Volume=	640 cf
Outflow =	0.18 cfs @ 12.09 hrs, Volume=	640 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.18 cfs @ 12.09 hrs, Volume=	640 cf
-		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.21' @ 12.12 hrs Flood Elev= 21.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	18.90'	12.0" Round Culvert
			L= 11.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.90' / 18.80' S= 0.0091 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

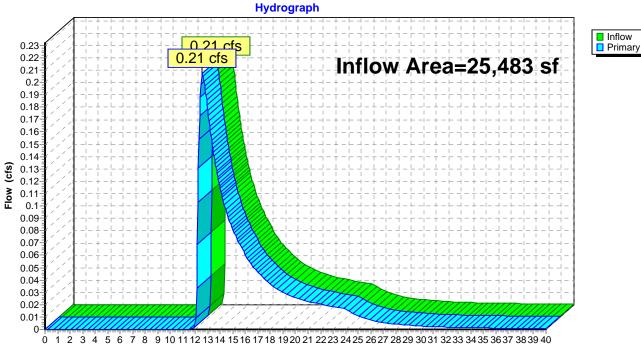

Primary OutFlow Max=0.14 cfs @ 12.09 hrs HW=19.20' TW=19.15' (Dynamic Tailwater)

Pond CB7: PCB7

PROPOSED 12-22-17

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB7: PCB7


Summary for Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	25,483 sf, 55.96% Impervious, Inflow Depth > 1.28" for 2-yr event	
Inflow	=	0.21 cfs @ 12.56 hrs, Volume= 2,715 cf	
Primary	=	0.21 cfs @ 12.56 hrs, Volume= 2,715 cf, Atten= 0%, Lag= 0.0 min	in

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs

Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

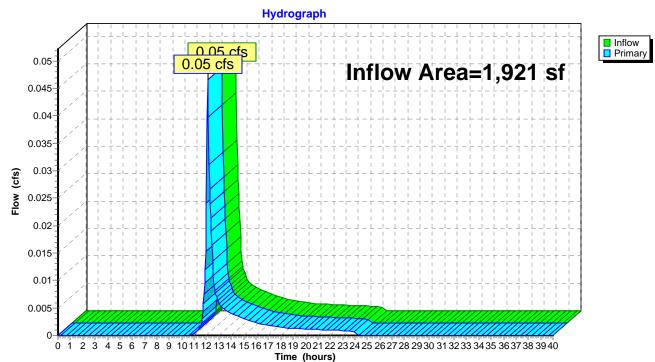
10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 3 Time (hours)

Summary for Pond DP2: Design Pont #2_Wetland-South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		81,284 sf, 40.77% Impervious, Inflow Depth = 0.90" for 2-yr event
Inflow	=	1.16 cfs @ 12.14 hrs, Volume= 6,075 cf
Primary	=	1.16 cfs @ 12.14 hrs, Volume= 6,075 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs


Pond DP2: Design Pont #2_Wetland-South

Summary for Pond DP3: Design Pont #3_Abutting Lot-East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		1,921 sf,	0.00% Impervious,	Inflow Depth = 0.97"	for 2-yr event
Inflow	=	0.05 cfs @ 1	12.10 hrs, Volume=	156 cf	
Primary	=	0.05 cfs @ ´	12.10 hrs, Volume=	156 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs

Pond DP3: Design Pont #3_Abutting Lot-East

Summary for Pond IS: Infiltration System

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)

Inflow Area =	14,215 sf,100.00% Impervious,	Inflow Depth = 2.87" for 2-yr event
Inflow =	0.96 cfs @ 12.09 hrs, Volume=	3,397 cf
Outflow =	0.28 cfs @ 11.90 hrs, Volume=	3,397 cf, Atten= 71%, Lag= 0.0 min
Discarded =	0.28 cfs @ 11.90 hrs, Volume=	3,397 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.83' @ 12.41 hrs Surf.Area= 1,463 sf Storage= 556 cf

Plug-Flow detention time= 8.5 min calculated for 3,393 cf (100% of inflow) Center-of-Mass det. time= 8.5 min (765.6 - 757.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.10'	670 cf	6.28'W x 109.07'L x 3.52'H Field A
			2,416 cf Overall - 741 cf Embedded = 1,675 cf x 40.0% Voids
#2A	16.60'	741 cf	Contech ChamberMaxx x 15 Inside #1
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap
			Row Length Adjustment= +0.32' x 6.92 sf x 1 rows
#3B	16.10'	601 cf	10.98'W x 59.25'L x 3.52'H Field B
			2,294 cf Overall - 793 cf Embedded = 1,502 cf x 40.0% Voids
#4B	16.60'	793 cf	Contech ChamberMaxx x 16 Inside #3
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap
			Row Length Adjustment= +0.32' x 6.92 sf x 2 rows
#5C	16.10'	143 cf	2.54'W x 50.00'L x 3.21'H Field C
			408 cf Overall - 50 cf Embedded = 358 cf x 40.0% Voids
#6C	17.10'	39 cf	ADS N-12 12 x 2 Inside #5
			Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf
			Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf
			Row Length Adjustment= +8.00' x 0.81 sf x 1 rows
		2.986 cf	Total Available Storage

2,986 cf Total Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard Storage Group C created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	16.10'	8.270 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	17.90'	12.0" Round Culvert
			L= 66.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 17.90' / 16.50' S= 0.0212 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.28 cfs @ 11.90 hrs HW=16.15' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.28 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=16.10' TW=0.00' (Dynamic Tailwater) **2=Culvert** (Controls 0.00 cfs)

Pond IS: Infiltration System - Chamber Wizard Field A

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 1 rows

15 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 107.07' Row Length +12.0" End Stone x 2 = 109.07' Base Length 1 Rows x 51.4" Wide + 12.0" Side Stone x 2 = 6.28' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

15 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 1 Rows = 741.1 cf Chamber Storage

2,415.8 cf Field - 741.1 cf Chambers = 1,674.7 cf Stone x 40.0% Voids = 669.9 cf Stone Storage

Chamber Storage + Stone Storage = 1,411.0 cf = 0.032 afOverall Storage Efficiency = 58.4%Overall System Size = $109.07' \times 6.28' \times 3.52'$

15 Chambers 89.5 cy Field 62.0 cy Stone

Pond IS: Infiltration System - Chamber Wizard Field B

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 2 rows

51.4" Wide + 5.0" Spacing = 56.4" C-C Row Spacing


8 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 57.25' Row Length +12.0" End Stone x 2 = 59.25' Base Length 2 Rows x 51.4" Wide + 5.0" Spacing x 1 + 12.0" Side Stone x 2 = 10.98' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

16 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 2 Rows = 792.6 cf Chamber Storage

2,294.1 cf Field - 792.6 cf Chambers = 1,501.5 cf Stone x 40.0% Voids = 600.6 cf Stone Storage

Chamber Storage + Stone Storage = 1,393.2 cf = 0.032 afOverall Storage Efficiency = 60.7%Overall System Size = $59.25' \times 10.98' \times 3.52'$

16 Chambers 85.0 cy Field 55.6 cy Stone

Pond IS: Infiltration System - Chamber Wizard Field C

Chamber Model = ADS N-12 12 (ADS N-12® Pipe)

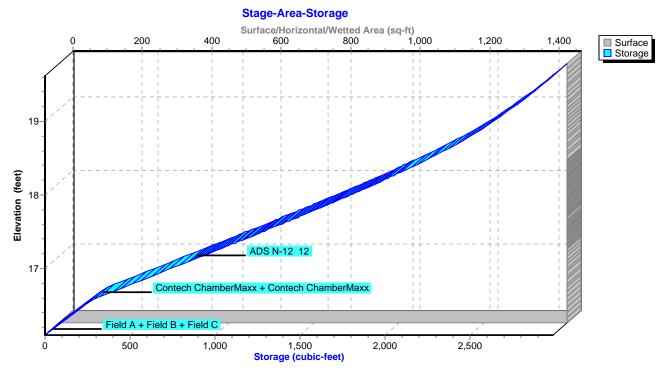
Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf Row Length Adjustment= +8.00' x 0.81 sf x 1 rows

2 Chambers/Row x 20.00' Long +8.00' Row Adjustment = 48.00' Row Length +12.0" End Stone x 2 = 50.00' Base Length 1 Rows x 14.5" Wide + 8.0" Side Stone x 2 = 2.54' Base Width

12.0" Base + 14.5" Chamber Height + 12.0" Cover = 3.21' Field Height

2 Chambers x 16.2 cf +8.00' Row Adjustment x 0.81 sf x 1 Rows = 38.9 cf Chamber Storage 2 Chambers x 20.9 cf +8.00' Row Adjustment x 1.05 sf x 1 Rows = 50.2 cf Displacement

407.9 cf Field - 50.2 cf Chambers = 357.7 cf Stone x 40.0% Voids = 143.1 cf Stone Storage


Chamber Storage + Stone Storage = 181.9 cf = 0.004 afOverall Storage Efficiency = 44.6%Overall System Size = $50.00' \times 2.54' \times 3.21'$

2 Chambers 15.1 cy Field 13.2 cy Stone

Hydrograph Inflow 0.96 cfs Outflow Inflow Area=14,215 sf Discarded Primary Peak Elev=16.83' 1 Storage=556 cf Flow (cfs) 0 28 cfs 0.28 cfs 0.00 cfs 0-4 2 20 22 à 6 8 10 12 14 16 18 24 26 28 30 32 34 36 38 40 Time (hours)

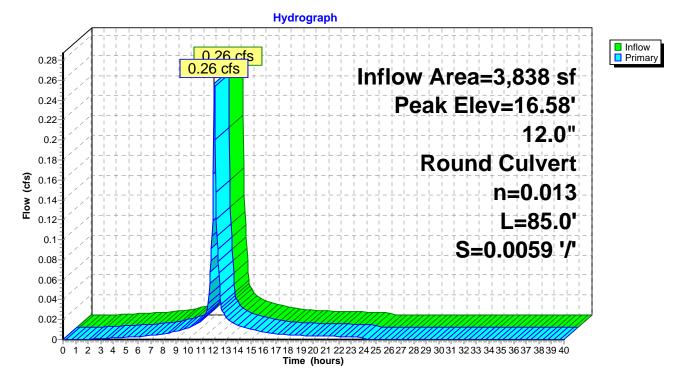
Pond IS: Infiltration System

Pond IS: Infiltration System

Summary for Pond MH1: PDMH1

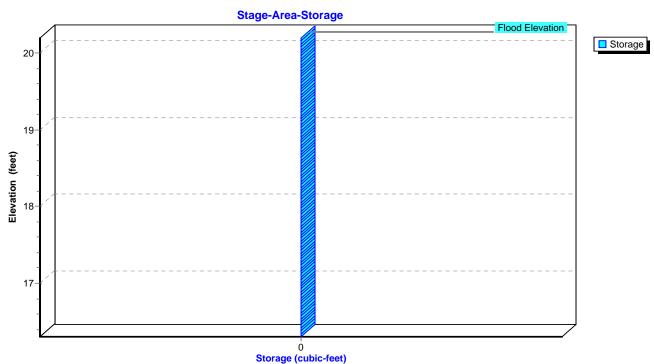
 Inflow Area =
 3,838 sf, 97.68% Impervious, Inflow Depth =
 2.80" for 2-yr event

 Inflow =
 0.26 cfs @
 12.09 hrs, Volume=
 897 cf


 Outflow =
 0.26 cfs @
 12.09 hrs, Volume=
 897 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.26 cfs @
 12.09 hrs, Volume=
 897 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.58' @ 12.09 hrs Flood Elev= 20.20'


Device Routing Invert Outlet Devices	
#1 Primary 16.30' 12.0" Round Culvert L= 85.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 16.30' / 15.80' S= 0.0059 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=0.25 cfs @ 12.09 hrs HW=16.58' TW=15.99' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.25 cfs @ 2.07 fps)

Pond MH1: PDMH1

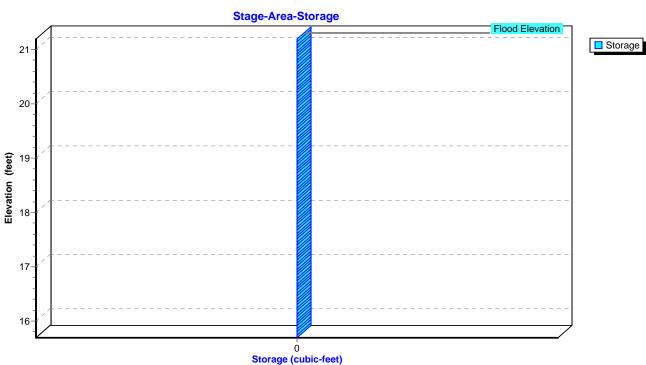
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond MH1: PDMH1

Summary for Pond MH2: PDMH2

Inflow Area = 13,841 sf, 76.82% Impervious, Inflow Depth = 1.75" for 2-yr event Inflow 0.35 cfs @ 12.24 hrs. Volume= 2.024 cf = 12.24 hrs, Volume= Outflow 0.35 cfs @ 2,024 cf, Atten= 0%, Lag= 0.0 min = Primary 0.35 cfs @ 12.24 hrs, Volume= = 2,024 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.04' @ 12.24 hrs Flood Elev= 21.20'

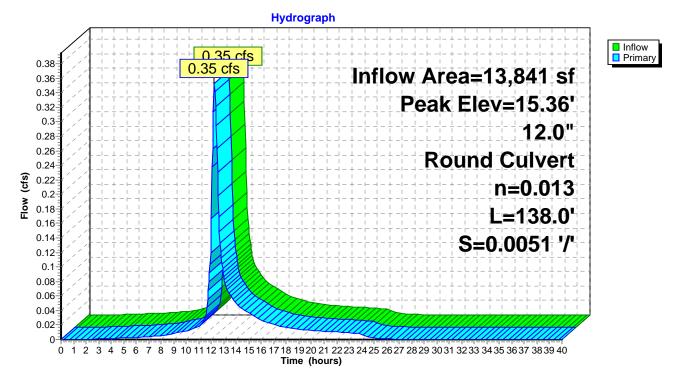

Device	Routing	Invert	Outlet Devices
	Primary		12.0" Round Culvert L= 115.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 15.70' / 15.10' S= 0.0052 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.35 cfs @ 12.24 hrs HW=16.04' TW=15.35' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.35 cfs @ 2.21 fps)

Pond MH2: PDMH2

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

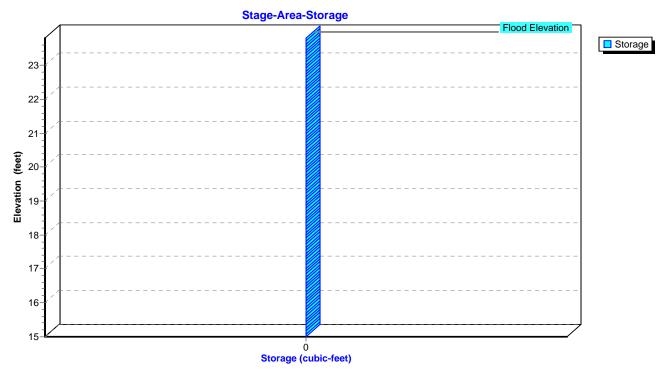
Pond MH2: PDMH2


Summary for Pond MH3: PDMH3

Inflow Area = 13,841 sf, 76.82% Impervious, Inflow Depth = 1.75" for 2-yr event Inflow 0.35 cfs @ 12.24 hrs. Volume= 2.024 cf = 12.24 hrs, Volume= Outflow 0.35 cfs @ 2,024 cf, Atten= 0%, Lag= 0.0 min = Primary 0.35 cfs @ 12.24 hrs, Volume= = 2,024 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.36' @ 12.22 hrs Flood Elev= 23.80'

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 138.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 15.00' / 14.30' S= 0.0051 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			n= 0.015 Contigated 1 E, shootin menor, 116w Area= 0.75 sh


Primary OutFlow Max=0.36 cfs @ 12.24 hrs HW=15.35' TW=14.65' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.36 cfs @ 2.12 fps)

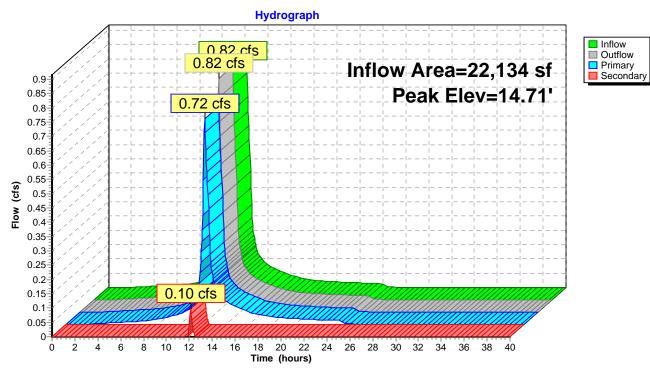
Pond MH3: PDMH3

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

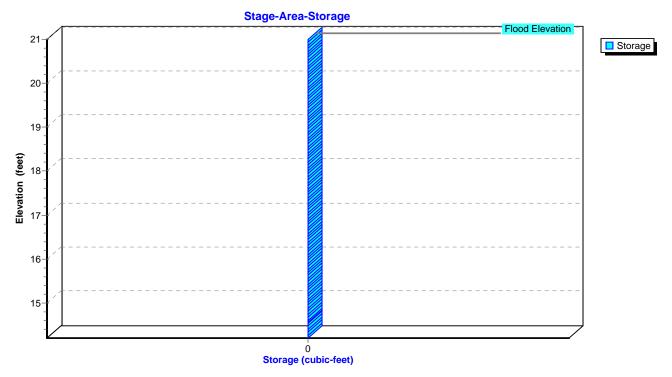
Pond MH3: PDMH3

Summary for Pond MH4: PDMH4

Inflow Area =	22,134 sf, 85.50% Impervious,	Inflow Depth = 2.17" for 2-yr event
Inflow =	0.82 cfs @ 12.10 hrs, Volume=	4,006 cf
Outflow =	0.82 cfs @ 12.10 hrs, Volume=	4,006 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.72 cfs @ 12.10 hrs, Volume=	3,924 cf
Secondary =	0.10 cfs @ 12.10 hrs, Volume=	82 cf


Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 14.71' @ 12.10 hrs Flood Elev= 21.00'

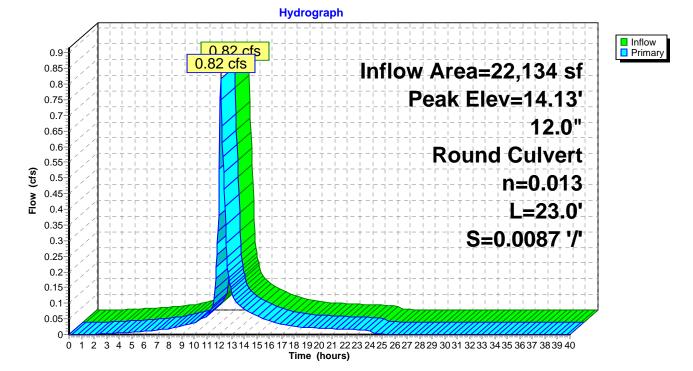
Device	Routing	Invert	Outlet Devices
#1	Primary	14.20'	12.0" Round Culvert
			L= 6.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 14.20' / 14.10' S= 0.0167 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Secondary	14.20'	12.0" Round Culvert
	,		L= 8.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 14.20' / 13.70' S= 0.0625 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#3	Device 2	14.55'	0.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

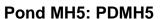

Primary OutFlow Max=0.72 cfs @ 12.10 hrs HW=14.71' TW=14.33' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 0.72 cfs @ 2.61 fps)

Secondary OutFlow Max=0.10 cfs @ 12.10 hrs HW=14.71' TW=14.13' (Dynamic Tailwater) -2=Culvert (Passes 0.10 cfs of 0.77 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Weir Controls 0.10 cfs @ 1.30 fps)

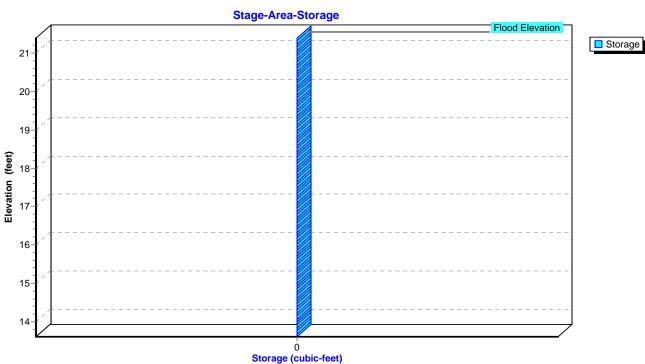
Pond MH4: PDMH4

Pond MH4: PDMH4


Summary for Pond MH5: PDMH5


Inflow Area = 22,134 sf, 85.50% Impervious, Inflow Depth = 2.17" for 2-yr event Inflow 0.82 cfs @ 12.10 hrs, Volume= 4.006 cf = Outflow 12.10 hrs, Volume= 4,006 cf, Atten= 0%, Lag= 0.0 min 0.82 cfs @ = 0.82 cfs @ 12.10 hrs, Volume= Primary 4,006 cf =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 14.13' @ 12.10 hrs Flood Elev= 21.40'


Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 23.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 13.60' / 13.40' S= 0.0087 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

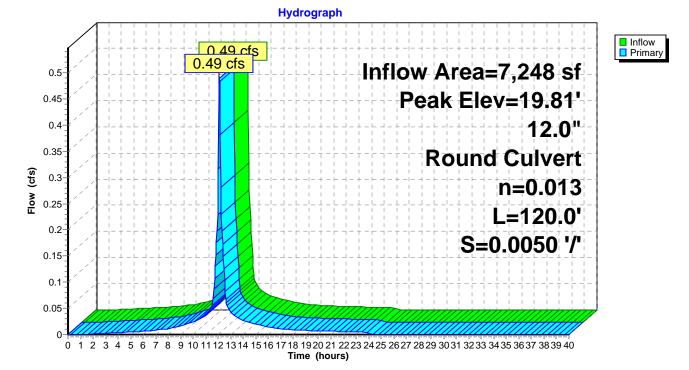
Primary OutFlow Max=0.82 cfs @ 12.10 hrs HW=14.13' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.82 cfs @ 2.78 fps)

Pond MH5: PDMH5

Summary for Pond MH6: PDMH6

 Inflow Area =
 7,248 sf,100.00% Impervious, Inflow Depth = 2.87" for 2-yr event

 Inflow =
 0.49 cfs @ 12.09 hrs, Volume=
 1,732 cf


 Outflow =
 0.49 cfs @ 12.09 hrs, Volume=
 1,732 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.49 cfs @ 12.09 hrs, Volume=
 1,732 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.81' @ 12.09 hrs Flood Elev= 23.80'

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 120.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 19.40' / 18.80' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.47 cfs @ 12.09 hrs HW=19.81' TW=19.15' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.47 cfs @ 2.30 fps)

Pond MH6: PDMH6

PROPOSED 12-22-177Prepared by Lynnfield Engineering Inc.7HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

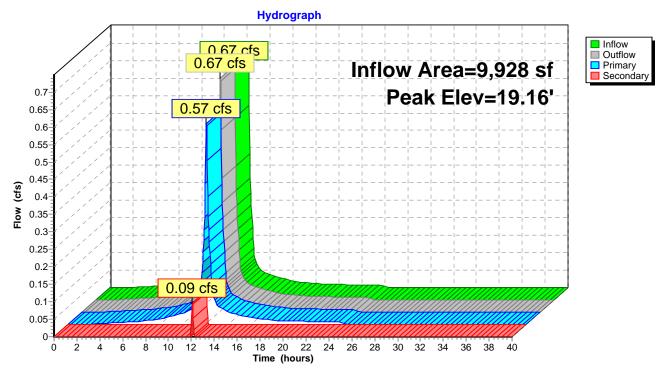
20

Pond MH6: PDMH6

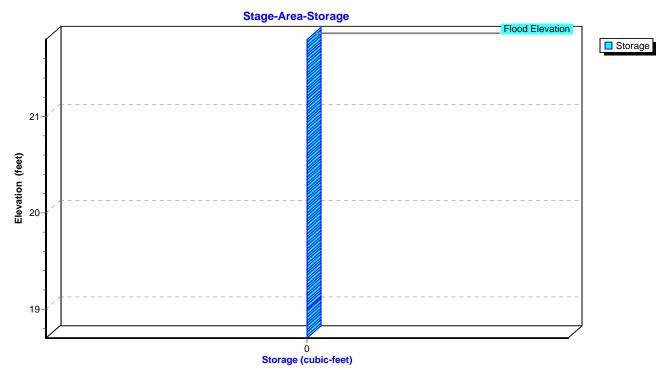
0 Storage (cubic-feet)

Summary for Pond MH7: PDMH7

Inflow Area =	9,928 sf,100.00% Impervious,	Inflow Depth = 2.87" for 2-yr event
Inflow =	0.67 cfs @ 12.09 hrs, Volume=	2,373 cf
Outflow =	0.67 cfs @ 12.09 hrs, Volume=	2,373 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.57 cfs @ 12.09 hrs, Volume=	2,321 cf
Secondary =	0.09 cfs @ 12.09 hrs, Volume=	52 cf


Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.16' @ 12.09 hrs Flood Elev= 21.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	18.70'	12.0" Round Culvert
			L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.70' / 18.60' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Secondary	18.70'	12.0" Round Culvert
	,		L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.70' / 18.20' S= 0.0500 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#3	Device 2	19.00'	0.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)


Primary OutFlow Max=0.56 cfs @ 12.09 hrs HW=19.15' TW=18.80' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 0.56 cfs @ 2.41 fps)

Secondary OutFlow Max=0.09 cfs @ 12.09 hrs HW=19.15' TW=18.70' (Dynamic Tailwater) **2=Culvert** (Passes 0.09 cfs of 0.62 cfs potential flow) **3=Sharp-Crested Rectangular Weir** (Weir Controls 0.09 cfs @ 1.27 fps)

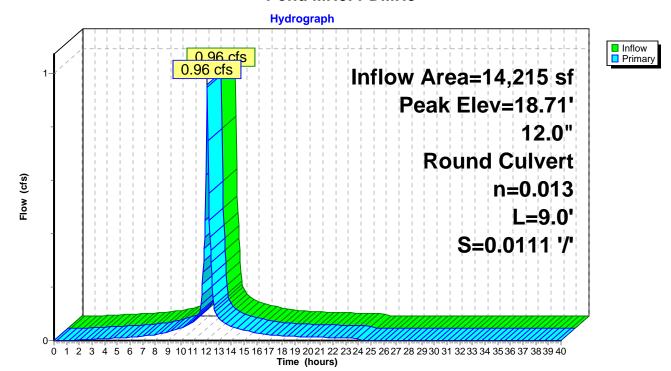
Pond MH7: PDMH7

Pond MH7: PDMH7

Summary for Pond MH8: PDMH8

 Inflow Area =
 14,215 sf,100.00% Impervious, Inflow Depth = 2.87" for 2-yr event

 Inflow =
 0.96 cfs @ 12.09 hrs, Volume=
 3,397 cf


 Outflow =
 0.96 cfs @ 12.09 hrs, Volume=
 3,397 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.96 cfs @ 12.09 hrs, Volume=
 3,397 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.71' @ 12.09 hrs Flood Elev= 22.00'

Device	Routing	Invert	Outlet Devices	
#1	Primary	18.10'	12.0" Round Culvert	
			L= 9.0' CPP, projecting, no headwall, Ke= 0.900	
			Inlet / Outlet Invert= 18.10' / 18.00' S= 0.0111 '/' Cc= 0.900	
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=0.93 cfs @ 12.09 hrs HW=18.70' TW=16.56' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.93 cfs @ 2.70 fps)

Pond MH8: PDMH8

PROPOSED 12-22-177Prepared by Lynnfield Engineering Inc.7HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Stage-Area-Storage Flood Elevation () Storage () () Storage () () Storage () () Storage () () Storage

Pond MH8: PDMH8

Summary for Pond RG1: Rain Garden #1

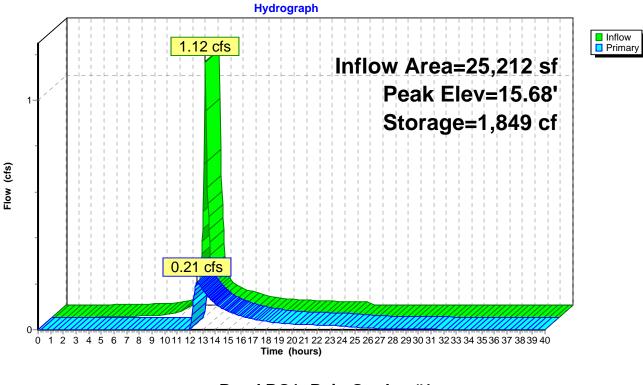
Inflow Area	a =	25,212 sf, 56.56% Impervious	, Inflow Depth = 1.75" for 2-yr event
Inflow	=	1.12 cfs @ 12.09 hrs, Volume=	3,671 cf
Outflow	=	0.21 cfs @ 12.56 hrs, Volume=	2,693 cf, Atten= 82%, Lag= 28.3 min
Primary	=	0.21 cfs @ 12.56 hrs, Volume=	2,693 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.68' @ 12.56 hrs Surf.Area= 5,342 sf Storage= 1,849 cf Flood Elev= 16.70' Surf.Area= 6,703 sf Storage= 6,272 cf

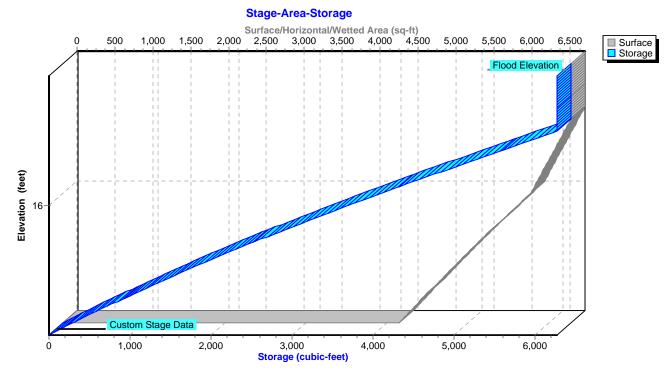
Plug-Flow detention time= 267.6 min calculated for 2,693 cf (73% of inflow) Center-of-Mass det. time= 174.9 min (985.5 - 810.6)

Volume	Invert	Avail.S	Storage	Storage Description			
#1	15.30'	6	,272 cf	Custom Stage Data (Irregular)Listed below (Recalc)			
		Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
15.3 16.0 16.3 16.4	00 30	4,439 6,173 6,569 6,703	288.0 327.0 334.0 337.0	0 3,698 1,911 664	0 3,698 5,609 6,272	4,439 6,360 6,741 6,905	
Device			rt Outle	et Devices			
#1	Primary	L= 6 Inlet		Round Culvert X 2 5.0' CPP, mitered t / Outlet Invert= 15.3 .013 Corrugated PE	o conform to fill, K 5' / 15.00' S= 0.0	054 '/' Cc= 0.900	
#2 #3 #4	Device 1 Device 1 Device 1	15.50' 4.0" \ 15.80' 4.0" \ 16.10' 24.0 "		D" Vert. Orifice/Grate X 3.00 C= 0.600 D" Vert. Orifice/Grate C= 0.600 .0" x 24.0" Horiz. Orifice/Grate C= 0.600 mited to weir flow at low heads			

Primary OutFlow Max=0.21 cfs @ 12.56 hrs HW=15.68' TW=0.00' (Dynamic Tailwater)


1=Culvert (Passes 0.21 cfs of 0.49 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.21 cfs @ 1.44 fps)


-3=Orifice/Grate (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond RG1: Rain Garden #1

Pond RG1: Rain Garden #1

Summary for Pond RG2: Rain Garden #2

[80] Warning: Exceeded Pond CB3 by 0.22' @ 24.35 hrs (0.11 cfs 1,125 cf)

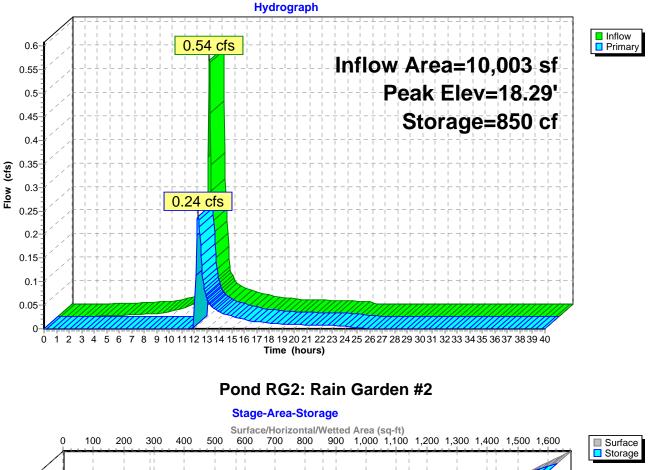
Inflow Area =	10,003 sf, 68.81% Impervious,	Inflow Depth = 2.18" for 2-yr event
Inflow =	0.54 cfs @ 12.09 hrs, Volume=	1,817 cf
Outflow =	0.24 cfs @ 12.30 hrs, Volume=	1,127 cf, Atten= 56%, Lag= 12.4 min
Primary =	0.24 cfs @ 12.30 hrs, Volume=	1,127 cf

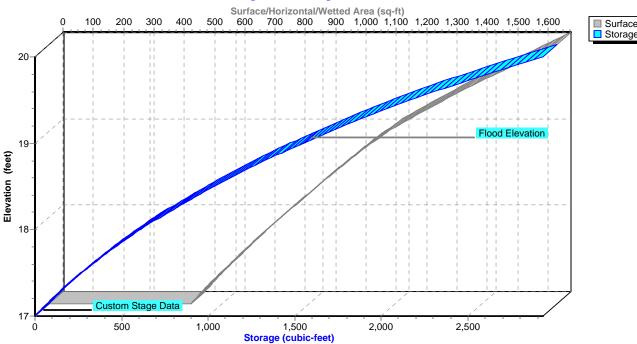
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.29' @ 12.30 hrs Surf.Area= 862 sf Storage= 850 cf Flood Elev= 19.00' Surf.Area= 1,118 sf Storage= 1,546 cf

Plug-Flow detention time= 218.1 min calculated for 1,127 cf (62% of inflow) Center-of-Mass det. time= 112.6 min (902.9 - 790.3)

Volume	Inve	ert Avai	I.Storage	Storage Description				
#1	17.0	00'	2,934 cf	Custom Stage Data (Irregular)Listed below (Recalc)				
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
17.0	00	468	89.0	0	0	468		
18.0	00	765	108.0	610	610	782		
19.0	00	1,118	127.0	936	1,546	1,156		
20.0	00	1,676	152.0	1,388	2,934	1,728		
Device	Routing	In	vert Outle	et Devices				
#1	Primary	16	-	" Round Culvert)				
				3.0' CPP, mitered				
						0132 '/' Cc= 0.900		
	Davis 4	4.0				Flow Area= 0.79 sf		
#2	Device 1			Vert. Orifice/Grate				
#3	Device 1			Vert. Orifice/Grate		<u></u>		
#4	Device 1	18		" x 24.0" Horiz. Or		600		
			LIMI	ed to weir flow at lo	IN THEADS			

Primary OutFlow Max=0.24 cfs @ 12.30 hrs HW=18.29' TW=16.04' (Dynamic Tailwater)


-1=Culvert (Passes 0.24 cfs of 7.59 cfs potential flow)


2=Orifice/Grate (Orifice Controls 0.24 cfs @ 1.50 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

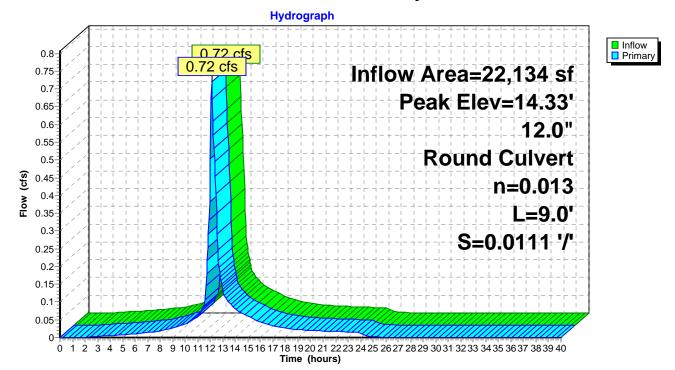
-4=Orifice/Grate (Controls 0.00 cfs)

Pond RG2: Rain Garden #2

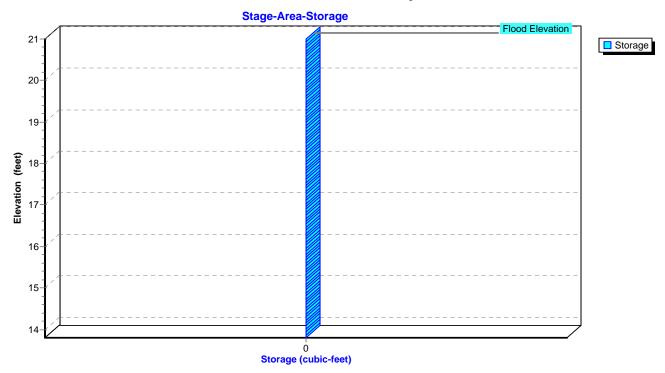
Summary for Pond WQU1: Water Quality Unit 1

 Inflow Area =
 22,134 sf, 85.50% Impervious, Inflow Depth = 2.13" for 2-yr event

 Inflow =
 0.72 cfs @ 12.10 hrs, Volume=
 3,924 cf


 Outflow =
 0.72 cfs @ 12.10 hrs, Volume=
 3,924 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.72 cfs @ 12.10 hrs, Volume=
 3,924 cf


Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 14.33' @ 12.12 hrs Flood Elev= 21.00'

Device	Routing	Invert	Outlet Devices
	Primary		12.0" Round Culvert L= 9.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 13.80' / 13.70' S= 0.0111 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			5

Primary OutFlow Max=0.68 cfs @ 12.10 hrs HW=14.33' TW=14.13' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.68 cfs @ 2.35 fps)

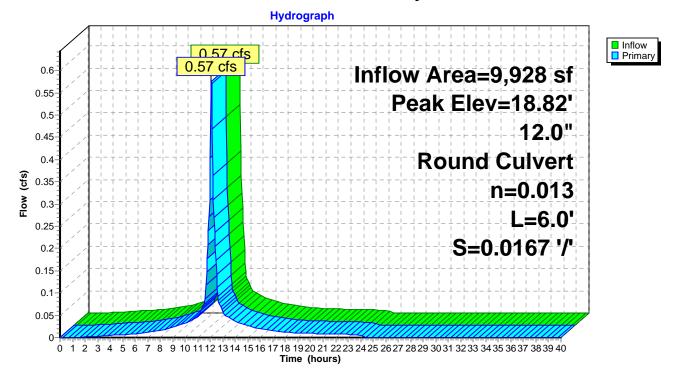
Pond WQU1: Water Quality Unit 1

Pond WQU1: Water Quality Unit 1

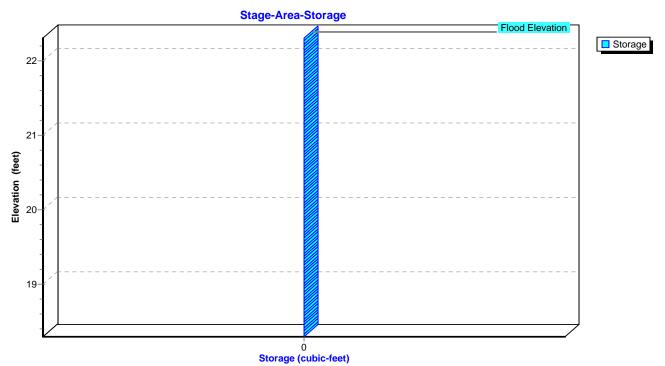
Summary for Pond WQU2: Water Quality Unit 2

 Inflow Area =
 9,928 sf,100.00% Impervious, Inflow Depth = 2.81" for 2-yr event

 Inflow =
 0.57 cfs @ 12.09 hrs, Volume=
 2,321 cf


 Outflow =
 0.57 cfs @ 12.09 hrs, Volume=
 2,321 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.57 cfs @ 12.09 hrs, Volume=
 2,321 cf


Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.82' @ 12.12 hrs Flood Elev= 22.30'

Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 6.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 18.30' / 18.20' S= 0.0167 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.47 cfs @ 12.09 hrs HW=18.80' TW=18.70' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.47 cfs @ 1.72 fps)

Pond WQU2: Water Quality Unit 2

Pond WQU2: Water Quality Unit 2

Proposed Conditions Analysis 10-Year 24-Hour Storm Event

PROPOSED 12-22-17 Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 Hydrod	Type III 24-hr 10-yr Rainfall=4.70" Printed 12/22/2017 CAD Software Solutions LLC Page 68
Runoff by SCS TR-	40.00 hrs, dt=0.05 hrs, 801 points 20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment 100: 100 - Pavement, Lawn,	Runoff Area=20,037 sf 45.35% Impervious Runoff Depth=2.81" Tc=6.0 min CN=82 Runoff=1.48 cfs 4,696 cf
Subcatchment 101: 101 - West Side Lawn t	No. Runoff Area=271 sf 0.00% Impervious Runoff Depth=2.13" Tc=6.0 min CN=74 Runoff=0.02 cfs 48 cf
Subcatchment 102: 102 - Existing Building	Runoff Area=5,175 sf 100.00% Impervious Runoff Depth=4.46" Tc=6.0 min CN=98 Runoff=0.53 cfs 1,925 cf
Subcatchment 200: 200 - Portion of	Runoff Area=2,107 sf 100.00% Impervious Runoff Depth=4.46" Tc=6.0 min CN=98 Runoff=0.22 cfs 784 cf
Subcatchment 201: 201 - Pavement	Runoff Area=2,187 sf 95.93% Impervious Runoff Depth=4.35" Tc=6.0 min CN=97 Runoff=0.22 cfs 792 cf
Subcatchment 202: 202 - Pavement	Runoff Area=1,651 sf 100.00% Impervious Runoff Depth=4.46" Tc=6.0 min CN=98 Runoff=0.17 cfs 614 cf
Subcatchment 203: 203 - Pavement	Runoff Area=5,013 sf 96.69% Impervious Runoff Depth=4.35" Tc=6.0 min CN=97 Runoff=0.51 cfs 1,816 cf
Subcatchment 204: 204 - Pavement	Runoff Area=4,813 sf 100.00% Impervious Runoff Depth=4.46" Tc=6.0 min CN=98 Runoff=0.50 cfs 1,790 cf
Subcatchment 205: 205 - Pavement	Runoff Area=3,480 sf 100.00% Impervious Runoff Depth=4.46" Tc=6.0 min CN=98 Runoff=0.36 cfs 1,294 cf
Subcatchment 206: 206 - Pavement	Runoff Area=5,141 sf 100.00% Impervious Runoff Depth=4.46" Tc=6.0 min CN=98 Runoff=0.53 cfs 1,912 cf
Subcatchment 207: 207 - Pavement	Runoff Area=2,680 sf 100.00% Impervious Runoff Depth=4.46" Tc=6.0 min CN=98 Runoff=0.28 cfs 997 cf
Subcatchment 208: 208 - Proposed	Runoff Area=4,287 sf 100.00% Impervious Runoff Depth=4.46" Tc=6.0 min CN=98 Runoff=0.44 cfs 1,595 cf
Subcatchment 209: 209 - Portion of	Runoff Area=4,990 sf 40.80% Impervious Runoff Depth=3.00" Tc=6.0 min CN=84 Runoff=0.39 cfs 1,246 cf
Subcatchment 210: 210 - Existing South F	Runoff Area=44,935 sf 0.00% Impervious Runoff Depth=1.46" low Length=210' Tc=10.6 min CN=65 Runoff=1.40 cfs 5,457 cf
Subcatchment 300: 300 - Lawn East to DP3	3 Runoff Area=1,921 sf 0.00% Impervious Runoff Depth=2.13" Tc=6.0 min CN=74 Runoff=0.11 cfs 341 cf
Pond CB1: PCB1 12.0" Rour	Peak Elev=16.87' Inflow=0.22 cfs 792 cf nd Culvert n=0.013 L=21.0' S=0.0095 '/' Outflow=0.22 cfs 792 cf

PROPOSED 12-22-17 Prepared by Lynnfield Engir HydroCAD® 10.00-18 s/n 06609		24-hr 10-yr Rainfall=4.70" Printed 12/22/2017 Page 69
Pond CB2: PCB2	Peak Elev 12.0" Round Culvert n=0.013 L=21.0' S=0.0	r=16.84' Inflow=0.17 cfs 614 cf 095 '/' Outflow=0.17 cfs 614 cf
Pond CB3: PCB3	-=Peak Elev 12.0" Round Culvert n=0.013 L=64.0' S=0.006	18.53' Inflow=0.51 cfs 1,816 cf 63 '/' Outflow=0.51 cfs 1,816 cf
Pond CB4: PCB4	-Peak Elev 12.0" Round Culvert n=0.013 L=94.0' S=0.008	15.51' Inflow=0.50 cfs 1,790 cf 35 '/' Outflow=0.50 cfs 1,790 cf
Pond CB5: PCB5	Peak Elev= 12.0" Round Culvert n=0.013 L=93.0' S=0.005	15.22' Inflow=0.36 cfs 1,294 cf 54 '/' Outflow=0.36 cfs 1,294 cf
Pond CB6: PCB6	Peak Elev=2 12.0" Round Culvert n=0.013 L=78.0' S=0.005	20.34' Inflow=0.53 cfs 1,912 cf 51 '/' Outflow=0.53 cfs 1,912 cf
Pond CB7: PCB7	Peak Elev 12.0" Round Culvert n=0.013 L=11.0' S=0.0	r=19.32' Inflow=0.28 cfs 997 cf 091 '/' Outflow=0.28 cfs 997 cf
Pond DP1: Design Pont #1_1	8" RCP Culvert - Northwest	Inflow=0.59 cfs 5,688 cf Primary=0.59 cfs 5,688 cf
Pond DP2: Design Pont #2_V	Vetland-South	Inflow=3.08 cfs 12,321 cf Primary=3.08 cfs 12,321 cf
Pond DP3: Design Pont #3_A	Abutting Lot-East	Inflow=0.11 cfs 341 cf Primary=0.11 cfs 341 cf
Pond IS: Infiltration System	Peak Elev=17.47' Storage=1,2 Discarded=0.28 cfs 5,288 cf Primary=0.00 cfs	244 cf Inflow=1.46 cfs 5,288 cf 0 cf Outflow=0.28 cfs 5,288 cf
Pond MH1: PDMH1	-=Peak Elev 12.0" Round Culvert n=0.013 L=85.0' S=0.005	16.68' Inflow=0.39 cfs 1,407 cf 59 '/' Outflow=0.39 cfs 1,407 cf
Pond MH2: PDMH2	Peak Elev=	16.32' Inflow=1.01 cfs 3,780 cf

 12.0" Round Culvert n=0.013 L=115.0' S=0.0052 '/' Outflow=1.01 cfs 3,780 cf

 Pond MH3: PDMH3

 Peak Elev=15.65' Inflow=1.01 cfs 3,780 cf

 12.0" Round Culvert n=0.013 L=138.0' S=0.0051 '/' Outflow=1.01 cfs 3,780 cf

 Pond MH4: PDMH4

 Peak Elev=14.99' Inflow=1.84 cfs 6,864 cf

Primary=1.46 cfs 6,424 cf Secondary=0.39 cfs 440 cf Outflow=1.84 cfs 6,864 cf

 Pond MH5: PDMH5
 Peak Elev=14.49'
 Inflow=1.84 cfs
 6,864 cf

 12.0"
 Round Culvert
 n=0.013
 L=23.0'
 S=0.0087 '/'
 Outflow=1.84 cfs
 6,864 cf

 Pond MH6: PDMH6
 Peak Elev=19.93'
 Inflow=0.75 cfs 2,696 cf

 12.0"
 Round Culvert n=0.013
 L=120.0'
 S=0.0050 '/'
 Outflow=0.75 cfs 2,696 cf

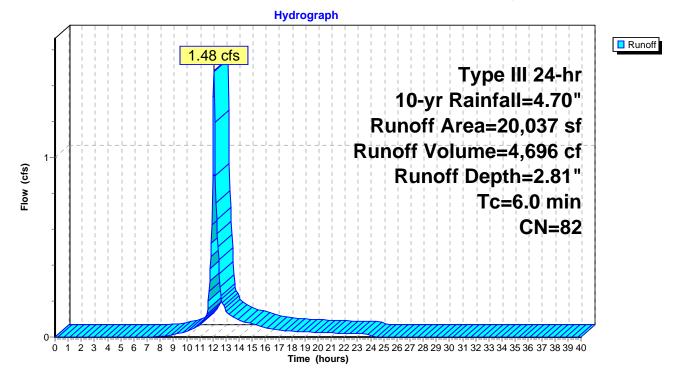
 Pond MH7: PDMH7
 Peak Elev=19.26'
 Inflow=1.02 cfs 3,693 cf

 Primary=0.83 cfs 3,537 cf
 Secondary=0.20 cfs 156 cf
 Outflow=1.02 cfs 3,693 cf

Pond MH8: PDMH8 Peak Elev=18.90' Inflow=1.46 cfs 5,288 cf 12.0" Round Culvert n=0.013 L=9.0' S=0.0111 '/' Outflow=1.46 cfs 5,288 cf

Type III 24-hr 10-yr Rainfall=4.70" Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC Printed 12/22/2017 Page 70

Pond RG1: Rain Garden #1	Peak Elev=15.88' Storage=2,948 cf Inflow=2.02 cfs 6,621 cf Outflow=0.59 cfs 5,640 cf
Pond RG2: Rain Garden #2	Peak Elev=18.49' Storage=1,028 cf Inflow=0.90 cfs 3,063 cf Outflow=0.68 cfs 2,373 cf
Pond WQU1: Water Quality Unit 1	Peak Elev=14.71' Inflow=1.46 cfs 6,424 cf
12.0" Round C	Culvert n=0.013 L=9.0' S=0.0111 '/' Outflow=1.46 cfs 6,424 cf
Pond WQU2: Water Quality Unit 2	Peak Elev=19.00' Inflow=0.83 cfs 3,537 cf
12.0" Round C	Culvert n=0.013 L=6.0' S=0.0167 '/' Outflow=0.83 cfs 3,537 cf

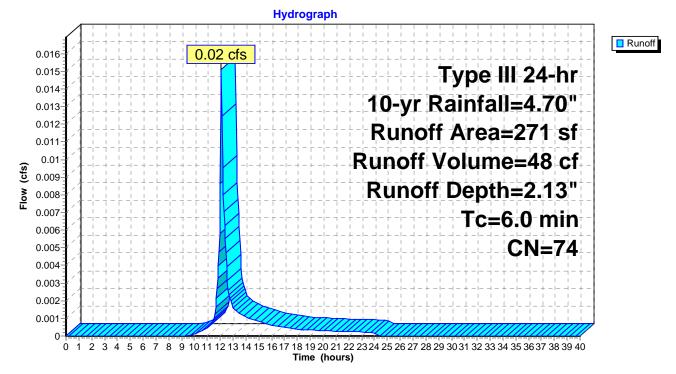

Summary for Subcatchment 100: 100 - Pavement, Lawn, and Direct Entry to Rain Garden

Runoff = 1.48 cfs @ 12.09 hrs, Volume= 4,696 cf, Depth= 2.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

	Area (sf)	CN	Description						
	4,778	74	>75% Gras	s cover, Go	bod, HSG C				
*	6,173	65	Rain Garde	n surface a	area				
	9,086	98	Paved park	ing, HSG C					
	20,037	82	Weighted Average						
	10,951		54.65% Pervious Area						
	9,086		45.35% Impervious Area						
(m	Tc Length in) (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
6	6.0				Direct Entry,				

Subcatchment 100: 100 - Pavement, Lawn, and Direct Entry to Rain Garden



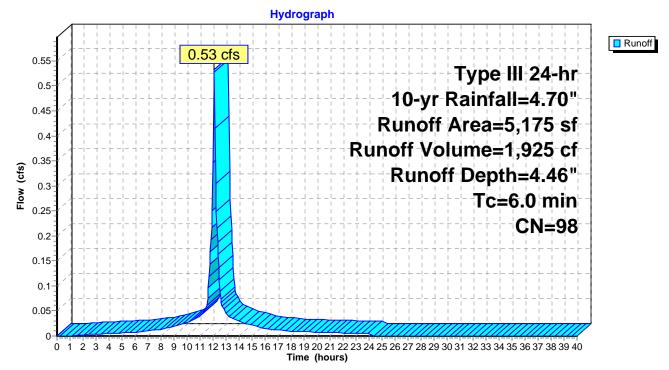
Runoff = 0.02 cfs @ 12.10 hrs, Volume= 48 cf, Depth= 2.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

Area (sf)	CN	CN Description						
271	74	74 >75% Grass cover, Good, HSG C						
271		100.00% Pervious Area						
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)					
6.0				Direct Entry,				

Subcatchment 101: 101 - West Side Lawn to DP1

Summary for Subcatchment 102: 102 - Existing Building

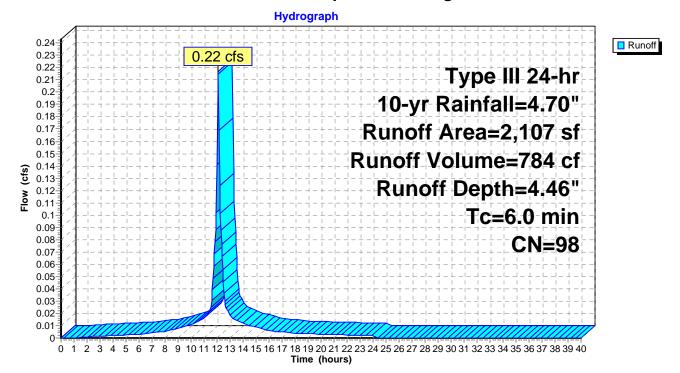

Page 73

Runoff 0.53 cfs @ 12.09 hrs, Volume= 1,925 cf, Depth= 4.46" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

	Are	ea (sf)	CN	Description					
*		5,175	98	8 Roofs, HSG C, Existing Building					
		5,175	100.00% Impervious Area						
	Тс	Length	Slope	e Velocity	Capacity	Description			
(m	in)	(feet)	(ft/ft	(ft/sec)	(cfs)				
6	5.0					Direct Entry,			

Subcatchment 102: 102 - Existing Building

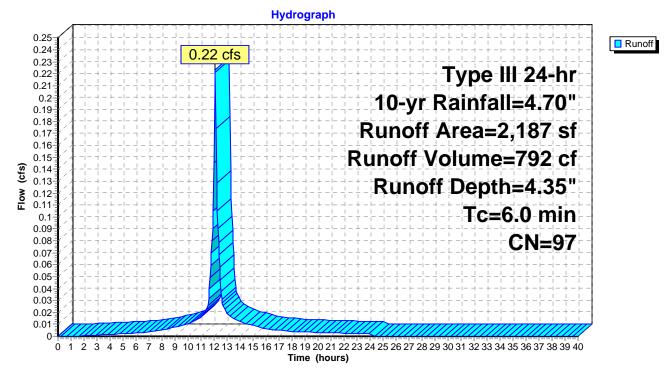

Summary for Subcatchment 200: 200 - Portion of Proposed Building Tenant A to Rain Garden #2

Runoff = 0.22 cfs @ 12.09 hrs, Volume= 784 cf, Depth= 4.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

	A	rea (sf)	CN I	Description						
*		2,107	98 I	Roofs, HSG C, Half Prop. Building A						
		2,107		100.00% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry,				

Subcatchment 200: 200 - Portion of Proposed Building Tenant A to Rain Garden #2

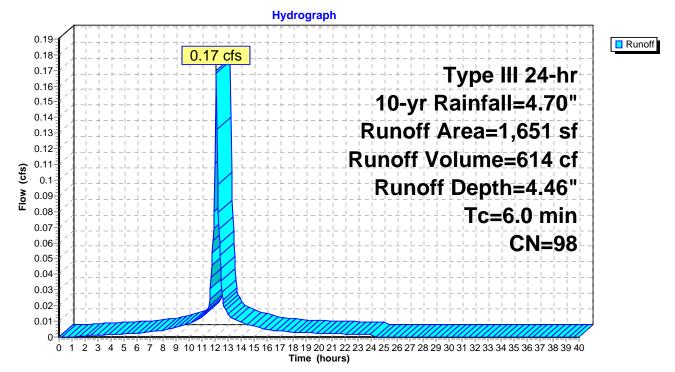

Summary for Subcatchment 201: 201 - Pavement

Runoff = 0.22 cfs @ 12.09 hrs, Volume= 792 cf, Depth= 4.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

A	rea (sf)	CN	Description			
	2,098	98	Paved park	ing, HSG C	C	
	89	74	>75% Gras	s cover, Go	ood, HSG C	
	2,187	97	Weighted Average			
	89		4.07% Pervious Area			
	2,098		95.93% Impervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description	
6.0					Direct Entry,	

Subcatchment 201: 201 - Pavement

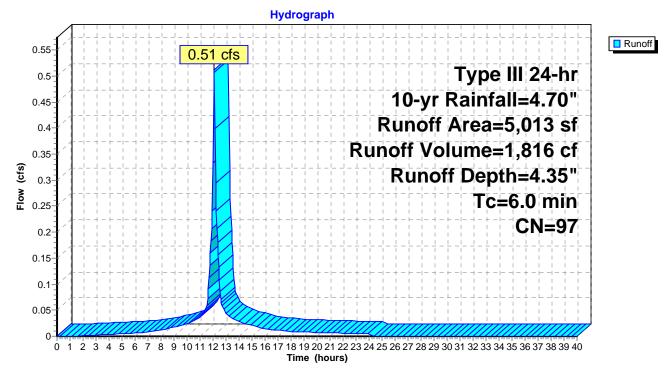

Summary for Subcatchment 202: 202 - Pavement

Runoff = 0.17 cfs @ 12.09 hrs, Volume= 614 cf, Depth= 4.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

A	rea (sf)	CN Description							
	1,651	98 Paved parking, HSG C							
	1,651	51 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description				
6.0					Direct Entry,				

Subcatchment 202: 202 - Pavement

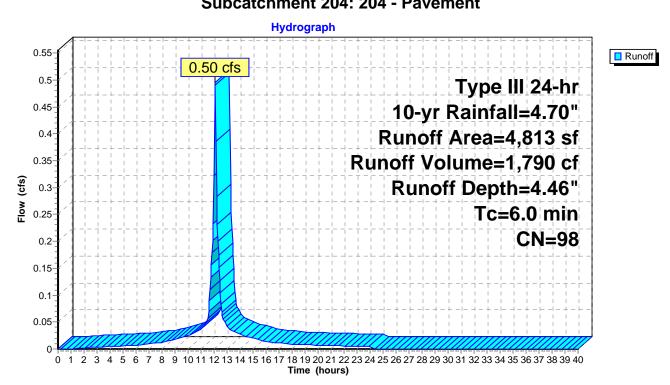

Summary for Subcatchment 203: 203 - Pavement

Runoff = 0.51 cfs @ 12.09 hrs, Volume= 1,816 cf, Depth= 4.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

A	rea (sf)	CN	Description					
	4,847	98	Paved parking, HSG C					
	166	74 :	>75% Grass cover, Good, HSG C					
	5,013	97	Weighted Average					
	166		3.31% Pervious Area					
	4,847	9	96.69% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 203: 203 - Pavement

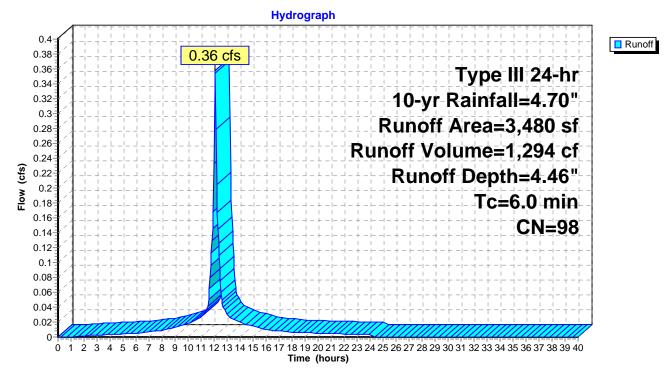


Summary for Subcatchment 204: 204 - Pavement

Runoff = 0.50 cfs @ 12.09 hrs, Volume= 1,790 cf, Depth= 4.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

A	rea (sf)	CN Description							
	4,813	98 Paved parking, HSG C							
	4,813	.,813 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description				
6.0		Direct Entry,							
Subcatchment 204: 204 - Pavement									

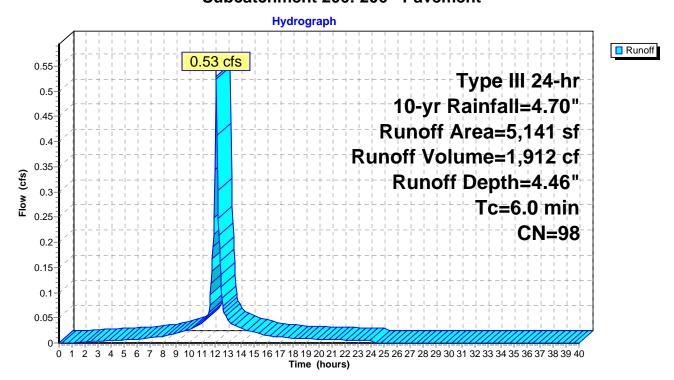

Summary for Subcatchment 205: 205 - Pavement

Runoff = 0.36 cfs @ 12.09 hrs, Volume= 1,294 cf, Depth= 4.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

A	rea (sf)	CN	Description				
	3,480	98	98 Paved parking, HSG C				
	3,480	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
6.0					Direct Entry,		

Subcatchment 205: 205 - Pavement

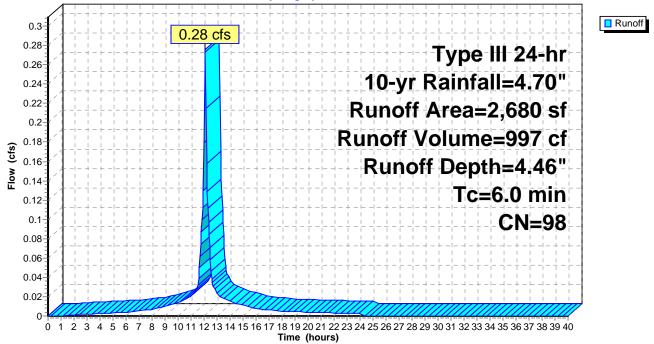


Summary for Subcatchment 206: 206 - Pavement

Runoff = 0.53 cfs @ 12.09 hrs, Volume= 1,912 cf, Depth= 4.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

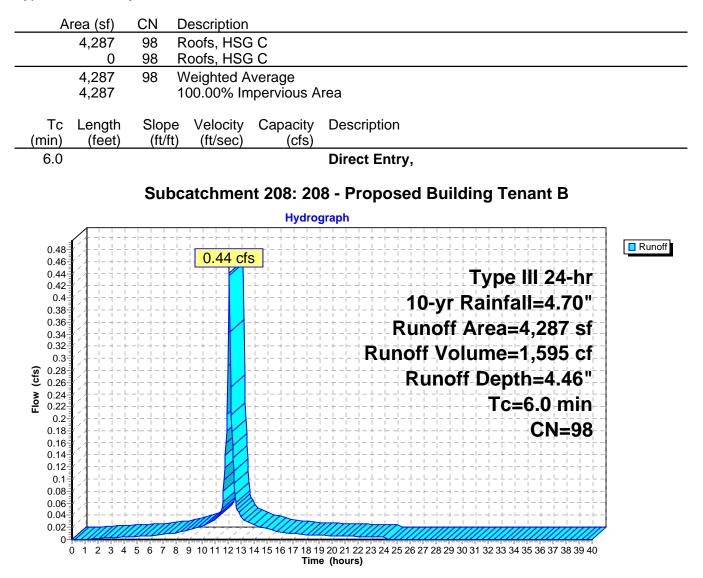
A	ea (sf) CN Description							
	5,141	98	98 Paved parking, HSG C					
	5,141		100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
6.0			, , , , , , , , , , , , , , , , , , ,		Direct Entry,			
Subcatchment 206: 206 - Pavement								



Summary for Subcatchment 207: 207 - Pavement

Runoff = 0.28 cfs @ 12.09 hrs, Volume= 997 cf, Depth= 4.46"

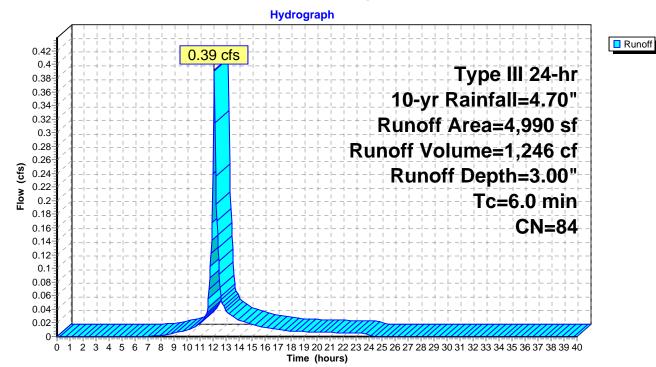
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"


A	rea (sf)	CN I	Description				
	2,680 98 Paved parking, HSG C						
	2,680	680 100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description		
6.0	Direct Entry,						
	Subcatchment 207: 207 - Pavement						
	Hydrograph						

Summary for Subcatchment 208: 208 - Proposed Building Tenant B

Runoff = 0.44 cfs @ 12.09 hrs, Volume= 1,595 cf, Depth= 4.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

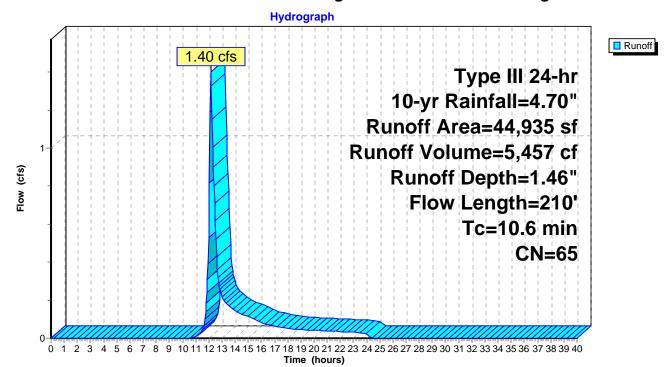

mary for Subcatchment 209: 209 - Portion of Proposed Building Tentant A, Rain Garden #2, Lawn, and V

Runoff = 0.39 cfs @ 12.09 hrs, Volume= 1,246 cf, Depth= 3.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

	Area (sf)	CN	CN Description					
*	876	65	65 Rain Garden Surface Area					
	2,078	79	50-75% Grass cover, Fair, HSG C					
	84	98	Unconnected pavement, HSG C					
	1,952	98	Unconnected roofs, HSG C					
	4,990	84	4 Weighted Average					
	2,954		59.20% Pervious Area					
	2,036		40.80% Impervious Area					
	2,036		100.00% Unconnected					
То		Slope		Capacity	Description			
(min) (feet)	(ft/ft) (ft/sec)	(cfs)				
6.0)				Direct Entry,			

Subcatchment 209: 209 - Portion of Proposed Building Tentant A, Rain Garden #2, Lawn, and Walkwa

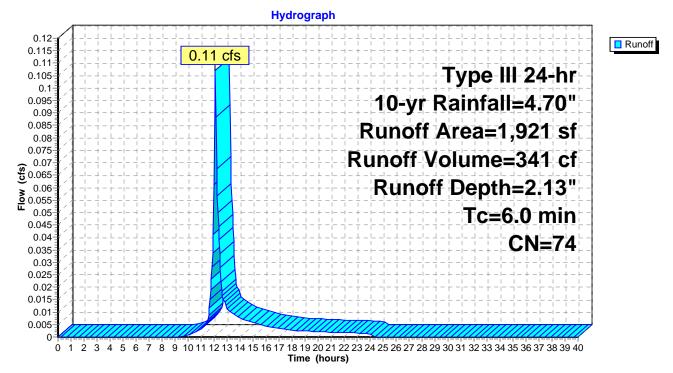

Summary for Subcatchment 210: 210 - Existing South features remaining to DP2

Runoff = 1.40 cfs @ 12.16 hrs, Volume= 5,457 cf, Depth= 1.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

_	A	rea (sf)	CN [Description					
		35,498	65 E	Brush, Goo	d, HSG C				
*		9,437	65 E	65 Brush, Good, HSG C, Wetland Brush					
		44,935	65 \	65 Weighted Average					
		44,935 100.00% Pervious Area							
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	9.2	100	0.0600	0.18		Sheet Flow,			
						Grass: Dense n= 0.240 P2= 3.22"			
	1.4	110	0.0360	1.33		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	10.6	210	Total						

Subcatchment 210: 210 - Existing South features remaining to DP2

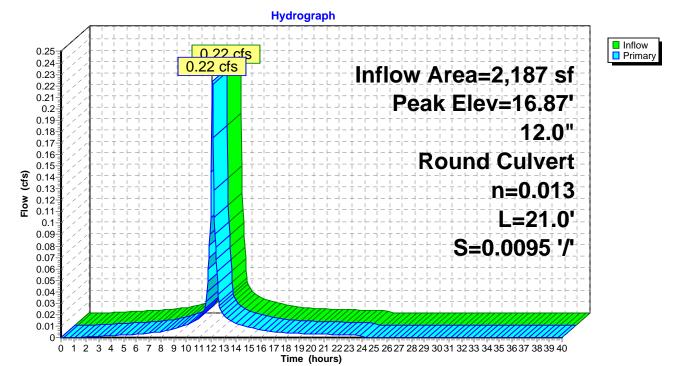

Summary for Subcatchment 300: 300 - Lawn East to DP3

Runoff = 0.11 cfs @ 12.10 hrs, Volume= 341 cf, Depth= 2.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.70"

A	rea (sf)	CN	Description				
	1,921	74	74 >75% Grass cover, Good, HSG C				
	1,921	100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)			
6.0					Direct Entry,		

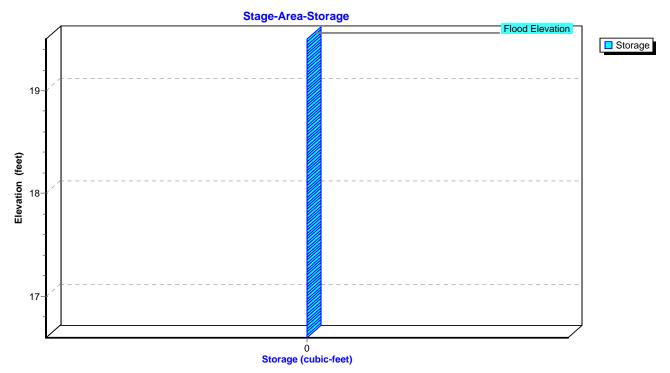
Subcatchment 300: 300 - Lawn East to DP3


Summary for Pond CB1: PCB1

Inflow Area = 2,187 sf, 95.93% Impervious, Inflow Depth = 4.35" for 10-yr event Inflow 0.22 cfs @ 12.09 hrs. Volume= 792 cf = 12.09 hrs, Volume= Outflow 0.22 cfs @ 792 cf, Atten= 0%, Lag= 0.0 min = Primary 0.22 cfs @ 12.09 hrs, Volume= 792 cf =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.87' @ 12.10 hrs Flood Elev= 19.50'

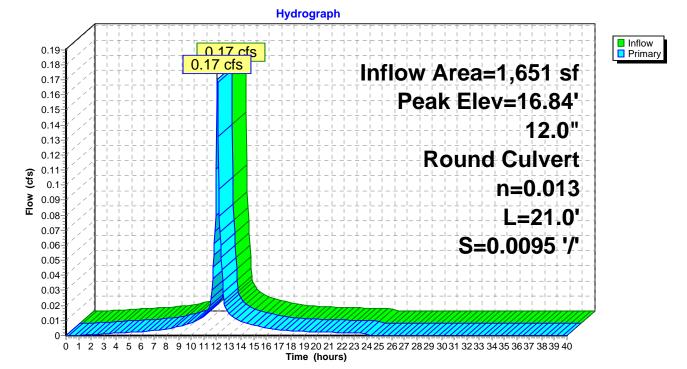
Device Routing Invert Outlet Devices	
#1 Primary 16.60' 12.0" Round Culvert L= 21.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 16.60' / 16.40' S= 0.0095 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	


Primary OutFlow Max=0.20 cfs @ 12.09 hrs HW=16.86' TW=16.68' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.20 cfs @ 1.82 fps)

Pond CB1: PCB1

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

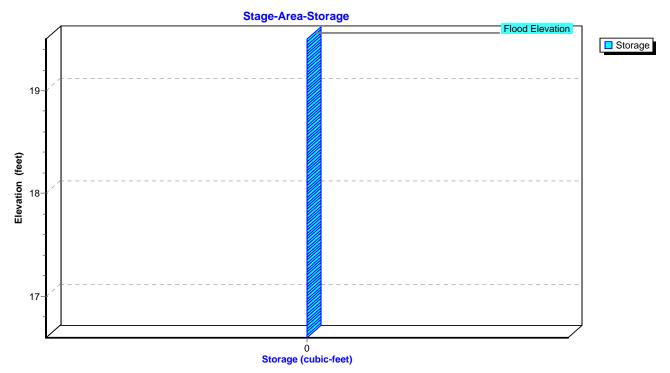
Pond CB1: PCB1


Summary for Pond CB2: PCB2

Inflow Area =1,651 sf,100.00% Impervious, Inflow Depth =4.46" for 10-yr eventInflow =0.17 cfs @12.09 hrs, Volume=614 cfOutflow =0.17 cfs @12.09 hrs, Volume=614 cf, Atten= 0%, Lag= 0.0 minPrimary =0.17 cfs @12.09 hrs, Volume=614 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.84' @ 12.11 hrs Flood Elev= 19.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	16.60'	12.0" Round Culvert L= 21.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $16.60' / 16.40'$ S= $0.0095 '/$ ' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.15 cfs @ 12.09 hrs HW=16.83' TW=16.68' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.15 cfs @ 1.60 fps)

Pond CB2: PCB2

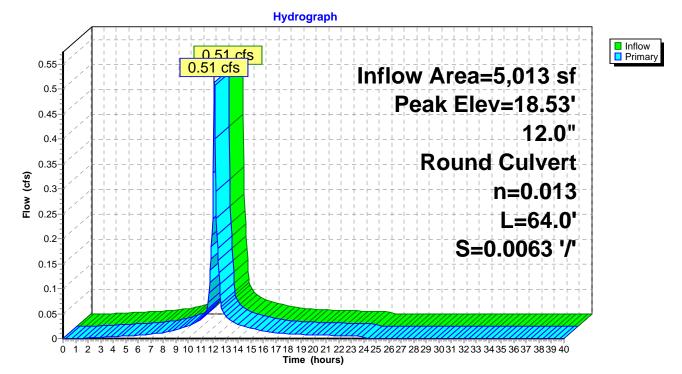
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB2: PCB2

Summary for Pond CB3: PCB3

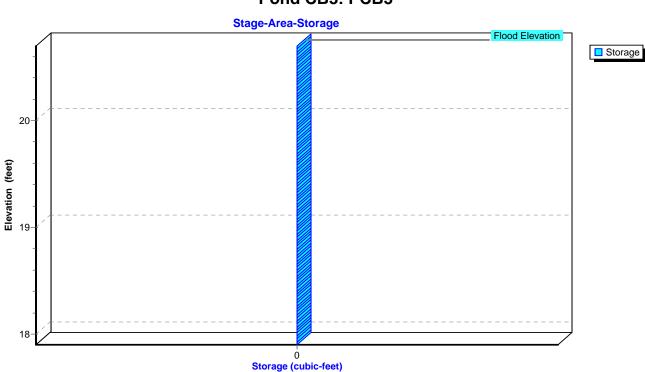
 Inflow Area =
 5,013 sf, 96.69% Impervious, Inflow Depth = 4.35" for 10-yr event

 Inflow =
 0.51 cfs @ 12.09 hrs, Volume=
 1,816 cf


 Outflow =
 0.51 cfs @ 12.09 hrs, Volume=
 1,816 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.51 cfs @ 12.09 hrs, Volume=
 1,816 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.53' @ 12.17 hrs Flood Elev= 20.70'


#4 Drimony AZ 00 42 0 Bound Culturat	Device	Routing	Invert	Outlet Devices
L= 64.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 17.90' / 17.50' S= 0.0063 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	#1	Primary	17.90'	Inlet / Outlet Invert= 17.90' / 17.50' S= 0.0063 '/' Cc= 0.900

Primary OutFlow Max=0.36 cfs @ 12.09 hrs HW=18.51' TW=18.44' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.36 cfs @ 1.03 fps)

Pond CB3: PCB3

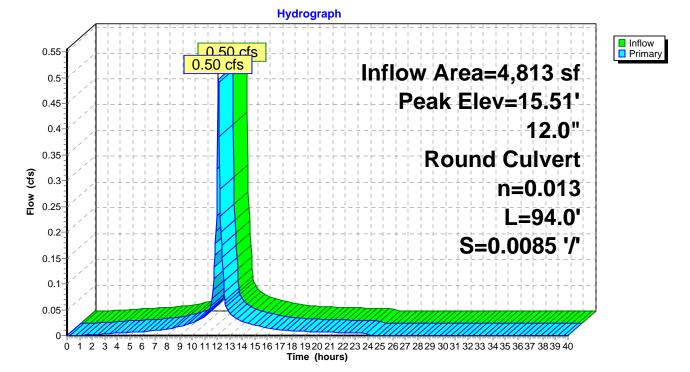
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB3: PCB3

Summary for Pond CB4: PCB4

 Inflow Area =
 4,813 sf,100.00% Impervious, Inflow Depth =
 4.46" for 10-yr event

 Inflow =
 0.50 cfs @
 12.09 hrs, Volume=
 1,790 cf


 Outflow =
 0.50 cfs @
 12.09 hrs, Volume=
 1,790 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.50 cfs @
 12.09 hrs, Volume=
 1,790 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.51' @ 12.10 hrs Flood Elev= 17.80'

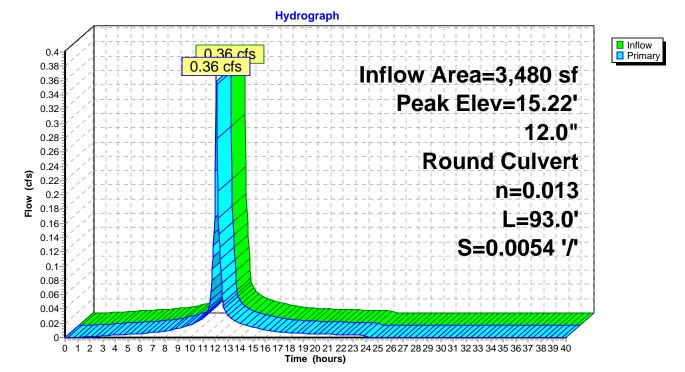
Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 94.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 15.10' / 14.30' S= 0.0085 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.45 cfs @ 12.09 hrs HW=15.50' TW=14.97' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.45 cfs @ 2.26 fps)

Pond CB4: PCB4

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

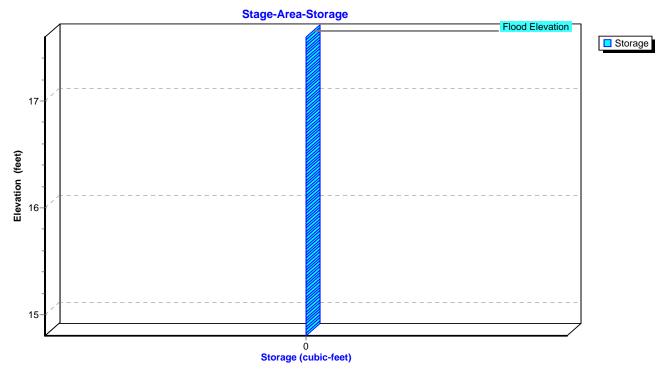
Pond CB4: PCB4


Summary for Pond CB5: PCB5

Inflow Are	a =	3,480 sf	,100.00% Impervious,	Inflow Depth = 4.46" for 10-yr event	
Inflow	=	0.36 cfs @	12.09 hrs, Volume=	1,294 cf	
Outflow	=	0.36 cfs @	12.09 hrs, Volume=	1,294 cf, Atten= 0%, Lag= 0.0 min	
Primary	=	0.36 cfs @	12.09 hrs, Volume=	1,294 cf	
Routing by Dyn-Stor-Ind method. Time Span- 0.00-40.00 brs. dt- 0.05 brs.					

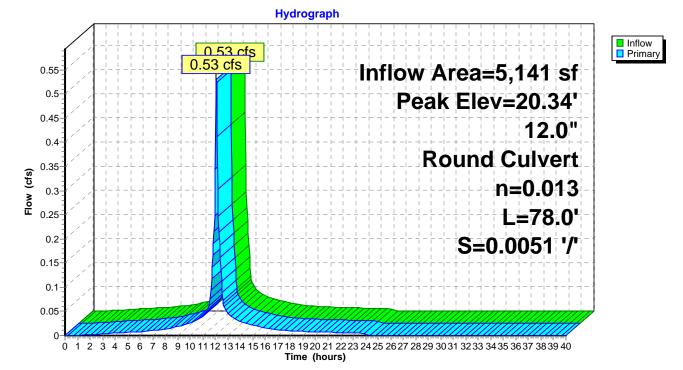
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.22' @ 12.11 hrs Flood Elev= 17.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	14.80'	12.0" Round Culvert L= 93.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 14.80' / 14.30' S= 0.0054 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.31 cfs @ 12.09 hrs HW=15.21' TW=14.97' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.31 cfs @ 1.51 fps)

Pond CB5: PCB5

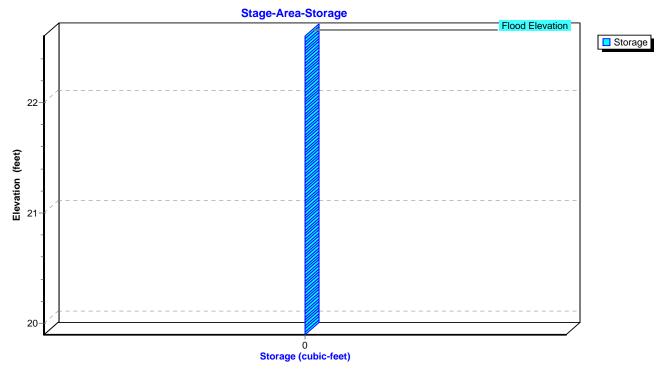
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC


Summary for Pond CB6: PCB6

Inflow Area =5,141 sf,100.00% Impervious, Inflow Depth =4.46" for 10-yr eventInflow =0.53 cfs @12.09 hrs, Volume=1,912 cfOutflow =0.53 cfs @12.09 hrs, Volume=1,912 cf, Atten= 0%, Lag= 0.0 minPrimary =0.53 cfs @12.09 hrs, Volume=1,912 cf

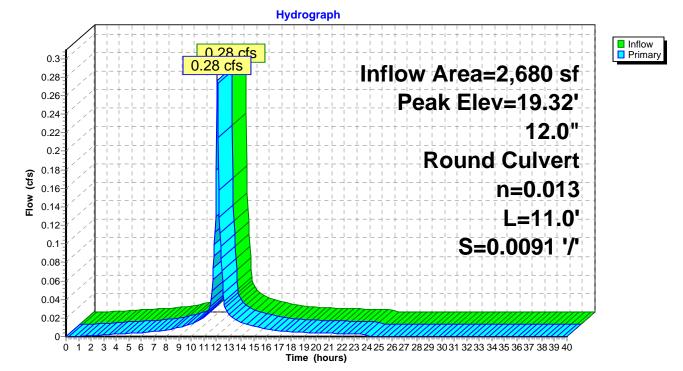
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 20.34' @ 12.10 hrs Flood Elev= 22.60'

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary	19.90'	12.0" Round Culvert L= 78.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 19.90' / 19.50' S= 0.0051 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.49 cfs @ 12.09 hrs HW=20.34' TW=19.92' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.49 cfs @ 2.20 fps)

Pond CB6: PCB6

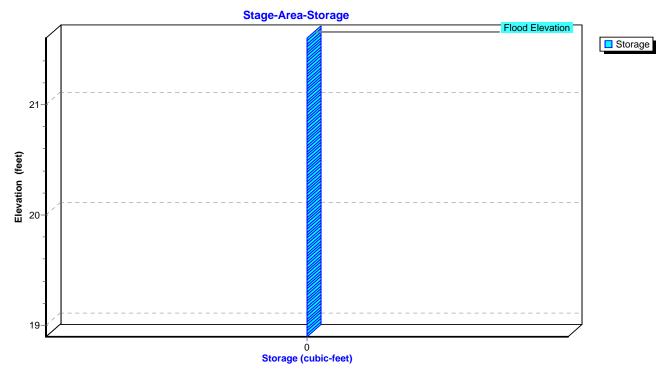
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC


Summary for Pond CB7: PCB7

Inflow Area =		2,680 sf,100.00% Impervious, Inflow Depth =	4.46" for 10-yr event		
Inflow	=	0.28 cfs @ 12.09 hrs, Volume= 997 c	f		
Outflow	=	0.28 cfs @ 12.09 hrs, Volume= 997 c	f, Atten= 0%, Lag= 0.0 min		
Primary	=	0.28 cfs @ 12.09 hrs, Volume= 997 c	of		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.32' @ 12.12 hrs Flood Elev= 21.60'

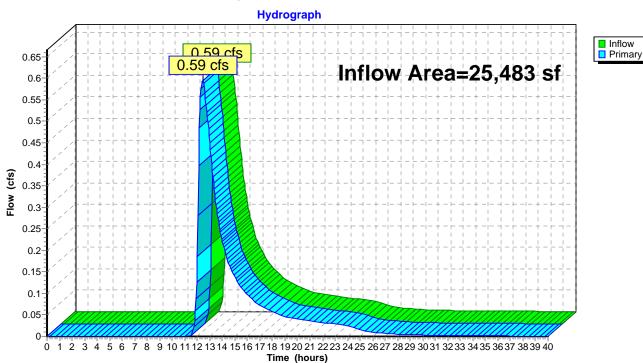
Device	Routing	Invert	Outlet Devices
#1	Primary	18.90'	12.0" Round Culvert
			L= 11.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.90' / 18.80' S= 0.0091 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.19 cfs @ 12.09 hrs HW=19.29' TW=19.26' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.19 cfs @ 1.00 fps)

Pond CB7: PCB7

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB7: PCB7

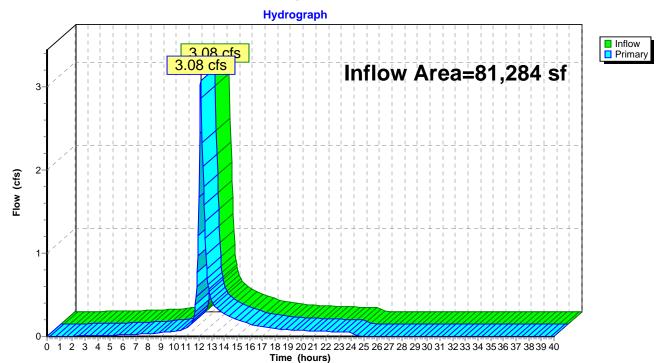


Summary for Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	25,483 sf, 55.96% Impe	ervious, Inflow Depth >	2.68"	for 10-yr event
Inflow	=	0.59 cfs @ 12.43 hrs, Vo	olume= 5,688 d	of	
Primary	=	0.59 cfs @ 12.43 hrs, Vo	olume= 5,688 d	of, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs

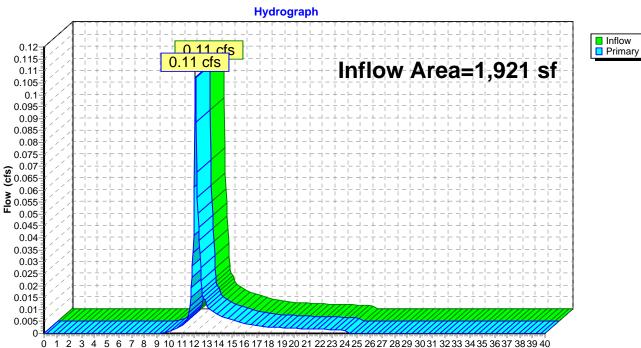

Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

Summary for Pond DP2: Design Pont #2_Wetland-South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	81,284 sf, 40.77% Impervious, Inflow Depth = 1.82" for 10-yr event	
Inflow	=	3.08 cfs @ 12.13 hrs, Volume= 12,321 cf	
Primary	=	3.08 cfs @ 12.13 hrs, Volume= 12,321 cf, Atten= 0%, Lag= 0.0	min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs


Pond DP2: Design Pont #2_Wetland-South

Summary for Pond DP3: Design Pont #3_Abutting Lot-East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	1,921 sf, 0.00% Impervious, Inflow Depth = 2.13" for 10-yr event	
Inflow	=	0.11 cfs @ 12.10 hrs, Volume= 341 cf	
Primary	=	0.11 cfs @ 12.10 hrs, Volume= 341 cf, Atten= 0%, Lag= 0.0 m	nin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs

Pond DP3: Design Pont #3_Abutting Lot-East

Time (hours)

Summary for Pond IS: Infiltration System

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=2)

Inflow Area =	14,215 sf,100.00% Impervious,	Inflow Depth = 4.46" for 10-yr event
Inflow =	1.46 cfs @ 12.09 hrs, Volume=	5,288 cf
Outflow =	0.28 cfs @ 11.75 hrs, Volume=	5,288 cf, Atten= 81%, Lag= 0.0 min
Discarded =	0.28 cfs @ 11.75 hrs, Volume=	5,288 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 17.47' @ 12.52 hrs Surf.Area= 1,463 sf Storage= 1,244 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 22.2 min (771.2 - 749.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.10'	670 cf	6.28'W x 109.07'L x 3.52'H Field A
			2,416 cf Overall - 741 cf Embedded = 1,675 cf x 40.0% Voids
#2A	16.60'	741 cf	Contech ChamberMaxx x 15 Inside #1
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap
			Row Length Adjustment= +0.32' x 6.92 sf x 1 rows
#3B	16.10'	601 cf	
			2,294 cf Overall - 793 cf Embedded = 1,502 cf \times 40.0% Voids
#4B	16.60'	793 cf	
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap
			Row Length Adjustment= +0.32' x 6.92 sf x 2 rows
#5C	16.10'	143 cf	
			408 cf Overall - 50 cf Embedded = 358 cf x 40.0% Voids
#6C	17.10'	39 cf	ADS N-12 12 x 2 Inside #5
			Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf
			Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf
			Row Length Adjustment= +8.00' x 0.81 sf x 1 rows
		2,986 cf	Total Available Storage

2,986 cf I otal Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard Storage Group C created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	16.10'	8.270 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	17.90'	12.0" Round Culvert
			L= 66.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 17.90' / 16.50' S= 0.0212 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.28 cfs @ 11.75 hrs HW=16.14' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.28 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=16.10' TW=0.00' (Dynamic Tailwater) **2=Culvert** (Controls 0.00 cfs)

Pond IS: Infiltration System - Chamber Wizard Field A

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 1 rows

15 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 107.07' Row Length +12.0" End Stone x 2 = 109.07' Base Length 1 Rows x 51.4" Wide + 12.0" Side Stone x 2 = 6.28' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

15 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 1 Rows = 741.1 cf Chamber Storage

2,415.8 cf Field - 741.1 cf Chambers = 1,674.7 cf Stone x 40.0% Voids = 669.9 cf Stone Storage

Chamber Storage + Stone Storage = 1,411.0 cf = 0.032 afOverall Storage Efficiency = 58.4%Overall System Size = $109.07' \times 6.28' \times 3.52'$

15 Chambers 89.5 cy Field 62.0 cy Stone

Pond IS: Infiltration System - Chamber Wizard Field B

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 2 rows

51.4" Wide + 5.0" Spacing = 56.4" C-C Row Spacing


8 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 57.25' Row Length +12.0" End Stone x 2 = 59.25' Base Length 2 Rows x 51.4" Wide + 5.0" Spacing x 1 + 12.0" Side Stone x 2 = 10.98' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

16 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 2 Rows = 792.6 cf Chamber Storage

2,294.1 cf Field - 792.6 cf Chambers = 1,501.5 cf Stone x 40.0% Voids = 600.6 cf Stone Storage

Chamber Storage + Stone Storage = 1,393.2 cf = 0.032 afOverall Storage Efficiency = 60.7%Overall System Size = $59.25' \times 10.98' \times 3.52'$

16 Chambers 85.0 cy Field 55.6 cy Stone

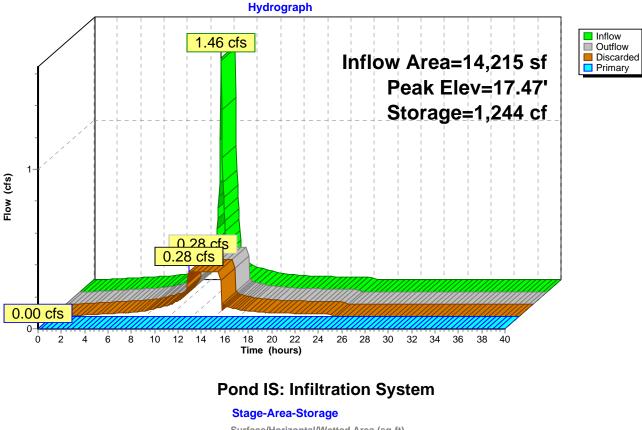
Pond IS: Infiltration System - Chamber Wizard Field C

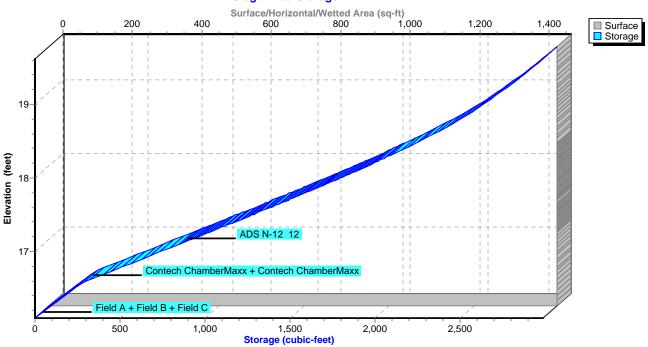
Chamber Model = ADS N-12 12 (ADS N-12® Pipe)

Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf Row Length Adjustment= +8.00' x 0.81 sf x 1 rows

2 Chambers/Row x 20.00' Long +8.00' Row Adjustment = 48.00' Row Length +12.0" End Stone x 2 = 50.00' Base Length 1 Rows x 14.5" Wide + 8.0" Side Stone x 2 = 2.54' Base Width

12.0" Base + 14.5" Chamber Height + 12.0" Cover = 3.21' Field Height

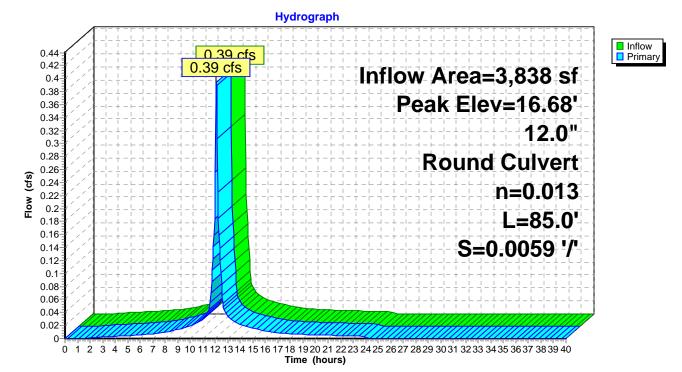

2 Chambers x 16.2 cf +8.00' Row Adjustment x 0.81 sf x 1 Rows = 38.9 cf Chamber Storage 2 Chambers x 20.9 cf +8.00' Row Adjustment x 1.05 sf x 1 Rows = 50.2 cf Displacement


407.9 cf Field - 50.2 cf Chambers = 357.7 cf Stone x 40.0% Voids = 143.1 cf Stone Storage

Chamber Storage + Stone Storage = 181.9 cf = 0.004 afOverall Storage Efficiency = 44.6%Overall System Size = $50.00' \times 2.54' \times 3.21'$

2 Chambers 15.1 cy Field 13.2 cy Stone

Pond IS: Infiltration System


Summary for Pond MH1: PDMH1

Inflow Area = 3,838 sf, 97.68% Impervious, Inflow Depth = 4.40" for 10-yr event Inflow 0.39 cfs @ 12.09 hrs. Volume= 1.407 cf = 12.09 hrs, Volume= Outflow 0.39 cfs @ 1,407 cf, Atten= 0%, Lag= 0.0 min = Primary 0.39 cfs @ 12.09 hrs, Volume= = 1,407 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.68' @ 12.10 hrs Flood Elev= 20.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	16.30'	12.0" Round Culvert L= 85.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 16.30' / 15.80' S= 0.0059 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.35 cfs @ 12.09 hrs HW=16.68' TW=16.29' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.35 cfs @ 1.93 fps)

Pond MH1: PDMH1

Stage-Area-Storage Flood Elevation Storage 20-19 Elevation (feet) 18 17

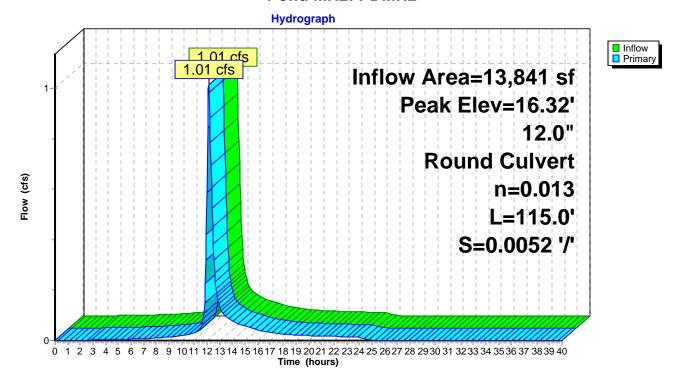
> Ó Storage (cubic-feet)

Pond MH1: PDMH1

Summary for Pond MH2: PDMH2

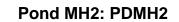
 Inflow Area =
 13,841 sf, 76.82% Impervious, Inflow Depth = 3.28" for 10-yr event

 Inflow =
 1.01 cfs @ 12.12 hrs, Volume=
 3,780 cf


 Outflow =
 1.01 cfs @ 12.12 hrs, Volume=
 3,780 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.01 cfs @ 12.12 hrs, Volume=
 3,780 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.32' @ 12.14 hrs Flood Elev= 21.20'


Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary	15.70'	12.0" Round Culvert L= 115.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 15.70' / 15.10' S= 0.0052 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			The 0.013 Confugated FE, Smooth Intenor, Flow Area = 0.79 Si

Primary OutFlow Max=0.96 cfs @ 12.12 hrs HW=16.31' TW=15.64' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.96 cfs @ 2.73 fps)

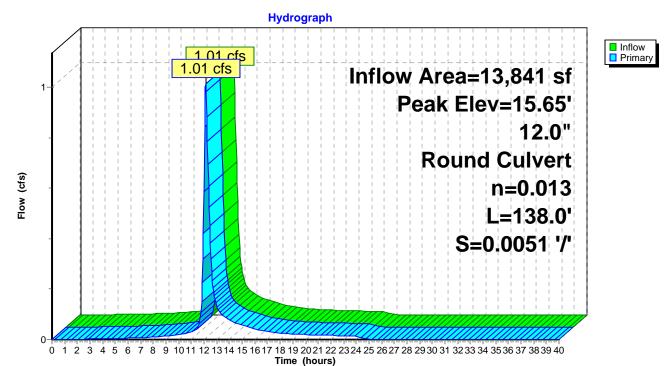
Pond MH2: PDMH2

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Summary for Pond MH3: PDMH3

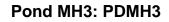
 Inflow Area =
 13,841 sf, 76.82% Impervious, Inflow Depth = 3.28" for 10-yr event

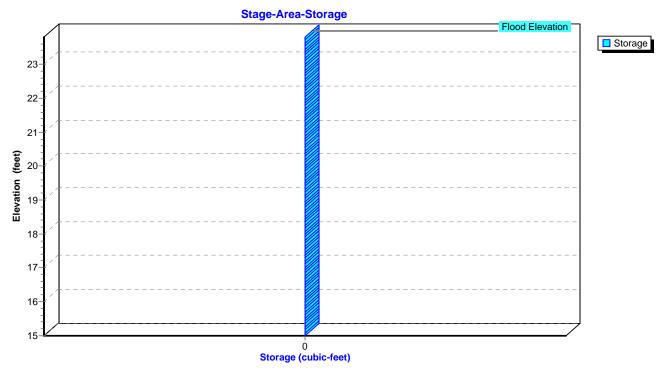
 Inflow =
 1.01 cfs @ 12.12 hrs, Volume=
 3,780 cf


 Outflow =
 1.01 cfs @ 12.12 hrs, Volume=
 3,780 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.01 cfs @ 12.12 hrs, Volume=
 3,780 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.65' @ 12.13 hrs Flood Elev= 23.80'


Device	Routing	Invert	Outlet Devices
#1	Primary	15.00'	12.0" Round Culvert L= 138.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 15.00' / 14.30' S= 0.0051 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

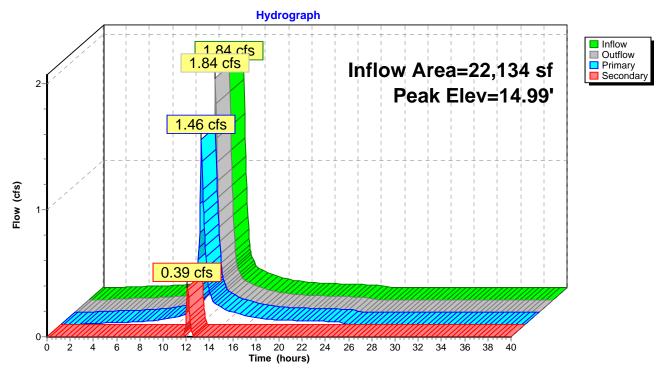

Primary OutFlow Max=0.98 cfs @ 12.12 hrs HW=15.64' TW=14.98' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.98 cfs @ 2.60 fps)

Pond MH3: PDMH3

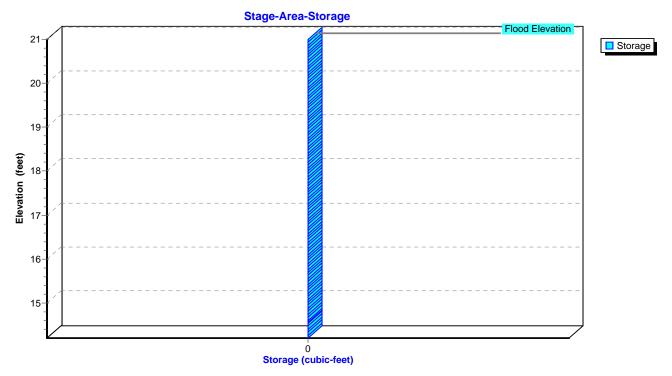
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Summary for Pond MH4: PDMH4

Inflow Area =	22,134 sf, 85.50% Impervious,	Inflow Depth = 3.72" for 10-yr event
Inflow =	1.84 cfs @ 12.10 hrs, Volume=	6,864 cf
Outflow =	1.84 cfs @ 12.10 hrs, Volume=	6,864 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.46 cfs @ 12.10 hrs, Volume=	6,424 cf
Secondary =	0.39 cfs @ 12.11 hrs, Volume=	440 cf


Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 14.99' @ 12.11 hrs Flood Elev= 21.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	14.20'	12.0" Round Culvert
			L= 6.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 14.20' / 14.10' S= 0.0167 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Secondary	14.20'	12.0" Round Culvert
	-		L= 8.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 14.20' / 13.70' S= 0.0625 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#3	Device 2	14.55'	


Primary OutFlow Max=1.36 cfs @ 12.10 hrs HW=14.98' TW=14.69' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.36 cfs @ 2.07 fps)

Secondary OutFlow Max=0.38 cfs @ 12.11 hrs HW=14.98' TW=14.48' (Dynamic Tailwater) -2=Culvert (Passes 0.38 cfs of 1.56 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Weir Controls 0.38 cfs @ 2.14 fps)

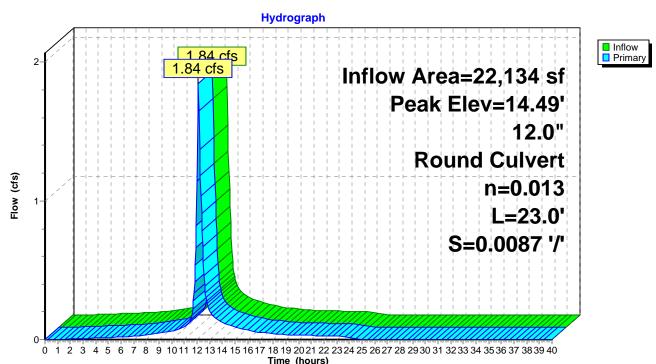
Pond MH4: PDMH4

Pond MH4: PDMH4

Summary for Pond MH5: PDMH5

 Inflow Area =
 22,134 sf, 85.50% Impervious, Inflow Depth = 3.72" for 10-yr event

 Inflow =
 1.84 cfs @ 12.10 hrs, Volume=
 6,864 cf

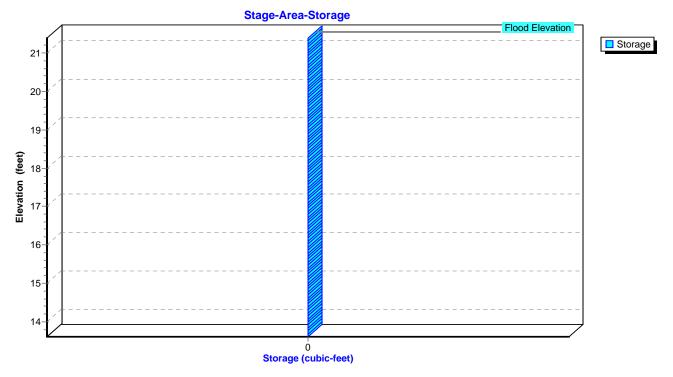

 Outflow =
 1.84 cfs @ 12.10 hrs, Volume=
 6,864 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.84 cfs @ 12.10 hrs, Volume=
 6,864 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 14.49' @ 12.10 hrs Flood Elev= 21.40'

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 23.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 13.60' / 13.40' S= 0.0087 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.84 cfs @ 12.10 hrs HW=14.49' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.84 cfs @ 3.31 fps)

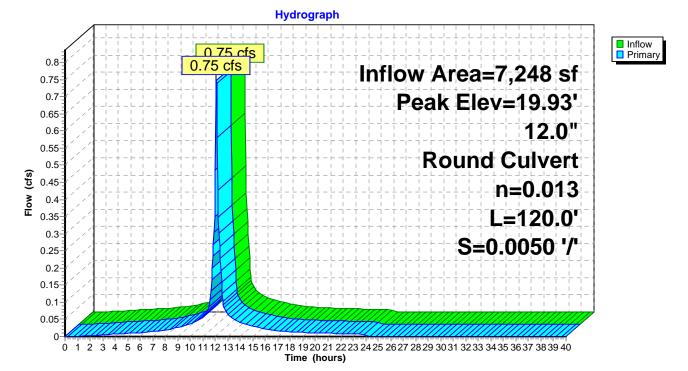


Pond MH5: PDMH5

PROPOSED 12-22-17

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

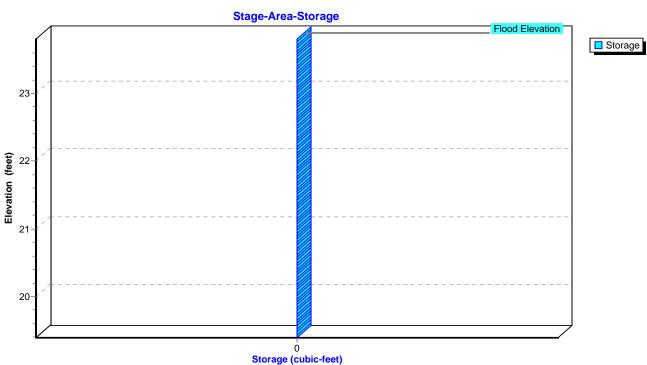
Pond MH5: PDMH5


Summary for Pond MH6: PDMH6

Inflow Area =7,248 sf,100.00% Impervious, Inflow Depth =4.46" for 10-yr eventInflow =0.75 cfs @12.09 hrs, Volume=2,696 cfOutflow =0.75 cfs @12.09 hrs, Volume=2,696 cf, Atten= 0%, Lag= 0.0 minPrimary =0.75 cfs @12.09 hrs, Volume=2,696 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.93' @ 12.09 hrs Flood Elev= 23.80'

Device	Routing	Invert	Outlet Devices
	Primary	19.40'	12.0" Round Culvert L= 120.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 19.40' / 18.80' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.71 cfs @ 12.09 hrs HW=19.92' TW=19.26' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.71 cfs @ 2.52 fps)

Pond MH6: PDMH6

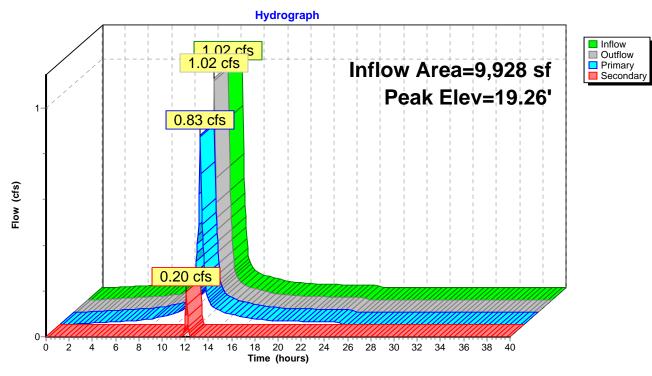
PROPOSED 12-22-17

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

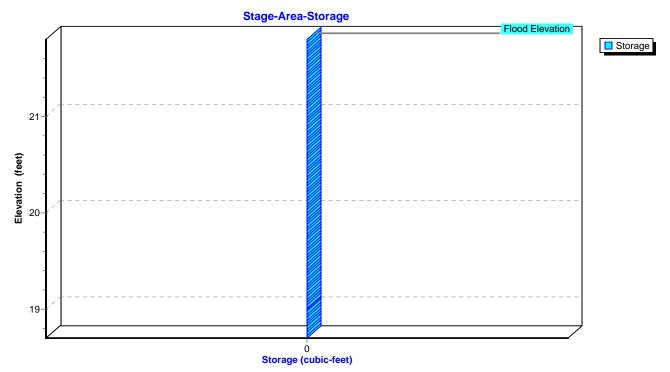
Pond MH6: PDMH6

Summary for Pond MH7: PDMH7

Inflow Area =	9,928 sf,100.00% Impervious,	Inflow Depth = 4.46" for 10-yr event
Inflow =	1.02 cfs @ 12.09 hrs, Volume=	3,693 cf
Outflow =	1.02 cfs @ 12.09 hrs, Volume=	3,693 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.83 cfs @ 12.09 hrs, Volume=	3,537 cf
Secondary =	0.20 cfs @ 12.09 hrs, Volume=	156 cf


Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.26' @ 12.09 hrs Flood Elev= 21.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	18.70'	12.0" Round Culvert
			L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.70' / 18.60' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Secondary	18.70'	12.0" Round Culvert
			L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.70' / 18.20' S= 0.0500 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#3	Device 2	19.00'	0.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)


Primary OutFlow Max=0.81 cfs @ 12.09 hrs HW=19.26' TW=18.97' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 0.81 cfs @ 2.60 fps)

Secondary OutFlow Max=0.19 cfs @ 12.09 hrs HW=19.26' TW=18.88' (Dynamic Tailwater) **2=Culvert** (Passes 0.19 cfs of 0.90 cfs potential flow) **3=Sharp-Crested Rectangular Weir** (Weir Controls 0.19 cfs @ 1.65 fps)

Pond MH7: PDMH7

Pond MH7: PDMH7

Summary for Pond MH8: PDMH8

 Inflow Area =
 14,215 sf,100.00% Impervious, Inflow Depth = 4.46" for 10-yr event

 Inflow =
 1.46 cfs @ 12.09 hrs, Volume=
 5,288 cf

 Outflow =
 1.46 cfs @ 12.09 hrs, Volume=
 5,288 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.46 cfs @ 12.09 hrs, Volume=
 5,288 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.90' @ 12.09 hrs Flood Elev= 22.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	18.10'	12.0" Round Culvert
			L= 9.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.10' / 18.00' S= 0.0111 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.42 cfs @ 12.09 hrs HW=18.88' TW=16.88' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.42 cfs @ 2.98 fps)

Pond MH8: PDMH8

PROPOSED 12-22-17TyPrepared by Lynnfield Engineering Inc.TyHydroCAD® 10.00-18s/n 06609© 2016 HydroCAD Software Solutions LLC

Stage-Area-Storage Flood Elevation () Storage () geo () ge

> 0 Storage (cubic-feet)

Pond MH8: PDMH8

Summary for Pond RG1: Rain Garden #1

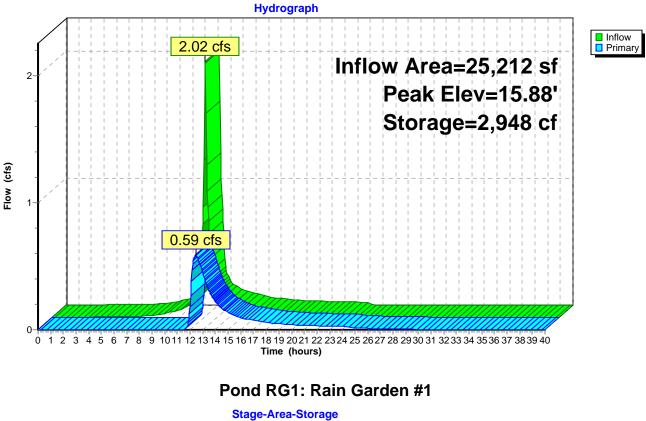
Inflow Area	ι =	25,212 sf, 56.56% Impervious, Inflow Depth = 3.15" for 10-yr even	nt
Inflow	=	2.02 cfs @ 12.09 hrs, Volume= 6,621 cf	
Outflow	=	0.59 cfs @ 12.44 hrs, Volume= 5,640 cf, Atten= 71%, Lag= 3	20.8 min
Primary	=	0.59 cfs @ 12.44 hrs, Volume= 5,640 cf	

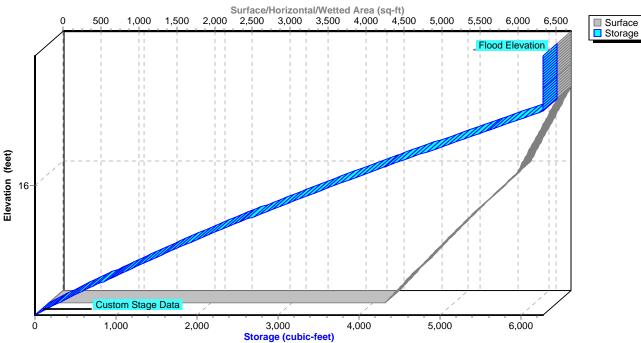
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.88' @ 12.44 hrs Surf.Area= 5,843 sf Storage= 2,948 cf Flood Elev= 16.70' Surf.Area= 6,703 sf Storage= 6,272 cf

Plug-Flow detention time= 187.7 min calculated for 5,640 cf (85% of inflow) Center-of-Mass det. time= 123.3 min (921.9 - 798.6)

Volume	Invert	Avail.S	torage	Storage Description	٦	
#1	15.30'	6	,272 cf	Custom Stage Dat	ta (Irregular) Listed	below (Recalc)
Elevatio	et)	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
15.3		4,439	288.0	0	0	4,439
16.0 16.3 16.4	30	6,173 6,569 6,703	327.0 334.0 337.0	3,698 1,911 664	3,698 5,609 6,272	6,360 6,741 6,905
Device	Routing	Inve	rt Outle	et Devices		
#1	Primary	L		Round Culvert X 2 5.0' CPP, mitered t / Outlet Invert= 15.3 .013 Corrugated PE	to conform to fill, K 35' / 15.00' S= 0.00	054 '/' Cc= 0.900
#2 #3 #4	Device 1 Device 1 Device 1	15.50 15.80 16.10)' 4.0")' 4.0")' 24.0	Vert. Orifice/Grate Vert. Orifice/Grate " x 24.0" Horiz. Orifited to weir flow at low	X 3.00 C= 0.600 C= 0.600 fice/Grate C= 0.60	

Primary OutFlow Max=0.59 cfs @ 12.44 hrs HW=15.88' TW=0.00' (Dynamic Tailwater)


-1=Culvert (Passes 0.59 cfs of 1.09 cfs potential flow)


2=Orifice/Grate (Orifice Controls 0.58 cfs @ 2.20 fps)

-3=Orifice/Grate (Orifice Controls 0.01 cfs @ 0.93 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond RG1: Rain Garden #1

Summary for Pond RG2: Rain Garden #2

[80] Warning: Exceeded Pond CB3 by 0.22' @ 24.45 hrs (0.11 cfs 1,130 cf)

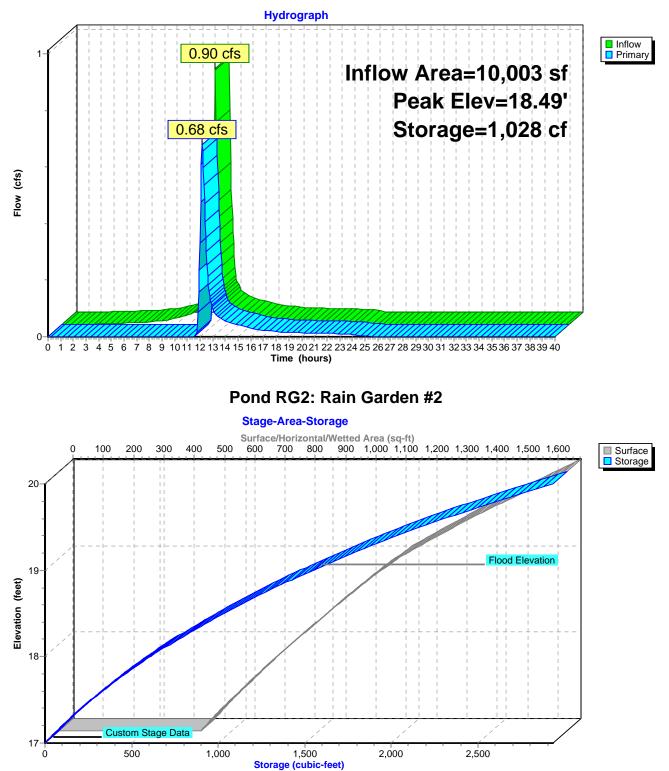
Inflow Area	=	10,003 sf, 68.81% Impervious, Inflow Depth = 3.67" for 10-yr event	
Inflow	=	0.90 cfs @ 12.09 hrs, Volume= 3,063 cf	
Outflow	=	0.68 cfs @ 12.16 hrs, Volume= 2,373 cf, Atten= 25%, Lag= 4.6	min
Primary	=	0.68 cfs @ 12.16 hrs, Volume= 2,373 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.49' @ 12.16 hrs Surf.Area= 931 sf Storage= 1,028 cf Flood Elev= 19.00' Surf.Area= 1,118 sf Storage= 1,546 cf

Plug-Flow detention time= 157.8 min calculated for 2,373 cf (77% of inflow) Center-of-Mass det. time= 75.9 min (855.7 - 779.8)

Volume	Inve	ert Avai	I.Storage	Storage Description	on	
#1	17.0)0'	2,934 cf	f Custom Stage Data (Irregular)Listed below (Recalc)		
Elevatio		Surf.Area Pe (sq-ft) (t		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
17.0	00	468	89.0	0	0	468
18.0	00	765	108.0	610	610	782
19.0	00	1,118	127.0	936	1,546	1,156
20.0	00	1,676	152.0	1,388	2,934	1,728
Device	Routing	In	vert Outle	et Devices		
#1	Primary	16	.50' 12.0	" Round Culvert	K 2.00	
	-		Inlet		50' / 15.80' S= 0.	0132 '/' Cc= 0.900
40	Davias 1	4.0				Flow Area= 0.79 sf
#2	Device 1			.0" Vert. Orifice/Grate X 3.00 C= 0.600 .0" Vert. Orifice/Grate C= 0.600		
#3 #4	Device 1 Device 1			" x 24.0" Horiz. Or		600
#4	Device I	10	-	ted to weir flow at lo		000

Primary OutFlow Max=0.67 cfs @ 12.16 hrs HW=18.49' TW=16.31' (Dynamic Tailwater)


-1=Culvert (Passes 0.67 cfs of 8.14 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.59 cfs @ 2.27 fps)

-3=Orifice/Grate (Orifice Controls 0.08 cfs @ 1.48 fps)

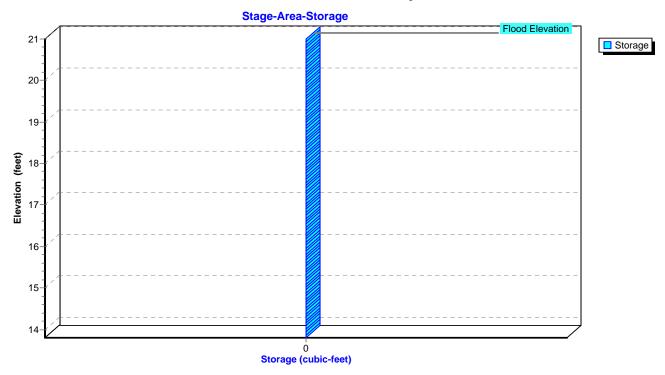
-4=Orifice/Grate (Controls 0.00 cfs)

Pond RG2: Rain Garden #2

Summary for Pond WQU1: Water Quality Unit 1

Inflow Area =22,134 sf, 85.50% Impervious, Inflow Depth =3.48" for 10-yr eventInflow =1.46 cfs @12.10 hrs, Volume=6,424 cfOutflow =1.46 cfs @12.10 hrs, Volume=6,424 cfPrimary =1.46 cfs @12.10 hrs, Volume=6,424 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 14.71' @ 12.13 hrs Flood Elev= 21.00'


#1 Primary 13.80' 12.0" Round Culvert L= 9.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 13.80' / 13.70' S= 0.0111 '/' Cc= 0.900	Device	Routing	Invert	Outlet Devices
n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		U	13.80'	L= 9.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 13.80' / 13.70' S= 0.0111 '/' Cc= 0.900

Primary OutFlow Max=1.24 cfs @ 12.10 hrs HW=14.69' TW=14.49' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.24 cfs @ 1.69 fps)

(9) OF CONTRACT OF A STREET OF

Pond WQU1: Water Quality Unit 1

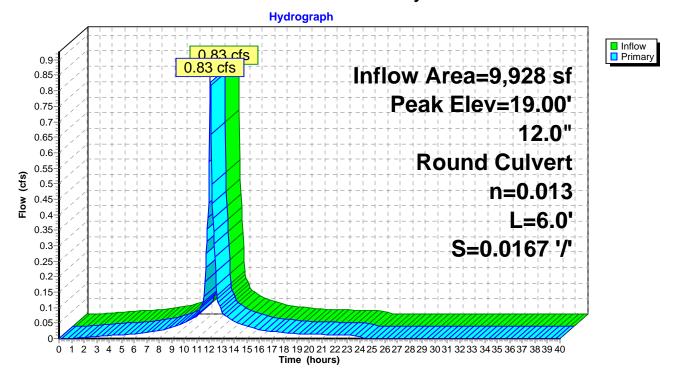
PROPOSED 12-22-17

Pond WQU1: Water Quality Unit 1

Summary for Pond WQU2: Water Quality Unit 2

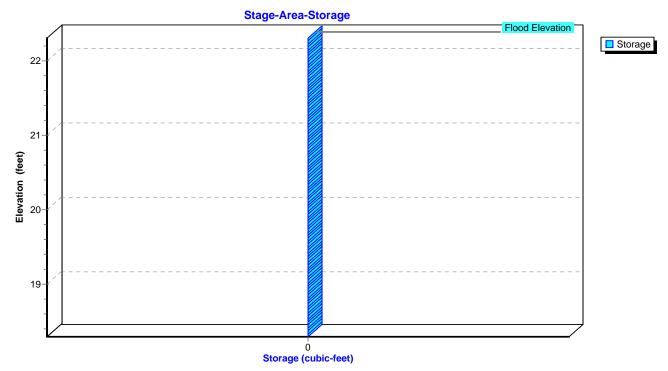
 Inflow Area =
 9,928 sf,100.00% Impervious, Inflow Depth =
 4.27" for 10-yr event

 Inflow =
 0.83 cfs @
 12.09 hrs, Volume=
 3,537 cf


 Outflow =
 0.83 cfs @
 12.09 hrs, Volume=
 3,537 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.83 cfs @
 12.09 hrs, Volume=
 3,537 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.00' @ 12.12 hrs Flood Elev= 22.30'


Device	Routing	Invert	Outlet Devices
#1	Primary	18.30'	12.0" Round Culvert
			L= 6.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 18.30' / 18.20' S= 0.0167 '/' Cc= 0.900
			n = 0.013 Corrugated PE, smooth interior, Flow Area = 0.79 sf

Primary OutFlow Max=0.61 cfs @ 12.09 hrs HW=18.97' TW=18.88' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.61 cfs @ 1.10 fps)

Pond WQU2: Water Quality Unit 2

PROPOSED 12-22-17

Pond WQU2: Water Quality Unit 2

Proposed Conditions Analysis 25-Year 24-Hour Storm Event

PROPOSED 12-22-17 Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 Hydrod	Type III 24-hr 25-yr Rainfall=5.80" Printed 12/22/2017 CAD Software Solutions LLC Page 133
Runoff by SCS TR-	40.00 hrs, dt=0.05 hrs, 801 points 20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment 100: 100 - Pavement, Lawn,	Runoff Area=20,037 sf 45.35% Impervious Runoff Depth=3.80" Tc=6.0 min CN=82 Runoff=1.99 cfs 6,351 cf
Subcatchment 101: 101 - West Side Lawn t	• Runoff Area=271 sf 0.00% Impervious Runoff Depth=3.02" Tc=6.0 min CN=74 Runoff=0.02 cfs 68 cf
Subcatchment 102: 102 - Existing Building	Runoff Area=5,175 sf 100.00% Impervious Runoff Depth=5.56" Tc=6.0 min CN=98 Runoff=0.66 cfs 2,399 cf
Subcatchment 200: 200 - Portion of	Runoff Area=2,107 sf 100.00% Impervious Runoff Depth=5.56" Tc=6.0 min CN=98 Runoff=0.27 cfs 977 cf
Subcatchment 201: 201 - Pavement	Runoff Area=2,187 sf 95.93% Impervious Runoff Depth=5.44" Tc=6.0 min CN=97 Runoff=0.28 cfs 992 cf
Subcatchment 202: 202 - Pavement	Runoff Area=1,651 sf 100.00% Impervious Runoff Depth=5.56" Tc=6.0 min CN=98 Runoff=0.21 cfs 765 cf
Subcatchment 203: 203 - Pavement	Runoff Area=5,013 sf 96.69% Impervious Runoff Depth=5.44" Tc=6.0 min CN=97 Runoff=0.64 cfs 2,275 cf
Subcatchment 204: 204 - Pavement	Runoff Area=4,813 sf 100.00% Impervious Runoff Depth=5.56" Tc=6.0 min CN=98 Runoff=0.61 cfs 2,231 cf
Subcatchment 205: 205 - Pavement	Runoff Area=3,480 sf 100.00% Impervious Runoff Depth=5.56" Tc=6.0 min CN=98 Runoff=0.44 cfs 1,613 cf
Subcatchment 206: 206 - Pavement	Runoff Area=5,141 sf 100.00% Impervious Runoff Depth=5.56" Tc=6.0 min CN=98 Runoff=0.65 cfs 2,383 cf
Subcatchment 207: 207 - Pavement	Runoff Area=2,680 sf 100.00% Impervious Runoff Depth=5.56" Tc=6.0 min CN=98 Runoff=0.34 cfs 1,242 cf
Subcatchment 208: 208 - Proposed	Runoff Area=4,287 sf 100.00% Impervious Runoff Depth=5.56" Tc=6.0 min CN=98 Runoff=0.55 cfs 1,987 cf
Subcatchment 209: 209 - Portion of	Runoff Area=4,990 sf 40.80% Impervious Runoff Depth=4.01" Tc=6.0 min CN=84 Runoff=0.52 cfs 1,667 cf
Subcatchment 210: 210 - Existing South	Runoff Area=44,935 sf 0.00% Impervious Runoff Depth=2.21" low Length=210' Tc=10.6 min CN=65 Runoff=2.20 cfs 8,264 cf
Subcatchment 300: 300 - Lawn East to DP3	
Pond CB1: PCB1 12.0" Rour	Peak Elev=16.91' Inflow=0.28 cfs 992 cf nd Culvert n=0.013 L=21.0' S=0.0095 '/' Outflow=0.28 cfs 992 cf

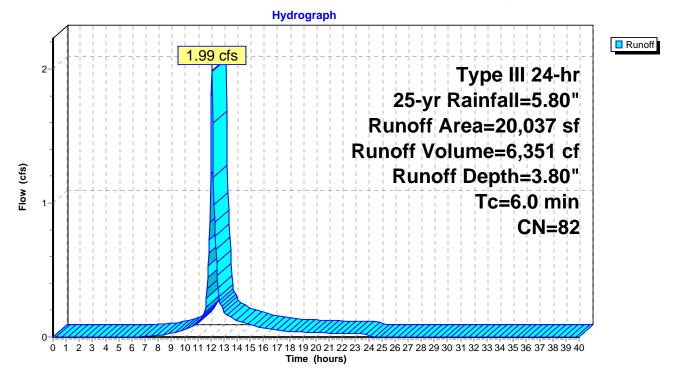
PROPOSED 12-22-17 Prepared by Lynnfield Engi HydroCAD® 10.00-18 s/n 0660		Type III 24-hr 25-yr Rainfall=5.80" Printed 12/22/2017 _C Page 134
Pond CB2: PCB2		eak Elev=16.88' Inflow=0.21 cfs 765 cf)' S=0.0095 '/' Outflow=0.21 cfs 765 cf
Pond CB3: PCB3		ak Elev=18.61' Inflow=0.64 cfs 2,275 cf S=0.0063 '/' Outflow=0.64 cfs 2,275 cf
Pond CB4: PCB4		ak Elev=15.58' Inflow=0.61 cfs 2,231 cf S=0.0085 '/' Outflow=0.61 cfs 2,231 cf
Pond CB5: PCB5		ak Elev=15.32' Inflow=0.44 cfs 1,613 cf S=0.0054 '/' Outflow=0.44 cfs 1,613 cf
Pond CB6: PCB6		ak Elev=20.40' Inflow=0.65 cfs 2,383 cf S=0.0051 '/' Outflow=0.65 cfs 2,383 cf
Pond CB7: PCB7		ak Elev=19.38' Inflow=0.34 cfs 1,242 cf S=0.0091 '/' Outflow=0.34 cfs 1,242 cf
Pond DP1: Design Pont #1_7	18" RCP Culvert - Northwest	Inflow=0.82 cfs 7,837 cf Primary=0.82 cfs 7,837 cf
Pond DP2: Design Pont #2_V	Wetland-South	Inflow=4.48 cfs 17,126 cf Primary=4.48 cfs 17,126 cf
Pond DP3: Design Pont #3_/	Abutting Lot-East	Inflow=0.15 cfs 483 cf Primary=0.15 cfs 483 cf
Pond IS: Infiltration System		orage=1,750 cf Inflow=1.81 cfs 6,589 cf 0.01 cfs 9 cf Outflow=0.29 cfs 6,592 cf
Pond MH1: PDMH1		ak Elev=16.74' Inflow=0.49 cfs 1,758 cf S=0.0059 '/' Outflow=0.49 cfs 1,758 cf
Pond MH2: PDMH2	Pea 12.0" Round Culvert n=0.013 L=115.0'	ak Elev=16.48' Inflow=1.44 cfs 5,010 cf S=0.0052 '/' Outflow=1.44 cfs 5,010 cf
Pond MH3: PDMH3	Pea 12.0" Round Culvert n=0.013 L=138.0'	ak Elev=15.81' Inflow=1.44 cfs 5,010 cf S=0.0051 '/' Outflow=1.44 cfs 5,010 cf
Pond MH4: PDMH4	Pea Primary=1.89 cfs_8,094 cf_Secondary=0.6	ak Elev=15.25' Inflow=2.45 cfs 8,853 cf 4 cfs 759 cf Outflow=2.45 cfs 8,853 cf
Pond MH5: PDMH5		ak Elev=14.77' Inflow=2.45 cfs 8,853 cf S=0.0087 '/' Outflow=2.45 cfs 8,853 cf
Pond MH6: PDMH6	Pea 12.0" Round Culvert n=0.013 L=120.0'	ak Elev=19.99' Inflow=0.92 cfs 3,360 cf S=0.0050 '/' Outflow=0.92 cfs 3,360 cf
Pond MH7: PDMH7	Pea Primary=1.00 cfs 4,346 cf Secondary=0.2	ak Elev=19.33' Inflow=1.26 cfs 4,602 cf 7 cfs 256 cf Outflow=1.26 cfs 4,602 cf
Pond MH8: PDMH8		ak Elev=19.01' Inflow=1.81 cfs 6,589 cf

Peak Elev=19.01' Inflow=1.81 cfs 6,589 cf 12.0" Round Culvert n=0.013 L=9.0' S=0.0111 '/' Outflow=1.81 cfs 6,589 cf

PROPOSED 12-22-17

Type III 24-hr 25-yr Rainfall=5.80" Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC Printed 12/22/2017 Page 135

Pond RG1: Rain Garden #1	Peak Elev=16.00' Storage=3,714 cf Inflow=2.65 cfs 8,750 cf Outflow=0.82 cfs 7,768 cf
Pond RG2: Rain Garden #2	Peak Elev=18.54' Storage=1,076 cf Inflow=1.15 cfs 3,942 cf Outflow=1.03 cfs 3,252 cf
Pond WQU1: Water Quality Unit 1	Peak Elev=15.06' Inflow=1.89 cfs 8,094 cf
12.0" Round C	Culvert n=0.013 L=9.0' S=0.0111 '/' Outflow=1.89 cfs 8,094 cf
Pond WQU2: Water Quality Unit 2	Peak Elev=19.12' Inflow=1.00 cfs 4,346 cf
12.0" Round C	Culvert n=0.013 L=6.0' S=0.0167 '/' Outflow=1.00 cfs 4,346 cf

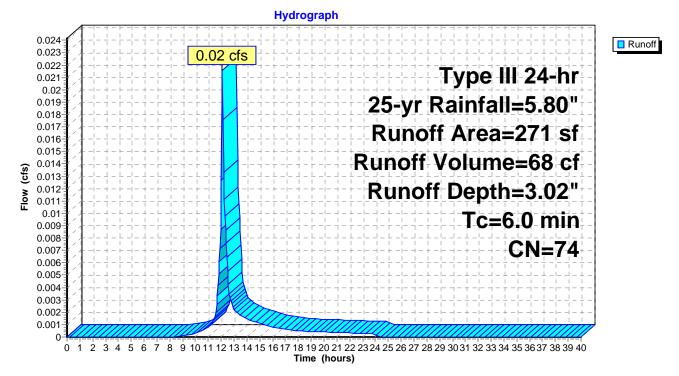

Summary for Subcatchment 100: 100 - Pavement, Lawn, and Direct Entry to Rain Garden

Runoff = 1.99 cfs @ 12.09 hrs, Volume= 6,351 cf, Depth= 3.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

	Area (sf) CN	D	Description					
	4,7	78 74	>	75% Gras	s cover, Go	od, HSG C			
*	6,1	73 65	R	ain Garde	n surface a	rea			
	9,0	86 98	P	aved park	ing, HSG C				
	20,0	37 82	82 Weighted Average						
	10,9	51	54.65% Pervious Area						
	9,0	86	4	5.35% Imp	pervious Ar	a			
	Tc Ler	0	ope	Velocity	Capacity	Description			
((min) (fe	eet) (f	t/ft)	(ft/sec)	(cfs)				
	6.0					Direct Entry,			

Subcatchment 100: 100 - Pavement, Lawn, and Direct Entry to Rain Garden

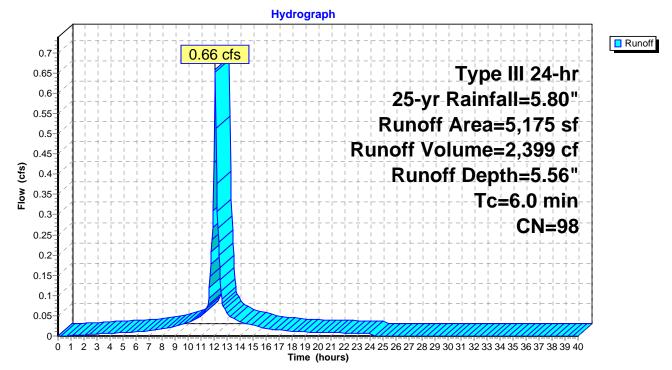

Summary for Subcatchment 101: 101 - West Side Lawn to DP1

Runoff = 0.02 cfs @ 12.09 hrs, Volume= 68 cf, Depth= 3.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

Area (sf)	CN	CN Description						
271	74	74 >75% Grass cover, Good, HSG C						
271		100.00% Pervious Area						
Tc Length (min) (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
6.0				Direct Entry,				

Subcatchment 101: 101 - West Side Lawn to DP1

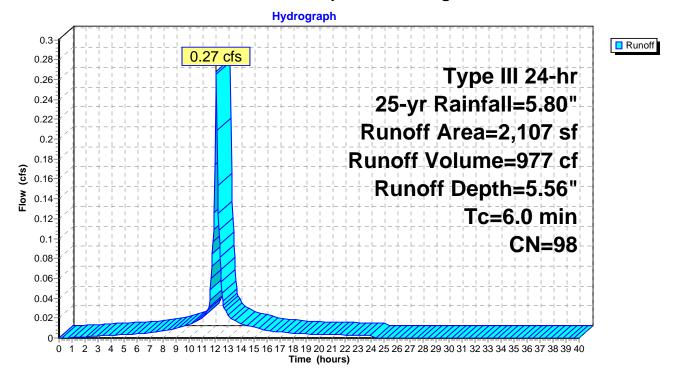

Summary for Subcatchment 102: 102 - Existing Building

Runoff = 0.66 cfs @ 12.09 hrs, Volume= 2,399 cf, Depth= 5.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

Area (sf	CN	Description						
* 5,175	5 98	98 Roofs, HSG C, Existing Building						
5,175	5	100.00% Impervious Area						
Tc Lengt (min) (fee			Capacity (cfs)	Description				
6.0				Direct Entry,				

Subcatchment 102: 102 - Existing Building

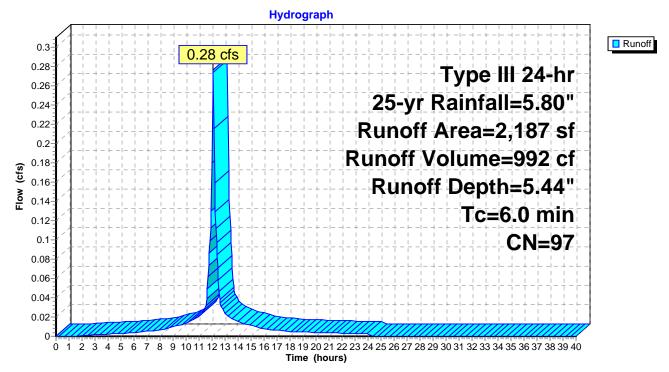

Summary for Subcatchment 200: 200 - Portion of Proposed Building Tenant A to Rain Garden #2

Runoff = 0.27 cfs @ 12.09 hrs, Volume= 977 cf, Depth= 5.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

_	A	rea (sf)	CN I	Description						
*		2,107	98 I	Roofs, HSG C, Half Prop. Building A						
		2,107		100.00% Impervious Area						
	Tc (min)	Length	Slope			Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Future				
	6.0					Direct Entry,				

Subcatchment 200: 200 - Portion of Proposed Building Tenant A to Rain Garden #2

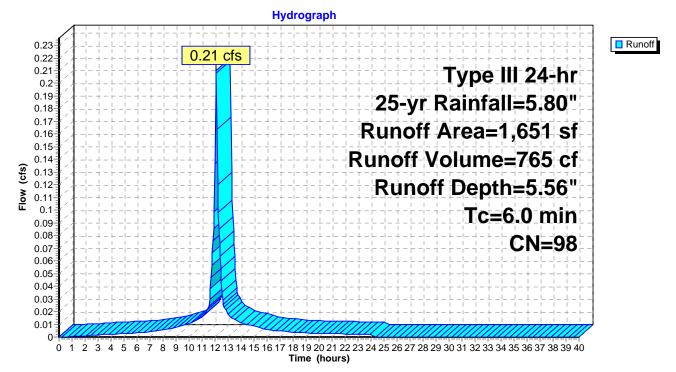

Summary for Subcatchment 201: 201 - Pavement

Runoff = 0.28 cfs @ 12.09 hrs, Volume= 992 cf, Depth= 5.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

Α	rea (sf)	CN	Description						
	2,098	98	Paved parking, HSG C						
	89	74	>75% Grass cover, Good, HSG C						
	2,187	97	Weighted Average						
	89		4.07% Pervious Area						
	2,098		95.93% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
6.0					Direct Entry,				

Subcatchment 201: 201 - Pavement

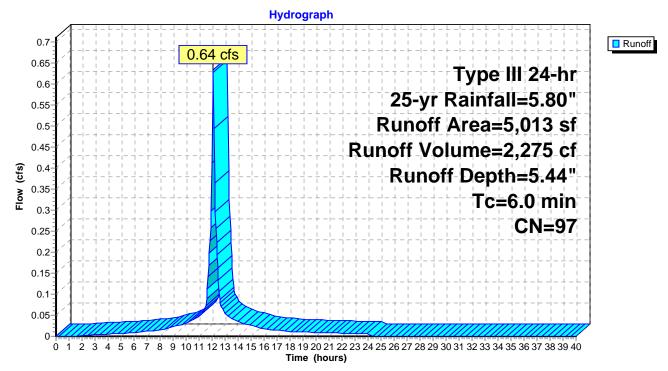

Summary for Subcatchment 202: 202 - Pavement

Runoff = 0.21 cfs @ 12.09 hrs, Volume= 765 cf, Depth= 5.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

A	rea (sf)	CN	N Description						
	1,651	98	98 Paved parking, HSG C						
	1,651		100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description				
6.0					Direct Entry,				

Subcatchment 202: 202 - Pavement

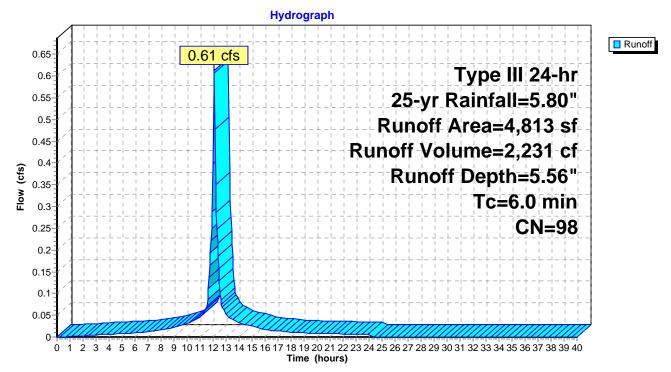

Summary for Subcatchment 203: 203 - Pavement

Runoff = 0.64 cfs @ 12.09 hrs, Volume= 2,275 cf, Depth= 5.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

A	rea (sf)	CN	Description						
	4,847	98	Paved park	ing, HSG C					
	166	74	>75% Grass cover, Good, HSG C						
	5,013		Weighted Average						
	166		3.31% Perv						
	4,847		96.69% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
6.0					Direct Entry,				

Subcatchment 203: 203 - Pavement

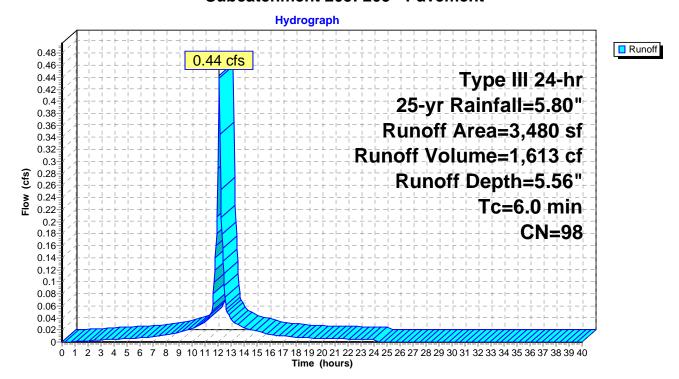

Summary for Subcatchment 204: 204 - Pavement

Runoff = 0.61 cfs @ 12.09 hrs, Volume= 2,231 cf, Depth= 5.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

A	rea (sf)	CN	CN Description					
	4,813	98	98 Paved parking, HSG C					
	4,813	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 204: 204 - Pavement

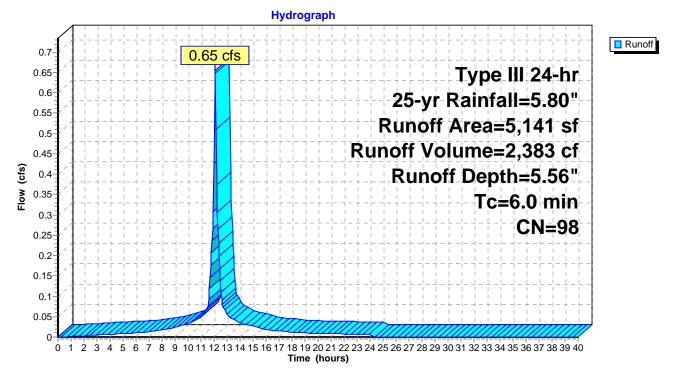


Summary for Subcatchment 205: 205 - Pavement

Runoff = 0.44 cfs @ 12.09 hrs, Volume= 1,613 cf, Depth= 5.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

A	rea (sf)	CN	Description							
	3,480	98	98 Paved parking, HSG C							
	3,480	3,480 100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description					
6.0	(1001)	(1011)	(10000)	(010)	Direct Entry,					
Subcatchment 205: 205 - Pavement										

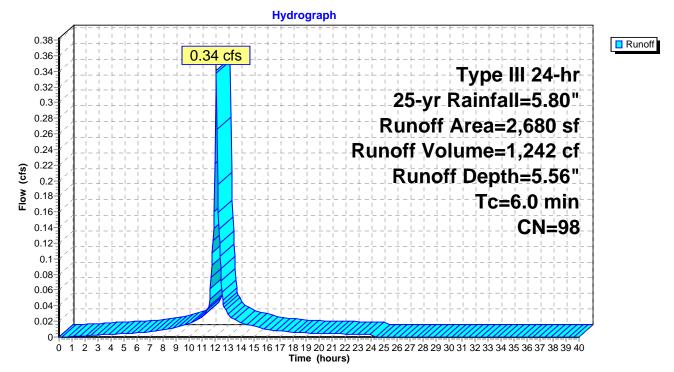

Summary for Subcatchment 206: 206 - Pavement

Runoff = 0.65 cfs @ 12.09 hrs, Volume= 2,383 cf, Depth= 5.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

A	rea (sf)	CN	Description						
	5,141	98	98 Paved parking, HSG C						
	5,141	141 100.00% Impervious Area							
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description				
6.0			, (,	()	Direct Entry,				

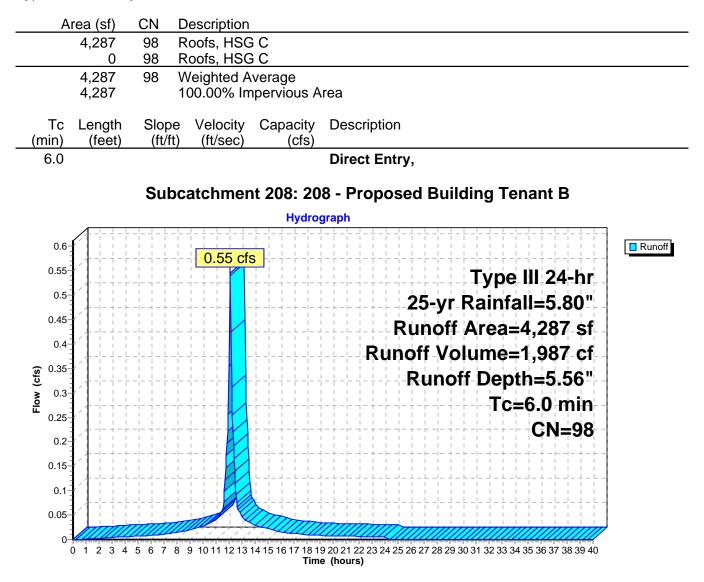
Subcatchment 206: 206 - Pavement


Summary for Subcatchment 207: 207 - Pavement

Runoff = 0.34 cfs @ 12.09 hrs, Volume= 1,242 cf, Depth= 5.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

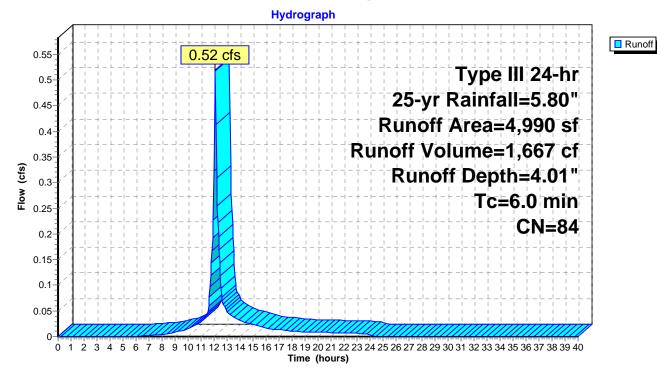
A	rea (sf)	CN	Description						
	2,680	98	98 Paved parking, HSG C						
	2,680	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description				
6.0					Direct Entry,				


Subcatchment 207: 207 - Pavement

Summary for Subcatchment 208: 208 - Proposed Building Tenant B

Runoff = 0.55 cfs @ 12.09 hrs, Volume= 1,987 cf, Depth= 5.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

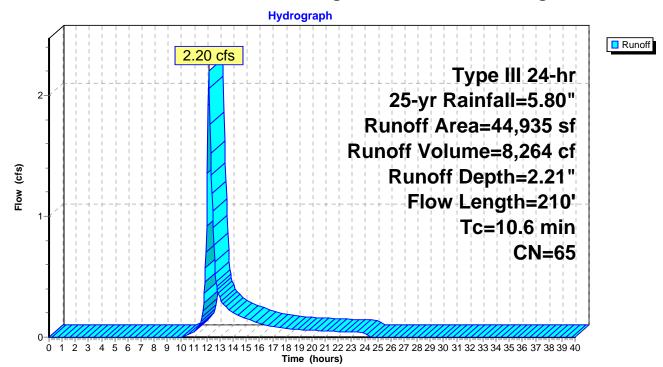

mary for Subcatchment 209: 209 - Portion of Proposed Building Tentant A, Rain Garden #2, Lawn, and V

Runoff = 0.52 cfs @ 12.09 hrs, Volume= 1,667 cf, Depth= 4.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

	A	rea (sf)	CN	Description								
*		876	65	Rain Garden Surface Area								
		2,078	79	50-75% Grass cover, Fair, HSG C								
		84	98	Unconnecte	Jnconnected pavement, HSG C							
		1,952	98	Unconnected roofs, HSG C								
		4,990	4,990 84 Weighted Average									
		2,954		59.20% Pervious Area								
		2,036		40.80% Impervious Area								
		2,036										
(n	Tc nin)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description						
	6.0					Direct Entry,						

Subcatchment 209: 209 - Portion of Proposed Building Tentant A, Rain Garden #2, Lawn, and Walkwa

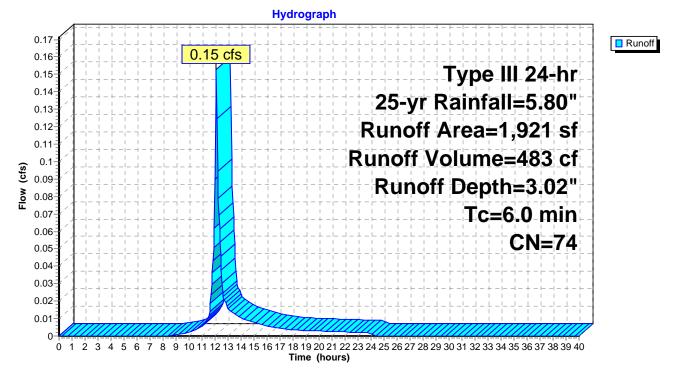

Summary for Subcatchment 210: 210 - Existing South features remaining to DP2

Runoff = 2.20 cfs @ 12.16 hrs, Volume= 8,264 cf, Depth= 2.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

_	A	rea (sf)	CN [Description						
		35,498	65 E	Brush, Goo	d, HSG C					
*		9,437	65 E	Brush, Good, HSG C, Wetland Brush						
		44,935 65 Weighted Average								
44,935 100.00% Pervious Area										
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	9.2	100	0.0600	0.18		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.22"				
	1.4	110	0.0360	1.33		Shallow Concentrated Flow,				
						Short Grass Pasture Kv= 7.0 fps				
	10.6	210	Total							

Subcatchment 210: 210 - Existing South features remaining to DP2

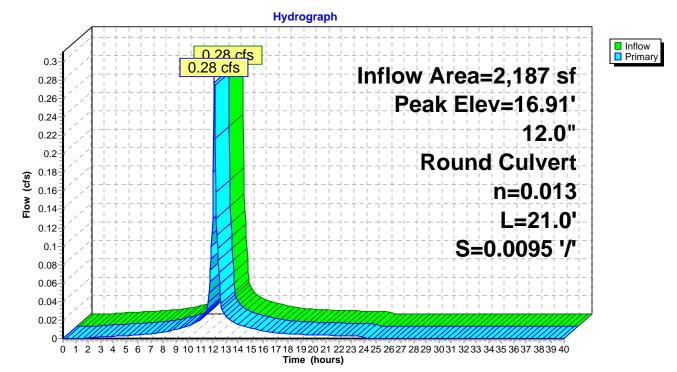

Summary for Subcatchment 300: 300 - Lawn East to DP3

Runoff = 0.15 cfs @ 12.09 hrs, Volume= 483 cf, Depth= 3.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25-yr Rainfall=5.80"

Ar	ea (sf)	CN	Description			
	1,921	74	>75% Gras	s cover, Go	ood, HSG C	
	1,921		100.00% P	ervious Are	а	
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description	
6.0					Direct Entry,	

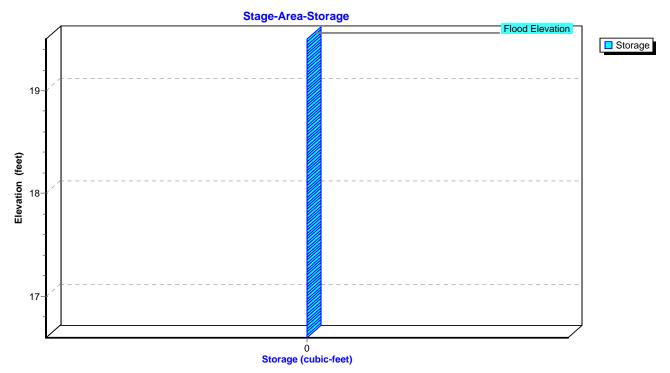
Subcatchment 300: 300 - Lawn East to DP3


Summary for Pond CB1: PCB1

Inflow Area =	2,187 sf, 95.93% Impervious,	Inflow Depth = 5.44" for 25-yr event
Inflow =	0.28 cfs @ 12.09 hrs, Volume=	992 cf
Outflow =	0.28 cfs @ 12.09 hrs, Volume=	992 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.28 cfs @ 12.09 hrs, Volume=	992 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.91' @ 12.11 hrs Flood Elev= 19.50'

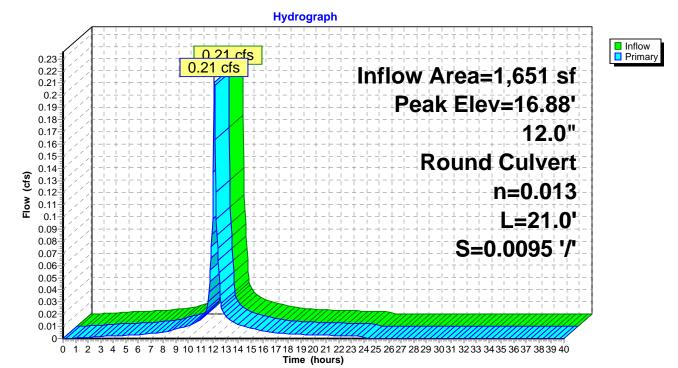
#1 Primary 16.60' 12.0" Round Culvert	
L= 21.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 16.60' / 16.40' S= 0.0095 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	


Primary OutFlow Max=0.24 cfs @ 12.09 hrs HW=16.90' TW=16.73' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.24 cfs @ 1.79 fps)

Pond CB1: PCB1

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

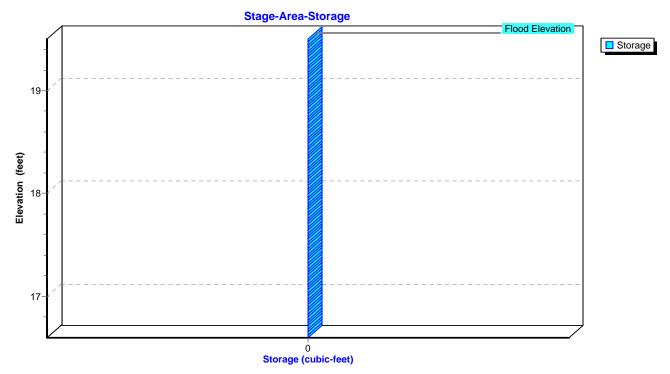
Pond CB1: PCB1


Summary for Pond CB2: PCB2

Inflow Area =1,651 sf,100.00% Impervious, Inflow Depth =5.56" for 25-yr eventInflow =0.21 cfs @12.09 hrs, Volume=765 cfOutflow =0.21 cfs @12.09 hrs, Volume=765 cf, Atten= 0%, Lag= 0.0 minPrimary =0.21 cfs @12.09 hrs, Volume=765 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.88' @ 12.11 hrs Flood Elev= 19.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	16.60'	12.0" Round Culvert L= 21.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $16.60' / 16.40'$ S= $0.0095 '/$ ' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.18 cfs @ 12.09 hrs HW=16.87' TW=16.73' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.18 cfs @ 1.56 fps)

Pond CB2: PCB2

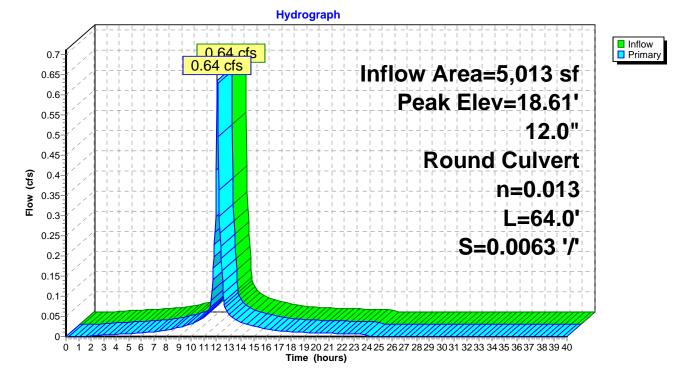
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB2: PCB2

Summary for Pond CB3: PCB3

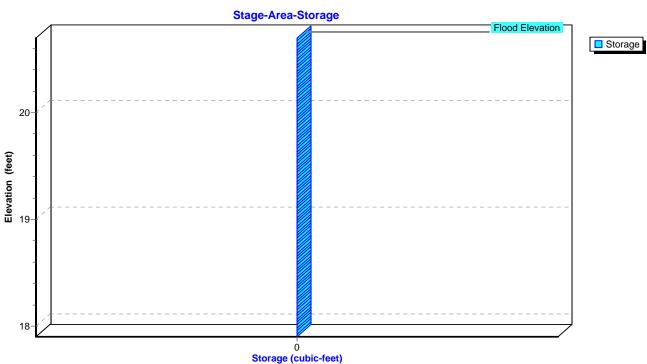
 Inflow Area =
 5,013 sf, 96.69% Impervious, Inflow Depth = 5.44" for 25-yr event

 Inflow =
 0.64 cfs @ 12.09 hrs, Volume=
 2,275 cf


 Outflow =
 0.64 cfs @ 12.09 hrs, Volume=
 2,275 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.64 cfs @ 12.09 hrs, Volume=
 2,275 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.61' @ 12.14 hrs Flood Elev= 20.70'


Device	Routing	Invert	Outlet Devices
#1	Primary	17.90'	12.0" Round Culvert
			L= 64.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 17.90' / 17.50' S= 0.0063 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.45 cfs @ 12.09 hrs HW=18.59' TW=18.52' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.45 cfs @ 1.10 fps)

Pond CB3: PCB3

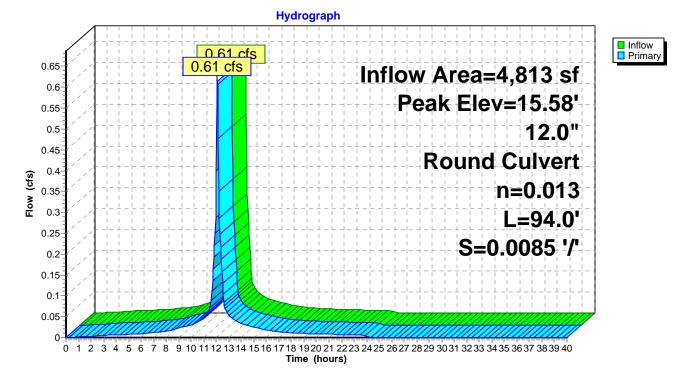
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB3: PCB3

Summary for Pond CB4: PCB4

 Inflow Area =
 4,813 sf,100.00% Impervious, Inflow Depth = 5.56" for 25-yr event

 Inflow =
 0.61 cfs @ 12.09 hrs, Volume=
 2,231 cf


 Outflow =
 0.61 cfs @ 12.09 hrs, Volume=
 2,231 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.61 cfs @ 12.09 hrs, Volume=
 2,231 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.58' @ 12.10 hrs Flood Elev= 17.80'

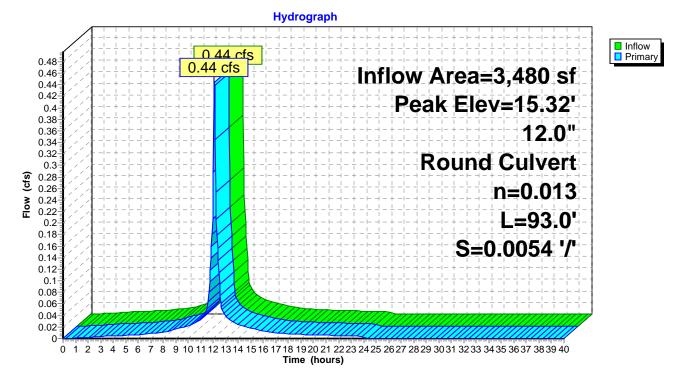
Device	Routing	Invert	Outlet Devices
	Primary	15.10'	12.0" Round Culvert L= 94.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 15.10' / 14.30' S= 0.0085 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.54 cfs @ 12.09 hrs HW=15.57' TW=15.10' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.54 cfs @ 2.21 fps)

Pond CB4: PCB4

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

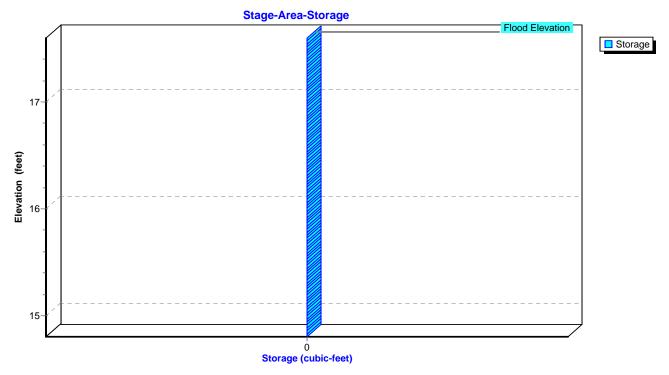
Pond CB4: PCB4


Summary for Pond CB5: PCB5

Inflow Area = 3,480 sf,100.00% Impervious, Inflow Depth = 5.56" for 25-yr event Inflow 0.44 cfs @ 12.09 hrs. Volume= 1.613 cf = 12.09 hrs, Volume= Outflow 0.44 cfs @ 1,613 cf, Atten= 0%, Lag= 0.0 min = Primary 0.44 cfs @ 12.09 hrs, Volume= = 1.613 cf

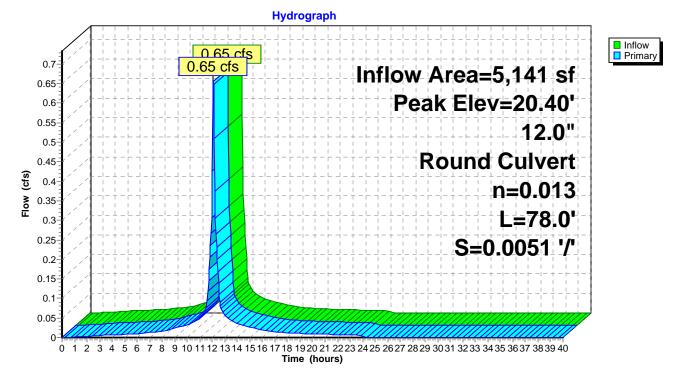
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.32' @ 12.19 hrs Flood Elev= 17.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	14.80'	12.0" Round Culvert L= 93.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 14.80' / 14.30' S= 0.0054 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.34 cfs @ 12.09 hrs HW=15.27' TW=15.10' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.34 cfs @ 1.36 fps)

Pond CB5: PCB5

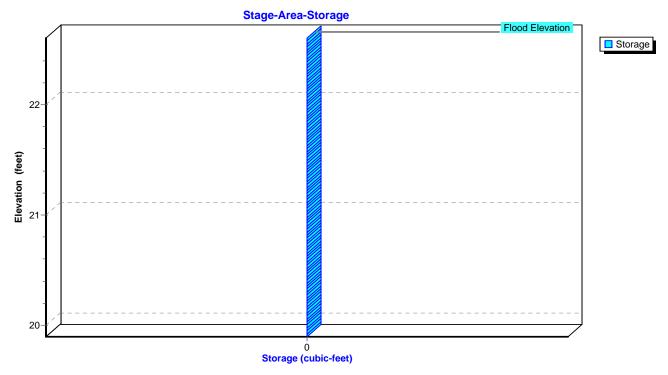
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC


Summary for Pond CB6: PCB6

Inflow Area = 5,141 sf,100.00% Impervious, Inflow Depth = 5.56" for 25-yr event Inflow 0.65 cfs @ 12.09 hrs. Volume= 2.383 cf = Outflow 12.09 hrs, Volume= 0.65 cfs @ 2,383 cf, Atten= 0%, Lag= 0.0 min = 0.65 cfs @ 12.09 hrs, Volume= Primary = 2,383 cf

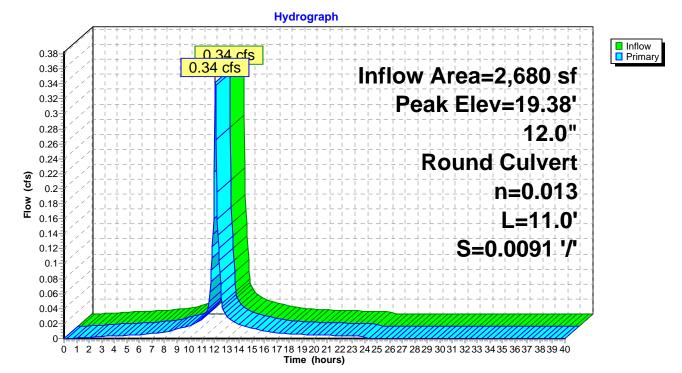
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 20.40' @ 12.10 hrs Flood Elev= 22.60'

	Device	Routing	Invert	Outlet Devices
#1 Primary 19.90' 12.0" Round Culvert L= 78.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 19.90' / 19.50' S= 0.0051 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		U	19.90'	L= 78.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 19.90' / 19.50' S= 0.0051 '/' Cc= 0.900


Primary OutFlow Max=0.60 cfs @ 12.09 hrs HW=20.39' TW=19.98' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.60 cfs @ 2.27 fps)

Pond CB6: PCB6

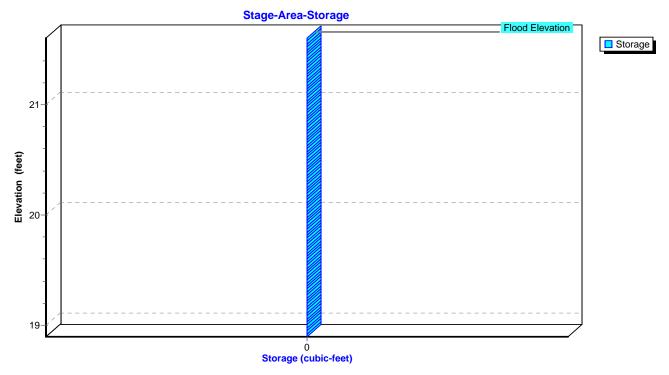
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC


Summary for Pond CB7: PCB7

Inflow Area =	2,680 sf,100.00% Impervious,	Inflow Depth = 5.56" for 25-yr event
Inflow =	0.34 cfs @ 12.09 hrs, Volume=	1,242 cf
Outflow =	0.34 cfs @ 12.09 hrs, Volume=	1,242 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.34 cfs @ 12.09 hrs, Volume=	1,242 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.38' @ 12.12 hrs Flood Elev= 21.60'

#1 Primary 18.90' 12.0" Round Culvert L= 11.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 18.90' / 18.80' S= 0.0091 '/' Cc= 0.900	Device	Routing	Invert	Outlet Devices
n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		U	18.90'	L= 11.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 18.90' / 18.80' S= 0.0091 '/' Cc= 0.900


Primary OutFlow Max=0.22 cfs @ 12.09 hrs HW=19.35' TW=19.32' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.22 cfs @ 0.94 fps)

Pond CB7: PCB7

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB7: PCB7

Summary for Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

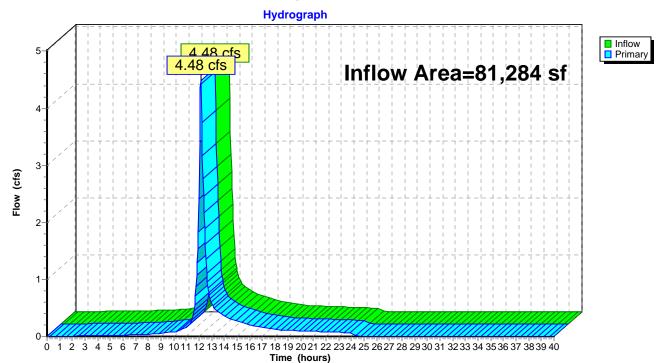
[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	25,483 sf, 55.96% Impervious, Inflow	v Depth > 3.69" for 25-yr event
Inflow	=	0.82 cfs @ 12.41 hrs, Volume=	7,837 cf
Primary	=	0.82 cfs @ 12.41 hrs, Volume=	7,837 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs

Hydrograph Inflow Primary 0.82 cfs 0.82 cfs 0.9 Inflow Area=25,483 sf 0.85 0.8 0.75 0.7 0.65 0.6 0.55 Flow (cfs) 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Time (hours)

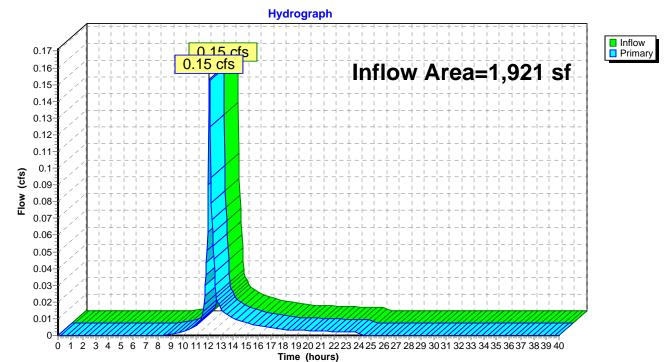

Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

Summary for Pond DP2: Design Pont #2_Wetland-South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	81,284 sf, 40.77% Impervious, Inflow Depth = 2.53" for 25-yr event
Inflow	=	4.48 cfs @ 12.13 hrs, Volume= 17,126 cf
Primary	=	4.48 cfs @ 12.13 hrs, Volume= 17,126 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs


Pond DP2: Design Pont #2_Wetland-South

Summary for Pond DP3: Design Pont #3_Abutting Lot-East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	1,921 sf,	0.00% Impervious,	Inflow Depth = 3.02"	for 25-yr event
Inflow	=	0.15 cfs @ 1	2.09 hrs, Volume=	483 cf	
Primary	=	0.15 cfs @ 1	2.09 hrs, Volume=	483 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs

Pond DP3: Design Pont #3_Abutting Lot-East

Summary for Pond IS: Infiltration System

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=2)

Inflow Area =	14,215 sf,100.00% Impervious,	Inflow Depth = 5.56" for 25-yr event
Inflow =	1.81 cfs @ 12.09 hrs, Volume=	6,589 cf
Outflow =	0.29 cfs @ 12.56 hrs, Volume=	6,592 cf, Atten= 84%, Lag= 28.5 min
Discarded =	0.28 cfs @ 11.70 hrs, Volume=	6,584 cf
Primary =	0.01 cfs @ 12.56 hrs, Volume=	9 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 17.96' @ 12.56 hrs Surf.Area= 1,463 sf Storage= 1,750 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 33.8 min (779.5 - 745.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.10'	670 cf	6.28'W x 109.07'L x 3.52'H Field A
			2,416 cf Overall - 741 cf Embedded = 1,675 cf x 40.0% Voids
#2A	16.60'	741 cf	Contech ChamberMaxx x 15 Inside #1
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap
			Row Length Adjustment= +0.32' x 6.92 sf x 1 rows
#3B	16.10'	601 cf	10.98'W x 59.25'L x 3.52'H Field B
			2,294 cf Overall - 793 cf Embedded = 1,502 cf x 40.0% Voids
#4B	16.60'	793 cf	Contech ChamberMaxx x 16 Inside #3
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap
			Row Length Adjustment= +0.32' x 6.92 sf x 2 rows
#5C	16.10'	143 cf	2.54'W x 50.00'L x 3.21'H Field C
			408 cf Overall - 50 cf Embedded = 358 cf x 40.0% Voids
#6C	17.10'	39 cf	ADS N-12 12 x 2 Inside #5
			Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf
			Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf
			Row Length Adjustment= +8.00' x 0.81 sf x 1 rows
		2,986 cf	Total Available Storage

2,986 cf I otal Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard Storage Group C created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	16.10'	8.270 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	17.90'	12.0" Round Culvert
			L= 66.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 17.90' / 16.50' S= 0.0212 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.28 cfs @ 11.70 hrs HW=16.14' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.28 cfs)

Primary OutFlow Max=0.01 cfs @ 12.56 hrs HW=17.96' TW=0.00' (Dynamic Tailwater) **2=Culvert** (Inlet Controls 0.01 cfs @ 0.65 fps)

Pond IS: Infiltration System - Chamber Wizard Field A

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 1 rows

15 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 107.07' Row Length +12.0" End Stone x 2 = 109.07' Base Length 1 Rows x 51.4" Wide + 12.0" Side Stone x 2 = 6.28' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

15 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 1 Rows = 741.1 cf Chamber Storage

2,415.8 cf Field - 741.1 cf Chambers = 1,674.7 cf Stone x 40.0% Voids = 669.9 cf Stone Storage

Chamber Storage + Stone Storage = 1,411.0 cf = 0.032 afOverall Storage Efficiency = 58.4%Overall System Size = $109.07' \times 6.28' \times 3.52'$

15 Chambers 89.5 cy Field 62.0 cy Stone

Pond IS: Infiltration System - Chamber Wizard Field B

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 2 rows

51.4" Wide + 5.0" Spacing = 56.4" C-C Row Spacing


8 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 57.25' Row Length +12.0" End Stone x 2 = 59.25' Base Length 2 Rows x 51.4" Wide + 5.0" Spacing x 1 + 12.0" Side Stone x 2 = 10.98' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

16 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 2 Rows = 792.6 cf Chamber Storage

2,294.1 cf Field - 792.6 cf Chambers = 1,501.5 cf Stone x 40.0% Voids = 600.6 cf Stone Storage

Chamber Storage + Stone Storage = 1,393.2 cf = 0.032 afOverall Storage Efficiency = 60.7%Overall System Size = $59.25' \times 10.98' \times 3.52'$

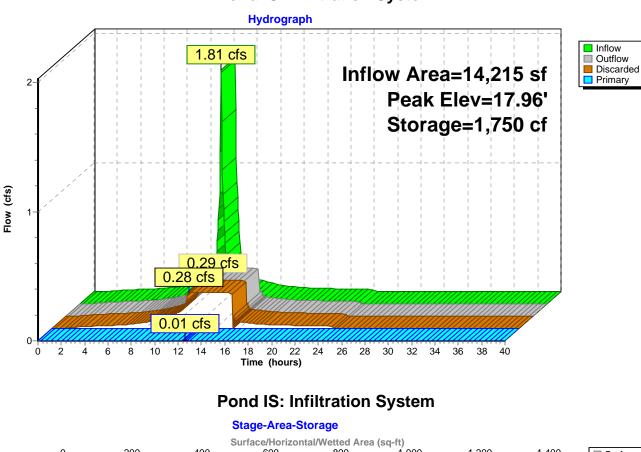
16 Chambers 85.0 cy Field 55.6 cy Stone

Pond IS: Infiltration System - Chamber Wizard Field C

Chamber Model = ADS N-12 12 (ADS N-12® Pipe)

Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf Row Length Adjustment= +8.00' x 0.81 sf x 1 rows

2 Chambers/Row x 20.00' Long +8.00' Row Adjustment = 48.00' Row Length +12.0" End Stone x 2 = 50.00' Base Length 1 Rows x 14.5" Wide + 8.0" Side Stone x 2 = 2.54' Base Width


12.0" Base + 14.5" Chamber Height + 12.0" Cover = 3.21' Field Height

2 Chambers x 16.2 cf +8.00' Row Adjustment x 0.81 sf x 1 Rows = 38.9 cf Chamber Storage 2 Chambers x 20.9 cf +8.00' Row Adjustment x 1.05 sf x 1 Rows = 50.2 cf Displacement


407.9 cf Field - 50.2 cf Chambers = 357.7 cf Stone x 40.0% Voids = 143.1 cf Stone Storage

Chamber Storage + Stone Storage = 181.9 cf = 0.004 afOverall Storage Efficiency = 44.6%Overall System Size = $50.00' \times 2.54' \times 3.21'$

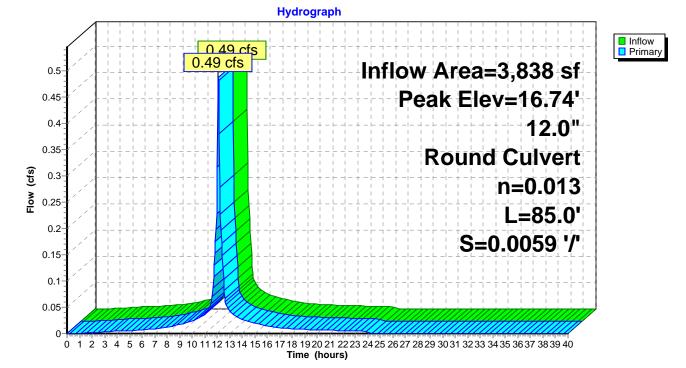
2 Chambers 15.1 cy Field 13.2 cy Stone

Pond IS: Infiltration System

Summary for Pond MH1: PDMH1

 Inflow Area =
 3,838 sf, 97.68% Impervious, Inflow Depth = 5.50" for 25-yr event

 Inflow =
 0.49 cfs @ 12.09 hrs, Volume=
 1,758 cf


 Outflow =
 0.49 cfs @ 12.09 hrs, Volume=
 1,758 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.49 cfs @ 12.09 hrs, Volume=
 1,758 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.74' @ 12.11 hrs Flood Elev= 20.20'

#1 Primary 16.30' 12.0" Round Culvert L= 85.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 16.30' / 15.80' S= 0.0059 '/' Cc= 0.900	Device	Routing	Invert	Outlet Devices
n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		<u> </u>	16.30'	L= 85.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 16.30' / 15.80' S= 0.0059 '/' Cc= 0.900

Primary OutFlow Max=0.41 cfs @ 12.09 hrs HW=16.73' TW=16.41' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.41 cfs @ 1.86 fps)

Pond MH1: PDMH1

PROPOSED 12-22-17 Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

18

17

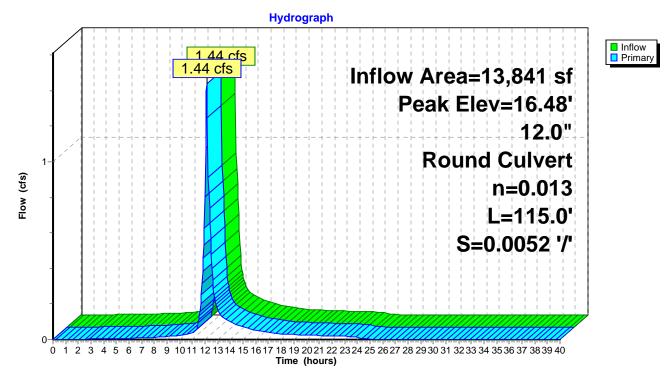
Pond MH1: PDMH1 Stage-Area-Storage Flood Elevation Storage 20-19 Elevation (feet)

> Ó Storage (cubic-feet)

Summary for Pond MH2: PDMH2

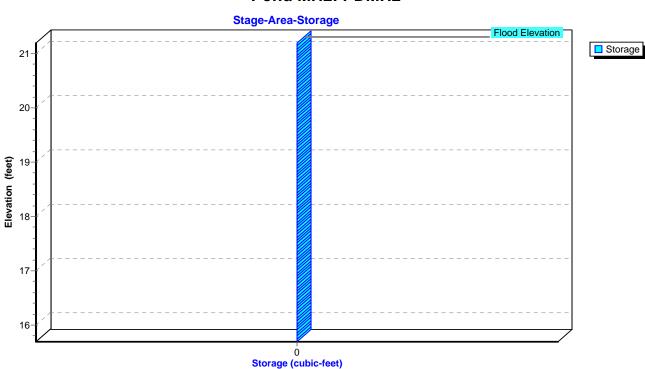
 Inflow Area =
 13,841 sf, 76.82% Impervious, Inflow Depth = 4.34" for 25-yr event

 Inflow =
 1.44 cfs @ 12.13 hrs, Volume=
 5,010 cf


 Outflow =
 1.44 cfs @ 12.13 hrs, Volume=
 5,010 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.44 cfs @ 12.13 hrs, Volume=
 5,010 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.48' @ 12.14 hrs Flood Elev= 21.20'


Device	Routing	Invert	Outlet Devices
	Primary		12.0" Round Culvert L= 115.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 15.70' / 15.10' S= 0.0052 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.33 cfs @ 12.13 hrs HW=16.46' TW=15.80' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.33 cfs @ 2.87 fps)

Pond MH2: PDMH2

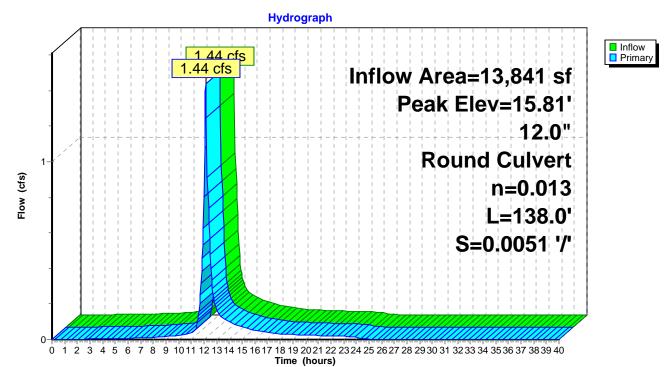
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond MH2: PDMH2

Summary for Pond MH3: PDMH3

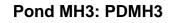
 Inflow Area =
 13,841 sf, 76.82% Impervious, Inflow Depth = 4.34" for 25-yr event

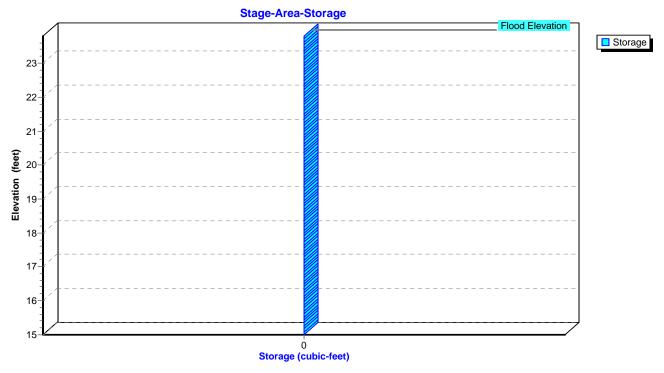
 Inflow =
 1.44 cfs @ 12.13 hrs, Volume=
 5,010 cf


 Outflow =
 1.44 cfs @ 12.13 hrs, Volume=
 5,010 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.44 cfs @ 12.13 hrs, Volume=
 5,010 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.81' @ 12.14 hrs Flood Elev= 23.80'


Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 138.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 15.00' / 14.30' S= 0.0051 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

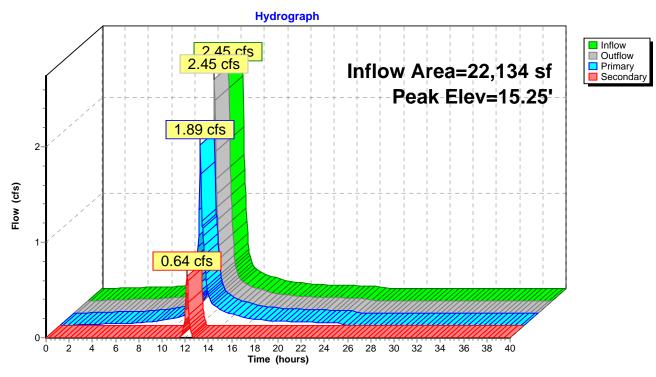

Primary OutFlow Max=1.29 cfs @ 12.13 hrs HW=15.80' TW=15.19' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.29 cfs @ 2.62 fps)

Pond MH3: PDMH3

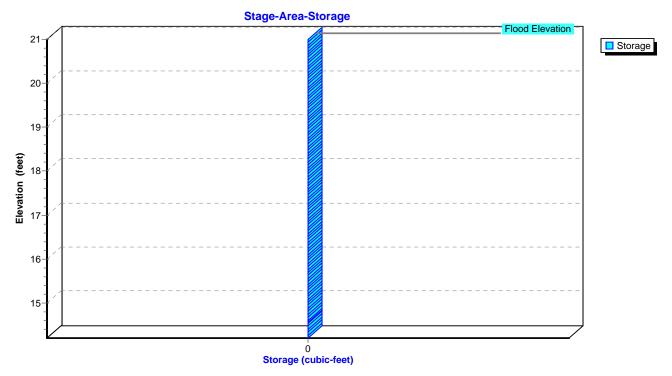
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Summary for Pond MH4: PDMH4

Inflow Area =	22,134 sf, 85.50% Impervious,	Inflow Depth = 4.80" for 25-yr event
Inflow =	2.45 cfs @ 12.11 hrs, Volume=	8,853 cf
Outflow =	2.45 cfs @ 12.11 hrs, Volume=	8,853 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.89 cfs @ 12.10 hrs, Volume=	8,094 cf
Secondary =	0.64 cfs @ 12.16 hrs, Volume=	759 cf


Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.25' @ 12.16 hrs Flood Elev= 21.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	14.20'	12.0" Round Culvert
			L= 6.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 14.20' / 14.10' S= 0.0167 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Secondary	14.20'	12.0" Round Culvert
	•		L= 8.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 14.20' / 13.70' S= 0.0625 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#3	Device 2	14.55'	0.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)


Primary OutFlow Max=1.17 cfs @ 12.10 hrs HW=15.13' TW=14.96' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.17 cfs @ 1.54 fps)

Secondary OutFlow Max=0.67 cfs @ 12.16 hrs HW=15.24' TW=14.62' (Dynamic Tailwater) -2=Culvert (Passes 0.67 cfs of 2.19 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Weir Controls 0.67 cfs @ 2.68 fps)

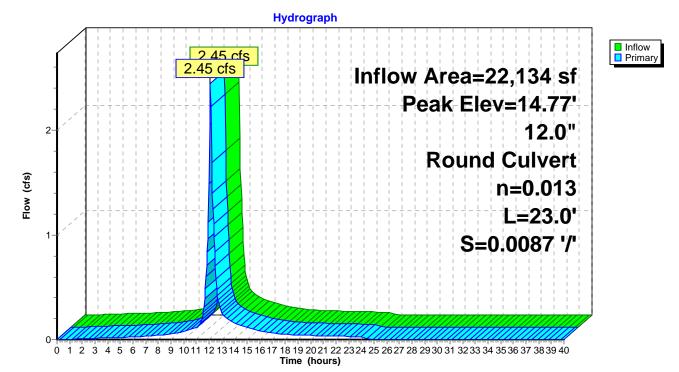
Pond MH4: PDMH4

Pond MH4: PDMH4

Summary for Pond MH5: PDMH5

 Inflow Area =
 22,134 sf, 85.50% Impervious, Inflow Depth = 4.80" for 25-yr event

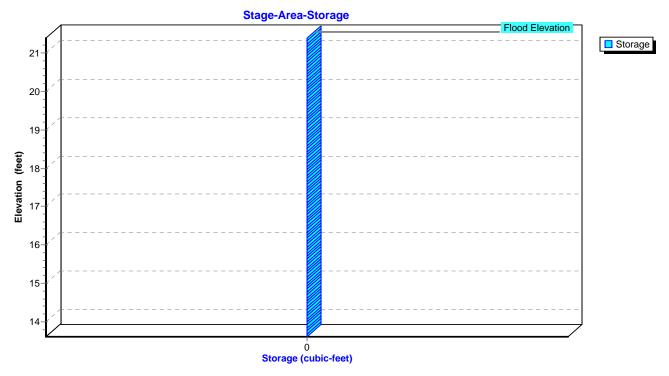
 Inflow =
 2.45 cfs @ 12.11 hrs, Volume=
 8,853 cf


 Outflow =
 2.45 cfs @ 12.11 hrs, Volume=
 8,853 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 2.45 cfs @ 12.11 hrs, Volume=
 8,853 cf

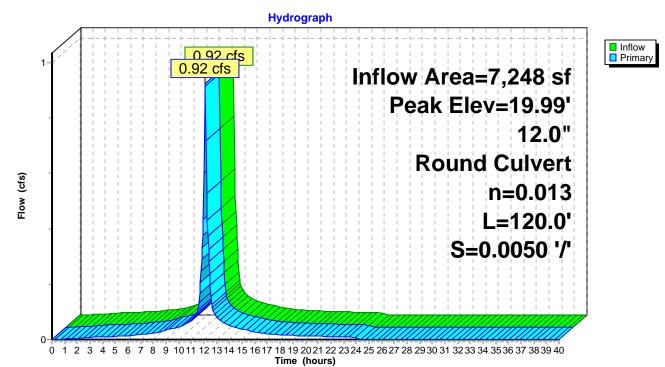
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 14.77' @ 12.11 hrs Flood Elev= 21.40'

Device	Routing	Invert	Outlet Devices
#1	Primary	13.60'	12.0" Round Culvert
			L= 23.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 13.60' / 13.40' S= 0.0087 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=2.41 cfs @ 12.11 hrs HW=14.75' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.41 cfs @ 3.07 fps)

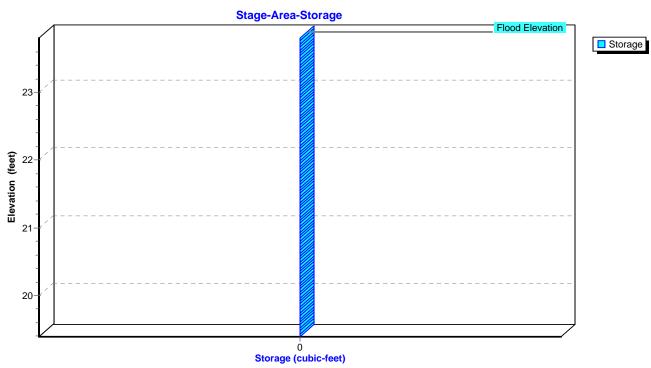
Pond MH5: PDMH5

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC


Summary for Pond MH6: PDMH6

Inflow Area =7,248 sf,100.00% Impervious, Inflow Depth =5.56" for 25-yr eventInflow =0.92 cfs @12.09 hrs, Volume=3,360 cfOutflow =0.92 cfs @12.09 hrs, Volume=3,360 cf, Atten= 0%, Lag= 0.0 minPrimary =0.92 cfs @12.09 hrs, Volume=3,360 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.99' @ 12.09 hrs Flood Elev= 23.80'


Device	Routing	Invert	Outlet Devices
#1	Primary	19.40'	12.0" Round Culvert
			L= 120.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 19.40' / 18.80' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.87 cfs @ 12.09 hrs HW=19.98' TW=19.32' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.87 cfs @ 2.64 fps)

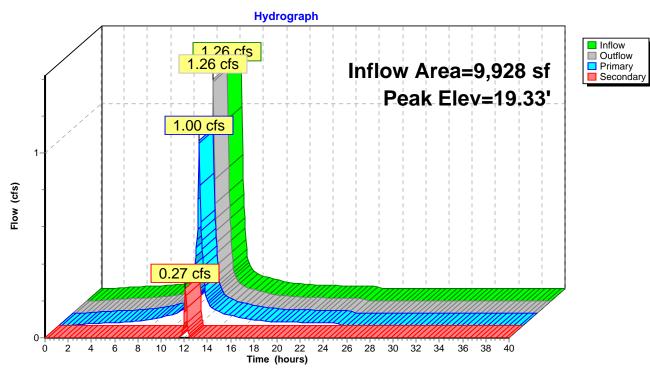
Pond MH6: PDMH6

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

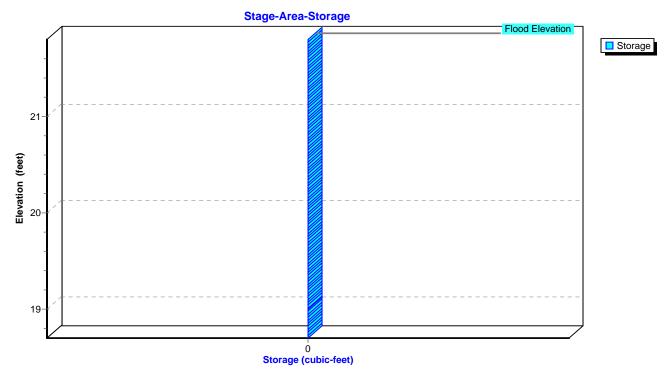
Pond MH6: PDMH6

Summary for Pond MH7: PDMH7

Inflow Area =	9,928 sf,100.00% Impervious,	Inflow Depth = 5.56" for 25-yr event
Inflow =	1.26 cfs @ 12.09 hrs, Volume=	4,602 cf
Outflow =	1.26 cfs @ 12.09 hrs, Volume=	4,602 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.00 cfs @ 12.08 hrs, Volume=	4,346 cf
Secondary =	0.27 cfs @ 12.09 hrs, Volume=	256 cf


Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.33' @ 12.09 hrs Flood Elev= 21.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	18.70'	12.0" Round Culvert
			L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.70' / 18.60' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Secondary	18.70'	12.0" Round Culvert
			L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.70' / 18.20' S= 0.0500 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#3	Device 2	19.00'	0.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)


Primary OutFlow Max=0.95 cfs @ 12.08 hrs HW=19.32' TW=19.07' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.95 cfs @ 2.67 fps)

Secondary OutFlow Max=0.26 cfs @ 12.09 hrs HW=19.32' TW=19.00' (Dynamic Tailwater) -2=Culvert (Passes 0.26 cfs of 1.09 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Weir Controls 0.26 cfs @ 1.86 fps)

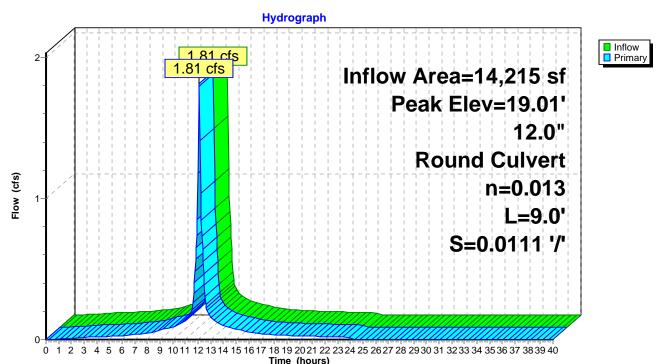
Pond MH7: PDMH7

Pond MH7: PDMH7

Summary for Pond MH8: PDMH8

 Inflow Area =
 14,215 sf,100.00% Impervious, Inflow Depth = 5.56" for 25-yr event

 Inflow =
 1.81 cfs @ 12.09 hrs, Volume=
 6,589 cf


 Outflow =
 1.81 cfs @ 12.09 hrs, Volume=
 6,589 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.81 cfs @ 12.09 hrs, Volume=
 6,589 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.01' @ 12.09 hrs Flood Elev= 22.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	18.10'	12.0" Round Culvert
			L= 9.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.10' / 18.00' S= 0.0111 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.76 cfs @ 12.09 hrs HW=19.00' TW=17.11' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.76 cfs @ 3.13 fps)

Pond MH8: PDMH8

PROPOSED 12-22-17TyPrepared by Lynnfield Engineering Inc.TyHydroCAD® 10.00-18s/n 06609© 2016 HydroCAD Software Solutions LLC

Stage-Area-Storage Flood Elevation Plood Elevation Plo

> 0 Storage (cubic-feet)

Pond MH8: PDMH8

Summary for Pond RG1: Rain Garden #1

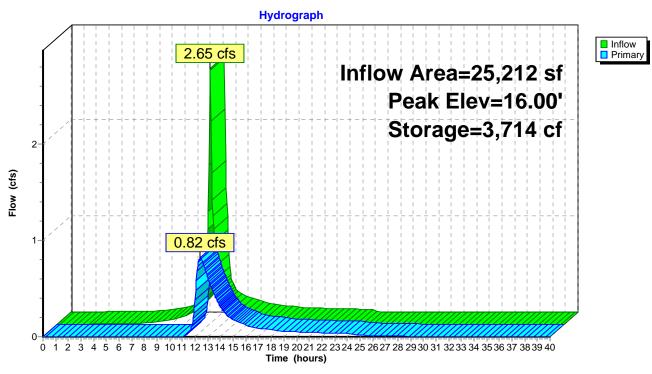
Inflow Area	a =	25,212 sf, 56.56% Impervious,	Inflow Depth = 4.16" for 25-yr event
Inflow	=	2.65 cfs @ 12.09 hrs, Volume=	8,750 cf
Outflow	=	0.82 cfs @ 12.42 hrs, Volume=	7,768 cf, Atten= 69%, Lag= 19.6 min
Primary	=	0.82 cfs @ 12.42 hrs, Volume=	7,768 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.00' @ 12.42 hrs Surf.Area= 6,177 sf Storage= 3,714 cf Flood Elev= 16.70' Surf.Area= 6,703 sf Storage= 6,272 cf

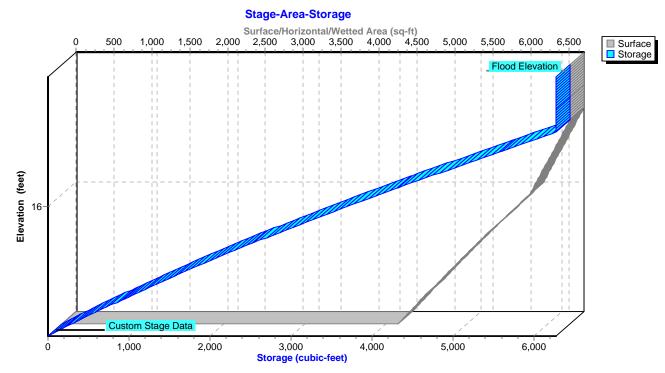
Plug-Flow detention time= 163.7 min calculated for 7,768 cf (89% of inflow) Center-of-Mass det. time= 110.6 min (903.1 - 792.6)

Volume	Invert	Avail.S	Storage	Storage Description	n	
#1	15.30'	6	,272 cf	Custom Stage Dat	ta (Irregular)Listed	below (Recalc)
Elevatio	et)	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
15.3		4,439	288.0	0	0	4,439
16.0		6,173	327.0	3,698	3,698	6,360
16.3		6,569	334.0	1,911	5,609	6,741
16.4	40	6,703	337.0	664	6,272	6,905
Device #1	Routing Primary	Inve 15.3		et Devices Round Culvert X 2	2.00	
#1	Device 1	15.50	L= 6 Inlet n= 0	5.0' CPP, mitered t / Outlet Invert= 15.3 .013 Corrugated PE Vert. Orifice/Grate	to conform to fill, Ke $55' / 15.00'$ S= 0.00 E, smooth interior, F	054 '/' Cc= 0.900
#2 #3	Device 1 Device 1	15.80		Vert. Orifice/Grate		
#0 #4	Device 1	16.10	24.0	" x 24.0" Horiz. Orifited to weir flow at low	fice/Grate C= 0.60	00

Primary OutFlow Max=0.82 cfs @ 12.42 hrs HW=16.00' TW=0.00' (Dynamic Tailwater)


-1=Culvert (Passes 0.82 cfs of 1.50 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.73 cfs @ 2.79 fps)


-3=Orifice/Grate (Orifice Controls 0.08 cfs @ 1.53 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Pond RG1: Rain Garden #1

Pond RG1: Rain Garden #1

Summary for Pond RG2: Rain Garden #2

[80] Warning: Exceeded Pond CB3 by 0.23' @ 24.45 hrs (0.12 cfs 1,144 cf)

Inflow Area =	10,003 sf, 68.81% Impervious,	Inflow Depth = 4.73" for 25-yr event
Inflow =	1.15 cfs @ 12.09 hrs, Volume=	3,942 cf
Outflow =	1.03 cfs @ 12.14 hrs, Volume=	3,252 cf, Atten= 11%, Lag= 3.2 min
Primary =	1.03 cfs @ 12.14 hrs, Volume=	3,252 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.54' @ 12.14 hrs Surf.Area= 949 sf Storage= 1,076 cf Flood Elev= 19.00' Surf.Area= 1,118 sf Storage= 1,546 cf

Plug-Flow detention time= 136.4 min calculated for 3,248 cf (82% of inflow) Center-of-Mass det. time= 66.6 min (841.4 - 774.8)

Volume	Inve	ert Avai	I.Storage	Storage Description	on	
#1	17.0	00'	2,934 cf	Custom Stage Da	ata (Irregular)Liste	d below (Recalc)
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
17.0	00	468	89.0	0	0	468
18.0	00	765	108.0	610	610	782
19.0	00	1,118	127.0	936	1,546	1,156
20.0	00	1,676	152.0	1,388	2,934	1,728
Device	Routing	Inv	vert Outle	et Devices		
#1	Primary	16	•••••••••••••••••••••••••••••••••••••••	" Round Culvert)	. =	() = = 0.0
			Inlet n= 0	/ Outlet Invert= 16. .013 Corrugated P	E, smooth interior,	0132 '/' Cc= 0.900 Flow Area= 0.79 sf
#2	Device 1	18	.10' 4.0"	Vert. Orifice/Grate	X 3.00 C= 0.600	
#3	Device 1			Vert. Orifice/Grate		
#4	Device 1	18		" x 24.0" Horiz. Or ed to weir flow at lo	ifice/Grate C= 0.6 ow heads	600

Primary OutFlow Max=1.00 cfs @ 12.14 hrs HW=18.54' TW=16.47' (Dynamic Tailwater)

-1=Culvert (Passes 1.00 cfs of 8.29 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.66 cfs @ 2.53 fps)

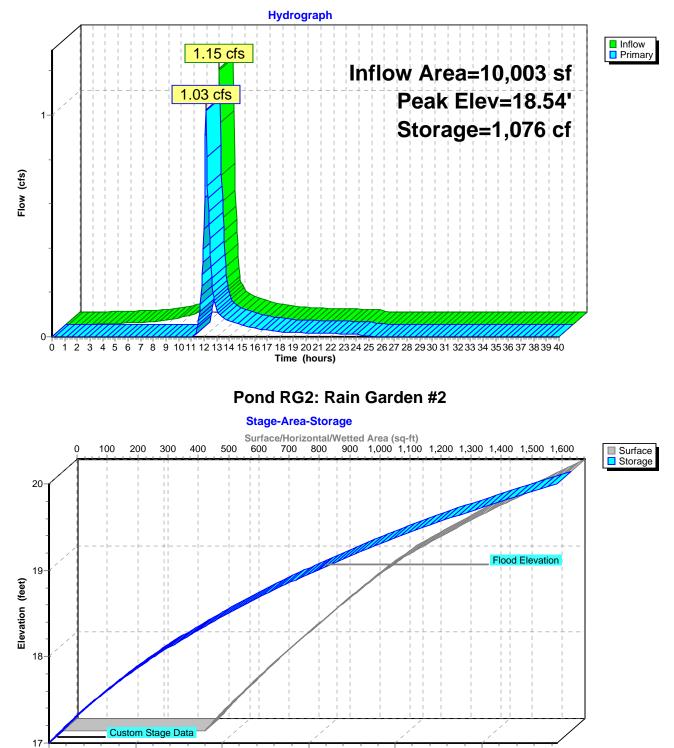
-3=Orifice/Grate (Orifice Controls 0.11 cfs @ 1.68 fps)

-4=Orifice/Grate (Weir Controls 0.23 cfs @ 0.67 fps)

500

0

1,000


1.500

Storage (cubic-feet)

2.000

2.500

Pond RG2: Rain Garden #2

Summary for Pond WQU1: Water Quality Unit 1

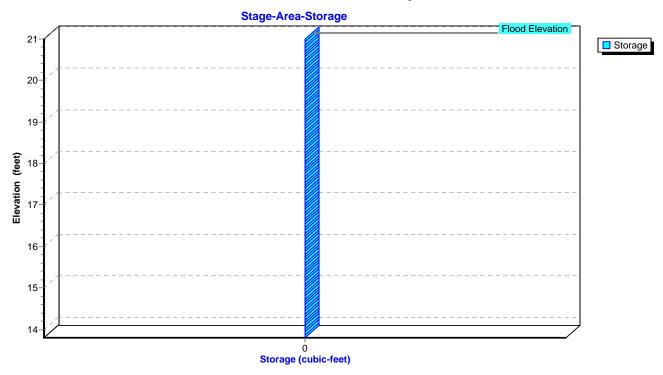
 Inflow Area =
 22,134 sf, 85.50% Impervious, Inflow Depth = 4.39" for 25-yr event

 Inflow =
 1.89 cfs @ 12.10 hrs, Volume=
 8,094 cf

 Outflow =
 1.89 cfs @ 12.10 hrs, Volume=
 8,094 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.89 cfs @ 12.10 hrs, Volume=
 8,094 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.06' @ 12.14 hrs Flood Elev= 21.00'


Device	Routing	Invert	Outlet Devices
	Primary	13.80'	12.0" Round Culvert L= 9.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 13.80' / 13.70' S= 0.0111 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			5

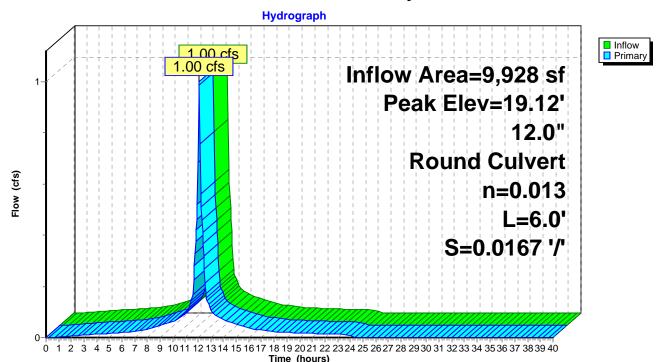
Primary OutFlow Max=1.33 cfs @ 12.10 hrs HW=14.96' TW=14.76' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.33 cfs @ 1.70 fps)

Time (hours)

Pond WQU1: Water Quality Unit 1

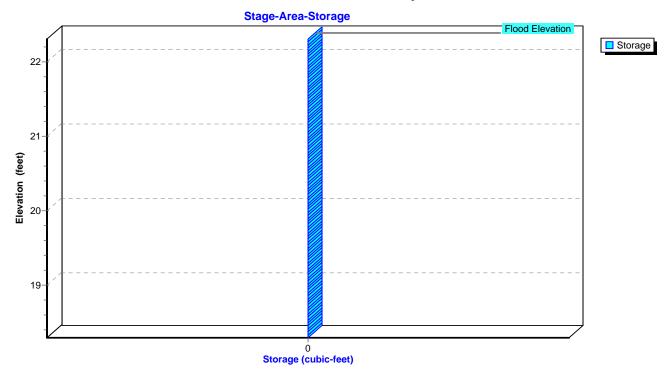
PROPOSED 12-22-17

Pond WQU1: Water Quality Unit 1


Summary for Pond WQU2: Water Quality Unit 2

Inflow Area =9,928 sf,100.00% Impervious, Inflow Depth =5.25" for 25-yr eventInflow =1.00 cfs @12.08 hrs, Volume=4,346 cfOutflow =1.00 cfs @12.08 hrs, Volume=4,346 cf, Atten= 0%, Lag= 0.0 minPrimary =1.00 cfs @12.08 hrs, Volume=4,346 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.12' @ 12.12 hrs Flood Elev= 22.30'


Device	Routing	Invert	Outlet Devices
#1	Primary	18.30'	12.0" Round Culvert
			L= 6.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 18.30' / 18.20' S= 0.0167 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.69 cfs @ 12.08 hrs HW=19.07' TW=19.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.69 cfs @ 1.05 fps)

Pond WQU2: Water Quality Unit 2

PROPOSED 12-22-17

Pond WQU2: Water Quality Unit 2

Proposed Conditions Analysis 50-Year 24-Hour Storm Event

PROPOSED 12-22-17 Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 Hydrod	Type III 24-hr 50-yr Rainfall=7.10" Printed 12/22/2017 CAD Software Solutions LLC Page 198
Runoff by SCS TR-	40.00 hrs, dt=0.05 hrs, 801 points 20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment 100: 100 - Pavement, Lawn,	Runoff Area=20,037 sf 45.35% Impervious Runoff Depth=5.01" Tc=6.0 min CN=82 Runoff=2.60 cfs 8,365 cf
Subcatchment 101: 101 - West Side Lawn t	• Runoff Area=271 sf 0.00% Impervious Runoff Depth=4.13" Tc=6.0 min CN=74 Runoff=0.03 cfs 93 cf
Subcatchment 102: 102 - Existing Building	Runoff Area=5,175 sf 100.00% Impervious Runoff Depth=6.86" Tc=6.0 min CN=98 Runoff=0.81 cfs 2,959 cf
Subcatchment 200: 200 - Portion of	Runoff Area=2,107 sf 100.00% Impervious Runoff Depth=6.86" Tc=6.0 min CN=98 Runoff=0.33 cfs 1,205 cf
Subcatchment 201: 201 - Pavement	Runoff Area=2,187 sf 95.93% Impervious Runoff Depth=6.74" Tc=6.0 min CN=97 Runoff=0.34 cfs 1,229 cf
Subcatchment 202: 202 - Pavement	Runoff Area=1,651 sf 100.00% Impervious Runoff Depth=6.86" Tc=6.0 min CN=98 Runoff=0.26 cfs 944 cf
Subcatchment 203: 203 - Pavement	Runoff Area=5,013 sf 96.69% Impervious Runoff Depth=6.74" Tc=6.0 min CN=97 Runoff=0.78 cfs 2,816 cf
Subcatchment 204: 204 - Pavement	Runoff Area=4,813 sf 100.00% Impervious Runoff Depth=6.86" Tc=6.0 min CN=98 Runoff=0.75 cfs 2,752 cf
Subcatchment 205: 205 - Pavement	Runoff Area=3,480 sf 100.00% Impervious Runoff Depth=6.86" Tc=6.0 min CN=98 Runoff=0.54 cfs 1,990 cf
Subcatchment 206: 206 - Pavement	Runoff Area=5,141 sf 100.00% Impervious Runoff Depth=6.86" Tc=6.0 min CN=98 Runoff=0.80 cfs 2,939 cf
Subcatchment 207: 207 - Pavement	Runoff Area=2,680 sf 100.00% Impervious Runoff Depth=6.86" Tc=6.0 min CN=98 Runoff=0.42 cfs 1,532 cf
Subcatchment 208: 208 - Proposed	Runoff Area=4,287 sf 100.00% Impervious Runoff Depth=6.86" Tc=6.0 min CN=98 Runoff=0.67 cfs 2,451 cf
Subcatchment 209: 209 - Portion of	Runoff Area=4,990 sf 40.80% Impervious Runoff Depth=5.23" Tc=6.0 min CN=84 Runoff=0.67 cfs 2,177 cf
Subcatchment 210: 210 - Existing South	Runoff Area=44,935 sf 0.00% Impervious Runoff Depth=3.18" ow Length=210' Tc=10.6 min CN=65 Runoff=3.24 cfs 11,908 cf
Subcatchment 300: 300 - Lawn East to DP3	
Pond CB1: PCB1 12.0" Round	Peak Elev=16.96' Inflow=0.34 cfs 1,229 cf Culvert n=0.013 L=21.0' S=0.0095 '/' Outflow=0.34 cfs 1,229 cf

PROPOSED 12-22 Prepared by Lynnfiel HydroCAD® 10.00-18 s/		Type III 24-hr	•	infall=7.10" 12/22/2017 Page 199		
Pond CB2: PCB2	12.0" Round Culvert n=0.013 L=2	Peak Elev=16.92 21.0' S=0.0095 '/'				
Pond CB3: PCB3	ا 12.0" Round Culvert n=0.013 L=64	Peak Elev=18.69' .0' S=0.0063 '/' C				
Pond CB4: PCB4	ا 12.0" Round Culvert n=0.013 L=94	Peak Elev=15.91' .0' S=0.0085 '/' C				
Pond CB5: PCB5	ا 12.0" Round Culvert n=0.013 L=93	Peak Elev=15.88' .0' S=0.0054 '/' C				
Pond CB6: PCB6	ا 12.0" Round Culvert n=0.013 L=78	Peak Elev=20.47' .0' S=0.0051 '/' C				
Pond CB7: PCB7	ا 12.0" Round Culvert n=0.013 L=11	Peak Elev=19.45' .0' S=0.0091 '/' C				
Pond DP1: Design Pont #1_18" RCP Culvert - NorthwestInflow=1.19 cfs 10,435 cfPrimary=1.19 cfs 10,435 cf						
Pond DP2: Design Po	nt #2_Wetland-South			ofs 23,686 cf ofs 23,686 cf		
Pond DP3: Design Po	nt #3_Abutting Lot-East			21 cfs 661 cf 21 cfs 661 cf		
Pond IS: Infiltration S	ystem Peak Elev=18.26 Discarded=0.28 cfs 7,567 cf Primary=					
Pond MH1: PDMH1	ا 12.0" Round Culvert n=0.013 L=85	Peak Elev=16.84' .0' S=0.0059 '/' C		,		
Pond MH2: PDMH2	ا 12.0" Round Culvert n=0.013 L=115	Peak Elev=16.65' .0' S=0.0052 '/' C				
Pond MH3: PDMH3	ا 12.0" Round Culvert n=0.013 L=138	Peak Elev=16.15' .0' S=0.0051 '/' C				
Pond MH4: PDMH4	Primary=2.36 cfs 10,018 cf Secondary=1.0	eak Elev=15.87' I 7 cfs 1,200 cf Ou				
Pond MH5: PDMH5	P 12.0" Round Culvert n=0.013 L=23.0	eak Elev=15.30')' S=0.0087 '/' Ou				
Pond MH6: PDMH6	ا 12.0" Round Culvert n=0.013 L=120	Peak Elev=20.07' .0' S=0.0050 '/' C				
Pond MH7: PDMH7	 Primary-1 22 cfc 5 280 cf Secondary-	Peak Elev=19.42' 0.34 cfs_387 cfC				

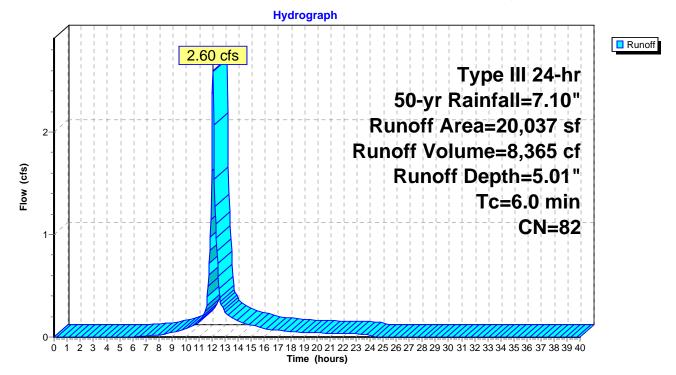
 Primary=1.22 cfs
 5,289 cf
 Secondary=0.34 cfs
 387 cf
 Outflow=1.55 cfs
 5,676 cf

 Pond MH8: PDMH8
 Peak Elev=19.16'
 Inflow=2.22 cfs
 8,127 cf

 12.0"
 Round Culvert
 n=0.013
 L=9.0'
 S=0.0111 '/'
 Outflow=2.22 cfs
 8,127 cf

PROPOSED 12-22-17

Pond RG1: Rain Garden #1	Peak Elev=16.13' Storage=4,522 cf Inflow=3.41 cfs 11,324 cf Outflow=1.18 cfs 10,342 cf
Pond RG2: Rain Garden #2	Peak Elev=18.58' Storage=1,110 cf Inflow=1.45 cfs 4,993 cf Outflow=1.43 cfs 4,303 cf
Pond WQU1: Water Quality Unit 1	Peak Elev=15.68' Inflow=2.36 cfs 10,018 cf
12.0" Roun	d Culvert n=0.013 L=9.0' S=0.0111 '/' Outflow=2.36 cfs 10,018 cf
Pond WQU2: Water Quality Unit 2	Peak Elev=19.28' Inflow=1.22 cfs 5,289 cf
12.0" Rou	nd Culvert n=0.013 L=6.0' S=0.0167 '/' Outflow=1.22 cfs 5,289 cf

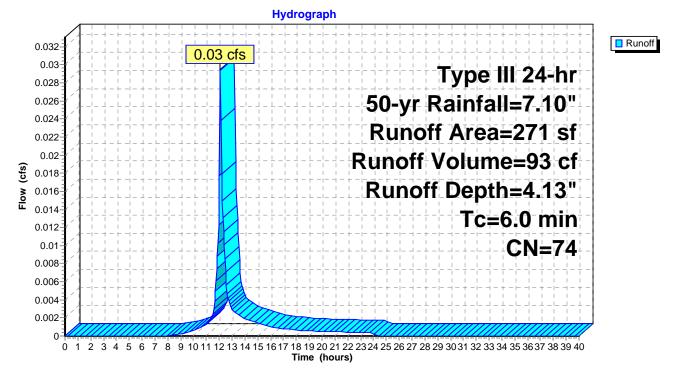

Summary for Subcatchment 100: 100 - Pavement, Lawn, and Direct Entry to Rain Garden

Runoff = 2.60 cfs @ 12.09 hrs, Volume= 8,365 cf, Depth= 5.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

	Area (sf)	CN	Description							
	4,778	74	>75% Grass cover, Good, HSG C							
*	6,173	65	Rain Garden surface area							
	9,086	98	Paved park	ing, HSG C						
	20,037	82	Weighted Average							
	10,951	:	54.65% Pervious Area							
	9,086		45.35% Imp	pervious Ar	ea					
(m	Tc Length n) (feet)	Slope (ft/ft)		Capacity (cfs)	Description					
6	5.0				Direct Entry,					

Subcatchment 100: 100 - Pavement, Lawn, and Direct Entry to Rain Garden

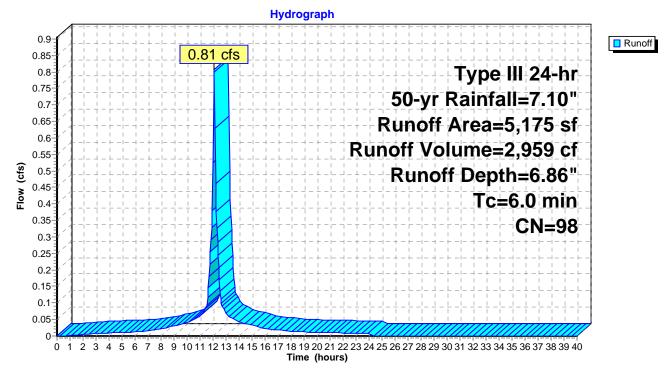

Summary for Subcatchment 101: 101 - West Side Lawn to DP1

Runoff = 0.03 cfs @ 12.09 hrs, Volume= 93 cf, Depth= 4.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

Area (sf)	CN	CN Description						
271	74	74 >75% Grass cover, Good, HSG C						
271		100.00% Pervious Area						
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description				
6.0				Direct Entry,				

Subcatchment 101: 101 - West Side Lawn to DP1

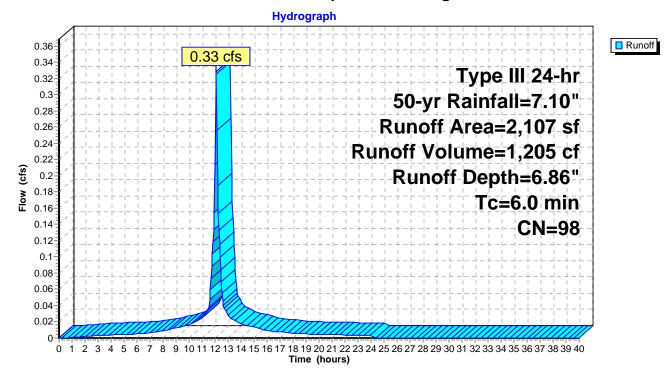

Summary for Subcatchment 102: 102 - Existing Building

Runoff = 0.81 cfs @ 12.09 hrs, Volume= 2,959 cf, Depth= 6.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

	A	rea (sf)	CN	Description					
*		5,175	98	Roofs, HSG C, Existing Building					
		5,175		100.00% Impervious Area					
(1	Tc min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description			
	6.0					Direct Entry,			

Subcatchment 102: 102 - Existing Building

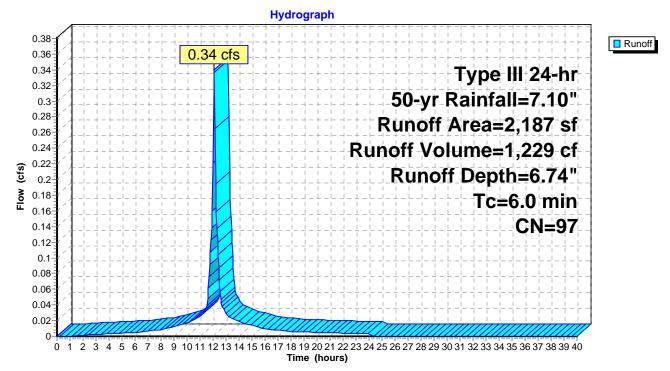

Summary for Subcatchment 200: 200 - Portion of Proposed Building Tenant A to Rain Garden #2

Runoff = 0.33 cfs @ 12.09 hrs, Volume= 1,205 cf, Depth= 6.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

	A	rea (sf)	CN [Description						
*		2,107	98 F	Roofs, HSG C, Half Prop. Building A						
		2,107		100.00% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry,				

Subcatchment 200: 200 - Portion of Proposed Building Tenant A to Rain Garden #2

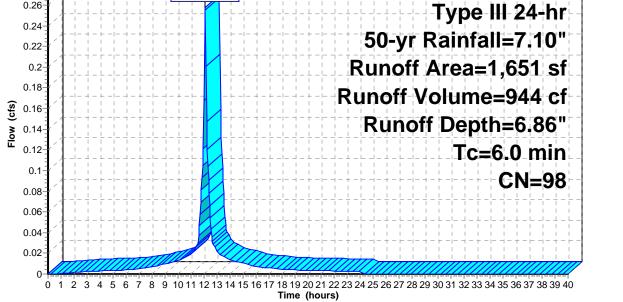

Summary for Subcatchment 201: 201 - Pavement

Runoff = 0.34 cfs @ 12.09 hrs, Volume= 1,229 cf, Depth= 6.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

Α	rea (sf)	CN	Description					
	2,098	98	Paved parking, HSG C					
	89	74	>75% Gras	s cover, Go	bod, HSG C			
	2,187	97	Weighted Average					
	89		4.07% Perv	ious Area				
	2,098		95.93% Imp	pervious Ar	ea			
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 201: 201 - Pavement

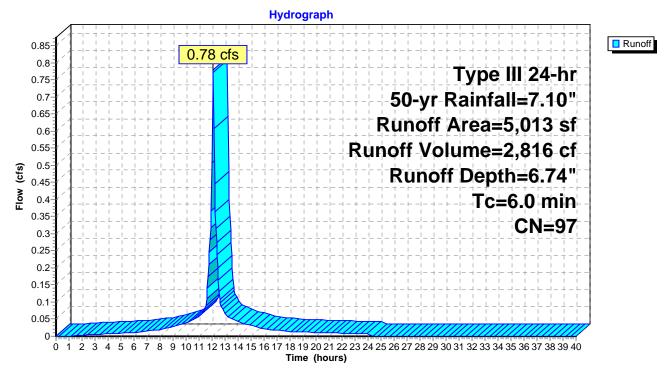


Summary for Subcatchment 202: 202 - Pavement

Runoff = 0.26 cfs @ 12.09 hrs, Volume= 944 cf, Depth= 6.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

A	rea (sf)	CN I	Description						
	1,651 98 Paved parking, HSG C								
	1,651		100.00% In	npervious A	vrea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				
	Subcatchment 202: 202 - Pavement								
				Hydro	yrapn				
0.28-		· - - + - - · -		+ - +]			
0.26-		i i i i ll		<mark></mark> i i i i - L <u>L</u>	Type-III 24-hr				
0.24-		· - - + - -	 	 - + - + -					

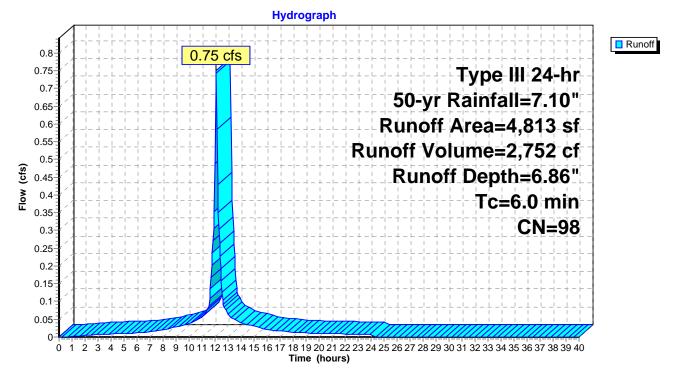

Summary for Subcatchment 203: 203 - Pavement

Runoff = 0.78 cfs @ 12.09 hrs, Volume= 2,816 cf, Depth= 6.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

A	rea (sf)	CN	Description						
	4,847	98	Paved parking, HSG C						
	166	74	>75% Gras	s cover, Go	ood, HSG C				
	5,013	97	Weighted Average						
	166		3.31% Perv	ious Area					
	4,847		96.69% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
6.0					Direct Entry,				

Subcatchment 203: 203 - Pavement

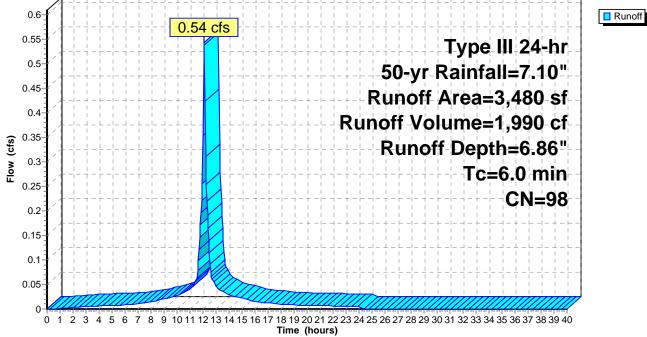

Summary for Subcatchment 204: 204 - Pavement

Runoff = 0.75 cfs @ 12.09 hrs, Volume= 2,752 cf, Depth= 6.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

A	rea (sf)	CN	Description					
	4,813	98	98 Paved parking, HSG C					
	4,813		100.00% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 204: 204 - Pavement

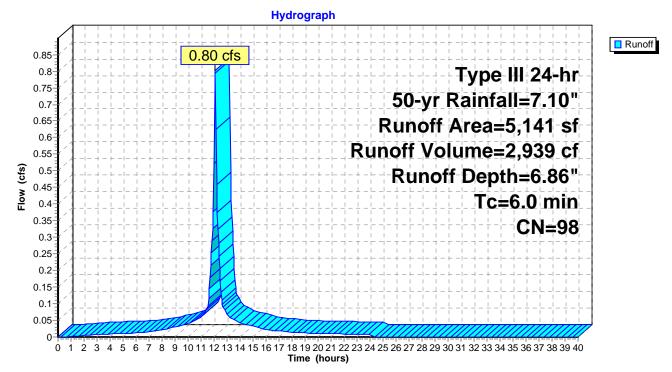


Summary for Subcatchment 205: 205 - Pavement

Runoff = 0.54 cfs @ 12.09 hrs, Volume= 1,990 cf, Depth= 6.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

Area (sf)	CN Description								
3,480 98 Paved parking, HSG C									
3,480	3,480 100.00% Impervious Area								
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)								
6.0	Direct Entry,								
Subcatchment 205: 205 - Pavement									
0.6- 0.54 cfs									

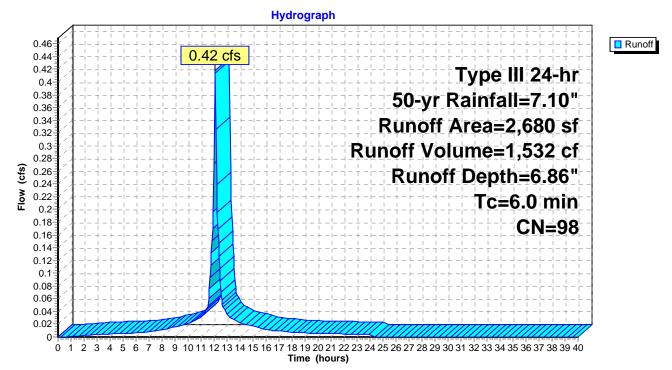

Summary for Subcatchment 206: 206 - Pavement

Runoff = 0.80 cfs @ 12.09 hrs, Volume= 2,939 cf, Depth= 6.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

A	rea (sf)	CN	Description					
	5,141	98	98 Paved parking, HSG C					
	5,141		100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	•			
6.0					Direct Entry,			

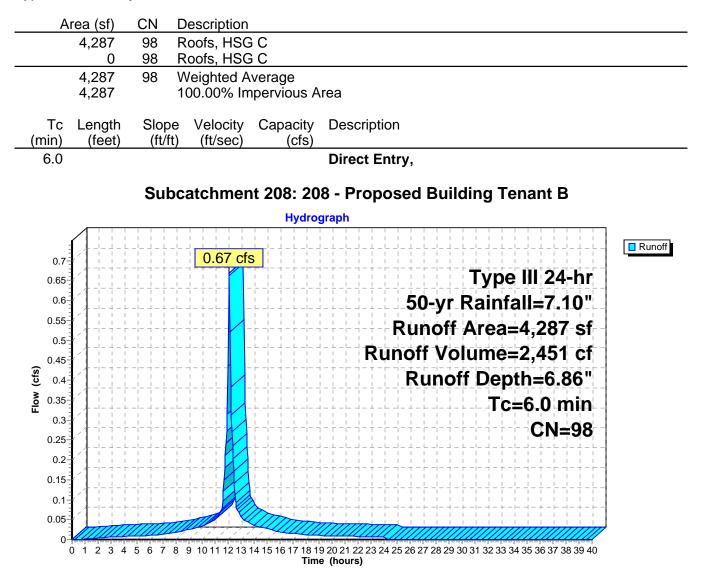
Subcatchment 206: 206 - Pavement


Summary for Subcatchment 207: 207 - Pavement

Runoff = 0.42 cfs @ 12.09 hrs, Volume= 1,532 cf, Depth= 6.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

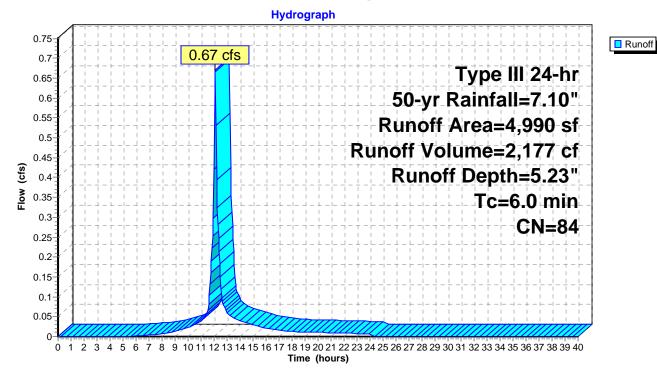
A	rea (sf)	CN	Description					
	2,680	98	98 Paved parking, HSG C					
	2,680		100.00% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description			
6.0					Direct Entry,			


Subcatchment 207: 207 - Pavement

Summary for Subcatchment 208: 208 - Proposed Building Tenant B

Runoff = 0.67 cfs @ 12.09 hrs, Volume= 2,451 cf, Depth= 6.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

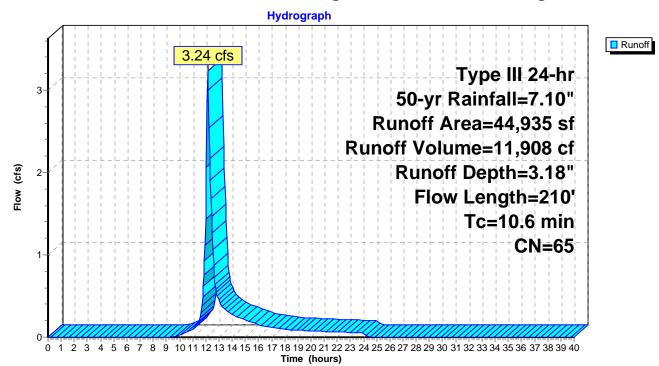

mary for Subcatchment 209: 209 - Portion of Proposed Building Tentant A, Rain Garden #2, Lawn, and V

Runoff = 0.67 cfs @ 12.09 hrs, Volume= 2,177 cf, Depth= 5.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

	Area (sf)	CN	Description							
*	876	65	Rain Garden Surface Area							
	2,078	79			Fair, HSG C					
	84	98	Unconnecte	ed pavemer	nt, HSG C					
	1,952	98	Unconnected roofs, HSG C							
	4,990	84	Weighted Average							
	2,954		59.20% Pervious Area							
	2,036		40.80% Imp	pervious Ar	ea					
	2,036		100.00% Unconnected							
	Tc Length		•	Capacity	Description					
(m	in) (feet)	(ft/ft) (ft/sec)	(cfs)						
6	6.0				Direct Entry,					

Subcatchment 209: 209 - Portion of Proposed Building Tentant A, Rain Garden #2, Lawn, and Walkwa

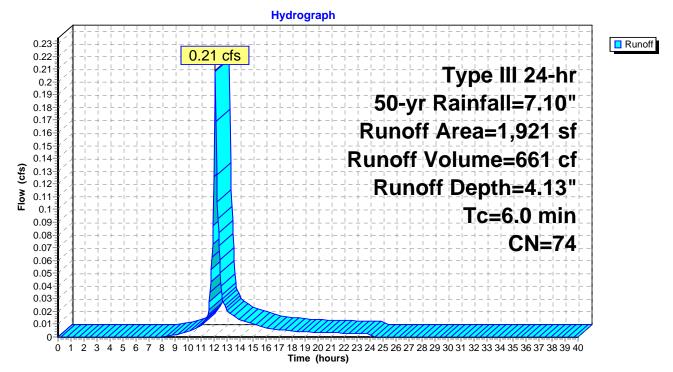

Summary for Subcatchment 210: 210 - Existing South features remaining to DP2

Runoff = 3.24 cfs @ 12.16 hrs, Volume= 11,908 cf, Depth= 3.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

_	A	rea (sf)	CN [Description			
		35,498	65 E	Brush, Goo	d, HSG C		
*		9,437	65 E	Brush, Goo	d, HSG C,	Wetland Brush	
		44,935	65 V	Veighted A	verage		
	44,935 100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	9.2	100	0.0600	0.18		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 3.22"	
	1.4	110	0.0360	1.33		Shallow Concentrated Flow,	
_						Short Grass Pasture Kv= 7.0 fps	
	10.6	210	Total				

Subcatchment 210: 210 - Existing South features remaining to DP2

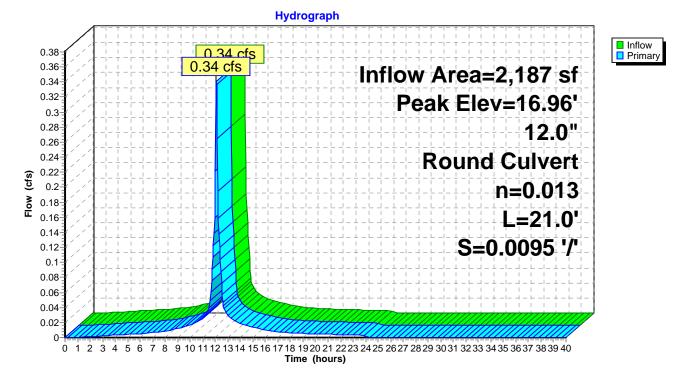

Summary for Subcatchment 300: 300 - Lawn East to DP3

Runoff = 0.21 cfs @ 12.09 hrs, Volume= 661 cf, Depth= 4.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.10"

A	rea (sf)	CN	Description				
	1,921	74 >75% Grass cover, Good, HSG C					
	1,921 100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)			
6.0					Direct Entry,		

Subcatchment 300: 300 - Lawn East to DP3

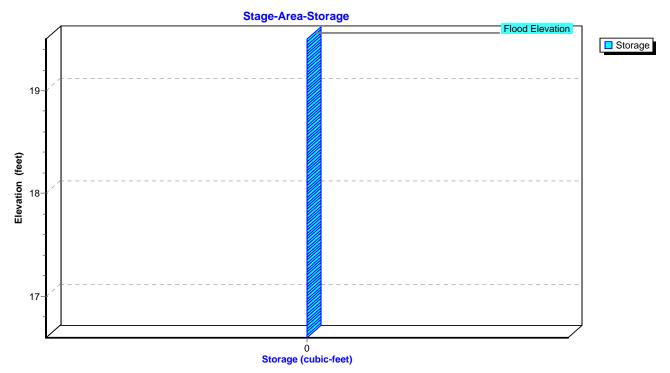

Summary for Pond CB1: PCB1

Inflow Area = 2,187 sf, 95.93% Impervious, Inflow Depth = 6.74" for 50-yr event Inflow 0.34 cfs @ 12.09 hrs. Volume= 1.229 cf = 12.09 hrs, Volume= Outflow 0.34 cfs @ 1,229 cf, Atten= 0%, Lag= 0.0 min = Primary 0.34 cfs @ 12.09 hrs, Volume= 1,229 cf =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.96' @ 12.12 hrs Flood Elev= 19.50'

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 21.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 16.60' / 16.40' S= 0.0095 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.28 cfs @ 12.09 hrs HW=16.95' TW=16.80' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.28 cfs @ 1.71 fps)



Pond CB1: PCB1

PROPOSED 12-22-17

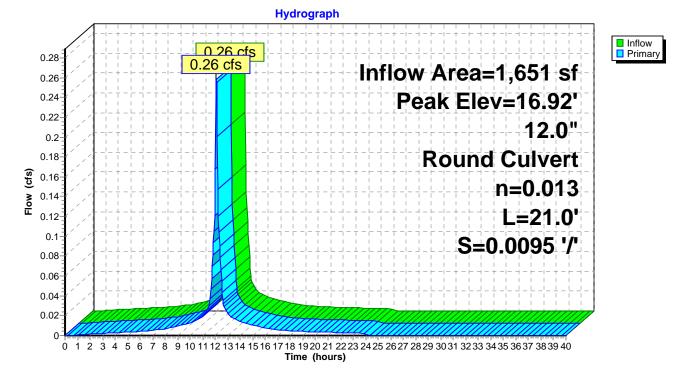
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB1: PCB1

Summary for Pond CB2: PCB2

 Inflow Area =
 1,651 sf,100.00% Impervious, Inflow Depth =
 6.86" for 50-yr event

 Inflow =
 0.26 cfs @
 12.09 hrs, Volume=
 944 cf

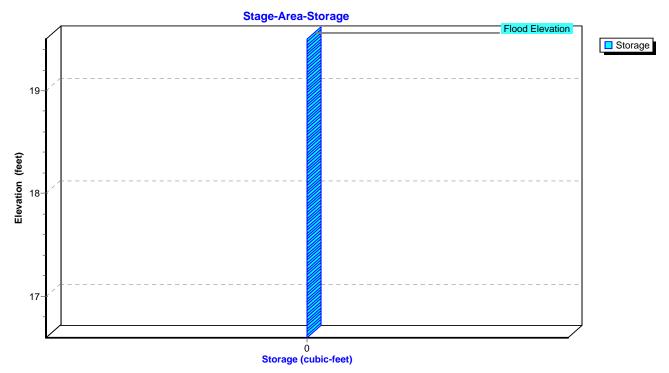

 Outflow =
 0.26 cfs @
 12.09 hrs, Volume=
 944 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.26 cfs @
 12.09 hrs, Volume=
 944 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.92' @ 12.12 hrs Flood Elev= 19.50'

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 21.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 16.60' / 16.40' S= 0.0095 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 st

Primary OutFlow Max=0.20 cfs @ 12.09 hrs HW=16.91' TW=16.80' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.20 cfs @ 1.44 fps)

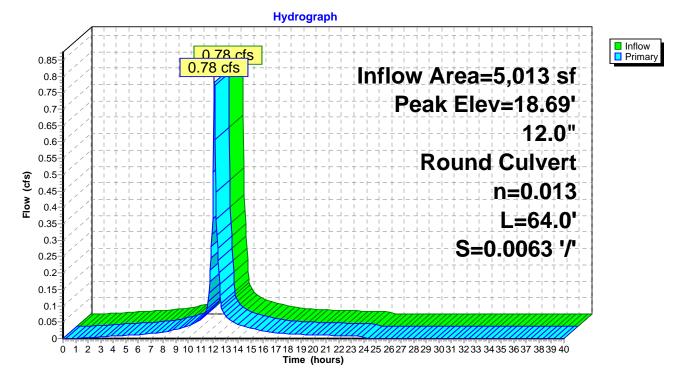


Pond CB2: PCB2

PROPOSED 12-22-17

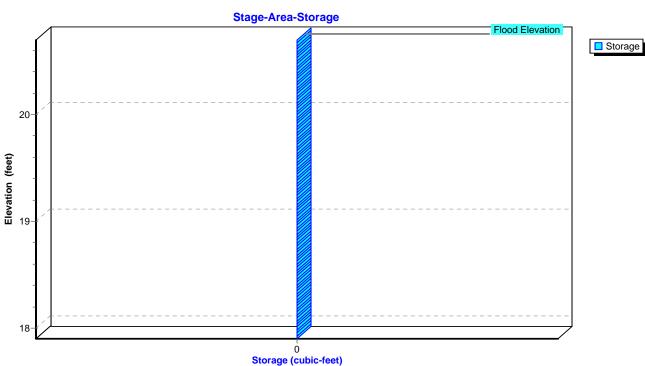
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB2: PCB2


Summary for Pond CB3: PCB3

Inflow Area = 5,013 sf, 96.69% Impervious, Inflow Depth = 6.74" for 50-yr event Inflow 0.78 cfs @ 12.09 hrs. Volume= 2.816 cf = 12.09 hrs, Volume= Outflow 0.78 cfs @ 2,816 cf, Atten= 0%, Lag= 0.0 min = 0.78 cfs @ 12.09 hrs, Volume= Primary = 2,816 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.69' @ 12.12 hrs Flood Elev= 20.70'

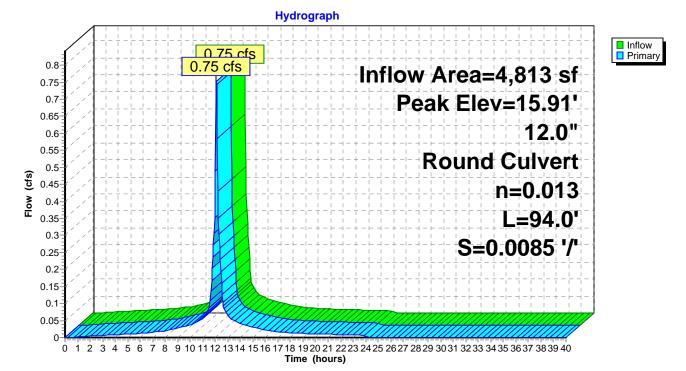

Device	Routing	Invert	Outlet Devices
#1	Primary	17.90'	12.0" Round Culvert L= 64.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 17.90' / 17.50' S= 0.0063 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.61 cfs @ 12.09 hrs HW=18.66' TW=18.56' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.61 cfs @ 1.32 fps)

Pond CB3: PCB3

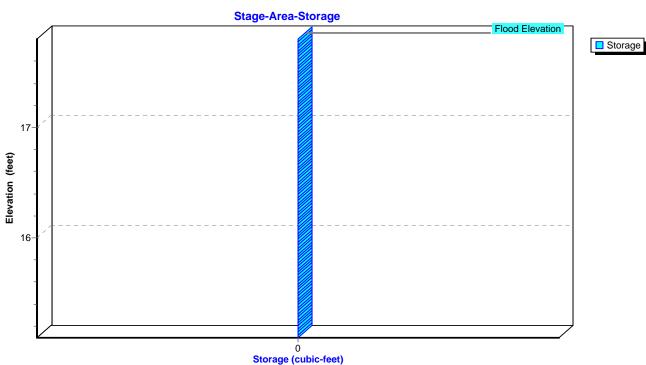
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB3: PCB3


Summary for Pond CB4: PCB4

Inflow Area = 4,813 sf,100.00% Impervious, Inflow Depth = 6.86" for 50-yr event Inflow 0.75 cfs @ 12.09 hrs. Volume= 2.752 cf = Outflow 12.09 hrs, Volume= 0.75 cfs @ 2,752 cf, Atten= 0%, Lag= 0.0 min = 0.75 cfs @ 12.09 hrs, Volume= Primary 2,752 cf =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.91' @ 12.21 hrs Flood Elev= 17.80'


Device Routing Invert Outlet Devices	
#1 Primary 15.10' 12.0" Round Culvert L= 94.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 15.10' / 14.30' S= 0.0085 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=0.43 cfs @ 12.09 hrs HW=15.64' TW=15.47' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.43 cfs @ 1.43 fps)

Pond CB4: PCB4

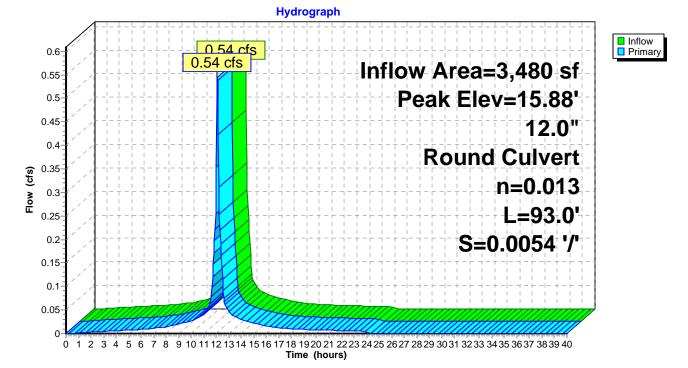
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB4: PCB4

Summary for Pond CB5: PCB5

 Inflow Area =
 3,480 sf,100.00% Impervious, Inflow Depth = 6.86" for 50-yr event

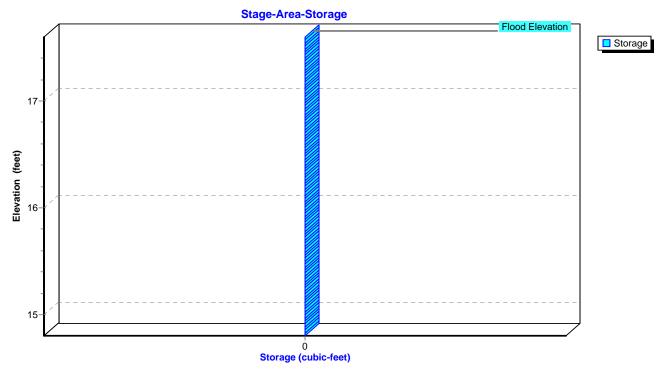
 Inflow =
 0.54 cfs @ 12.09 hrs, Volume=
 1,990 cf


 Outflow =
 0.54 cfs @ 12.09 hrs, Volume=
 1,990 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.54 cfs @ 12.09 hrs, Volume=
 1,990 cf

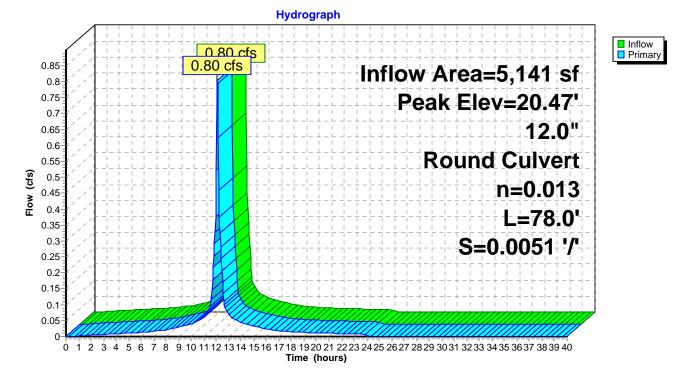
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.88' @ 12.21 hrs Flood Elev= 17.60'

#1 Primary 14.80' 12.0" Round Culvert L= 93.0' CPP, projecting, no headwall, Ke= 0.900	Device	Routing	Invert	Outlet Devices
n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		U	14.80'	L= 93.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 14.80' / 14.30' S= 0.0054 '/' Cc= 0.900


Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=15.36' TW=15.47' (Dynamic Tailwater)

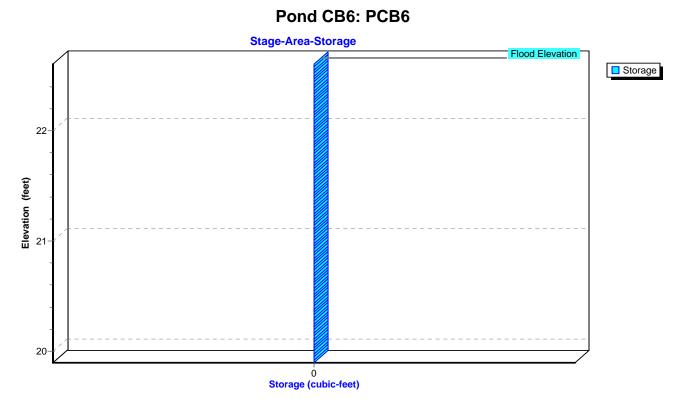
Pond CB5: PCB5

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC


Summary for Pond CB6: PCB6

Inflow Area = 5,141 sf,100.00% Impervious, Inflow Depth = 6.86" for 50-yr event Inflow 0.80 cfs @ 12.09 hrs. Volume= 2.939 cf = Outflow 12.09 hrs, Volume= 0.80 cfs @ 2,939 cf, Atten= 0%, Lag= 0.0 min = 0.80 cfs @ 12.09 hrs, Volume= Primary = 2,939 cf

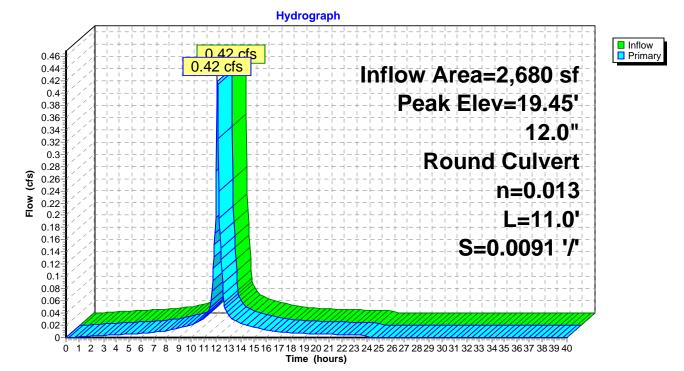
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 20.47' @ 12.10 hrs Flood Elev= 22.60'


	Device	Routing	Invert	Outlet Devices
#1 Primary 19.90' 12.0" Round Culvert L= 78.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 19.90' / 19.50' S= 0.0051 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		U	19.90'	L= 78.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 19.90' / 19.50' S= 0.0051 '/' Cc= 0.900

Primary OutFlow Max=0.73 cfs @ 12.09 hrs HW=20.46' TW=20.06' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.73 cfs @ 2.32 fps)

Pond CB6: PCB6

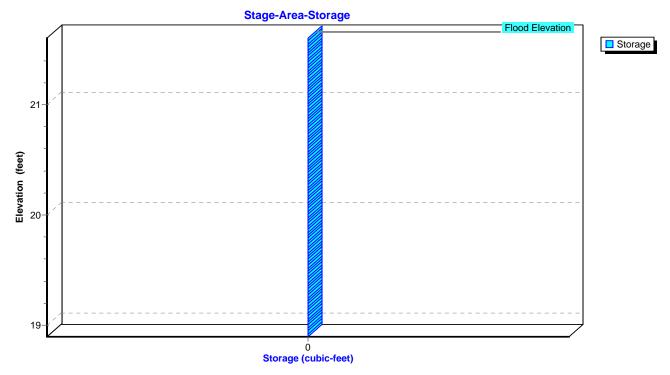
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC


Summary for Pond CB7: PCB7

Inflow Area =	2,680 sf,100.00% Impervious,	Inflow Depth = 6.86" for 50-yr event
Inflow =	0.42 cfs @ 12.09 hrs, Volume=	1,532 cf
Outflow =	0.42 cfs @ 12.09 hrs, Volume=	1,532 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.42 cfs @ 12.09 hrs, Volume=	1,532 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.45' @ 12.14 hrs Flood Elev= 21.60'

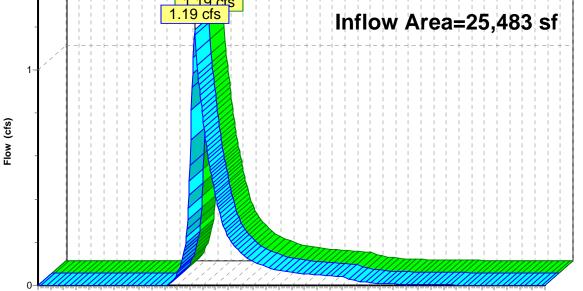
Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 11.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 18.90' / 18.80' S= 0.0091 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.23 cfs @ 12.09 hrs HW=19.42' TW=19.40' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.23 cfs @ 0.80 fps)

Pond CB7: PCB7

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB7: PCB7

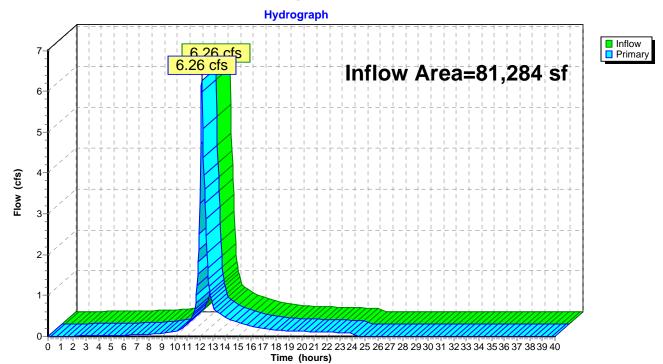

Summary for Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	25,483 sf, 55.96% Impervious, Inflow Depth > 4.91" for 50-yr event
Inflow	=	1.19 cfs @ 12.37 hrs, Volume= 10,435 cf
Primary	=	1.19 cfs @ 12.37 hrs, Volume= 10,435 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs

Pond DP1: Design Pont #1_18" RCP Culvert - Northwest Hydrograph Inflow Primary 1 19 cfs 1.19 cfs Inflow Area=25,483 sf 1

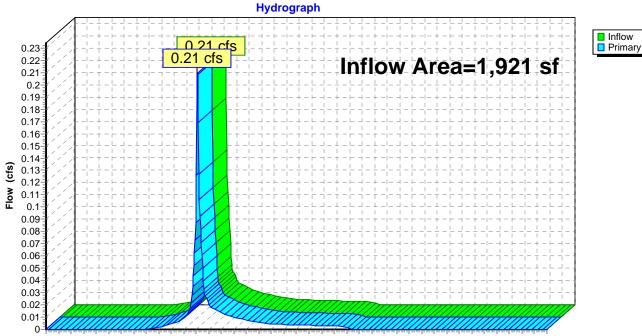

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time (hours)

Summary for Pond DP2: Design Pont #2_Wetland-South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	81,284 sf, 40.77% Impervious, Inflow Depth = 3.50" for 50-yr event
Inflow	=	6.26 cfs @ 12.12 hrs, Volume= 23,686 cf
Primary	=	6.26 cfs @ 12.12 hrs, Volume= 23,686 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs


Pond DP2: Design Pont #2_Wetland-South

Summary for Pond DP3: Design Pont #3_Abutting Lot-East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	1,921 sf, 0	0.00% Impervious,	Inflow Depth = 4.13"	for 50-yr event
Inflow	=	0.21 cfs @ 12.	2.09 hrs, Volume=	661 cf	
Primary	=	0.21 cfs @ 12.	.09 hrs, Volume=	661 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs

Pond DP3: Design Pont #3_Abutting Lot-East

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time (hours)

Summary for Pond IS: Infiltration System

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)

Inflow Area =	14,215 sf,100.00% Impervious,	Inflow Depth = 6.86" for 50-yr event
Inflow =	2.22 cfs @ 12.09 hrs, Volume=	8,127 cf
Outflow =	0.69 cfs @ 12.40 hrs, Volume=	8,127 cf, Atten= 69%, Lag= 18.7 min
Discarded =	0.28 cfs @ 11.65 hrs, Volume=	7,567 cf
Primary =	0.41 cfs @ 12.40 hrs, Volume=	560 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.26' @ 12.40 hrs Surf.Area= 1,463 sf Storage= 2,039 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 34.5 min (777.3 - 742.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.10'	670 cf	6.28'W x 109.07'L x 3.52'H Field A
			2,416 cf Overall - 741 cf Embedded = 1,675 cf x 40.0% Voids
#2A	16.60'	741 cf	Contech ChamberMaxx x 15 Inside #1
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap
			Row Length Adjustment= +0.32' x 6.92 sf x 1 rows
#3B	16.10'	601 cf	
			2,294 cf Overall - 793 cf Embedded = 1,502 cf x 40.0% Voids
#4B	16.60'	793 cf	Contech ChamberMaxx x 16 Inside #3
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap
			Row Length Adjustment= +0.32' x 6.92 sf x 2 rows
#5C	16.10'	143 cf	2.54'W x 50.00'L x 3.21'H Field C
			408 cf Overall - 50 cf Embedded = 358 cf x 40.0% Voids
#6C	17.10'	39 cf	ADS N-12 12 x 2 Inside #5
			Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf
			Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf
			Row Length Adjustment= +8.00' x 0.81 sf x 1 rows
		2,986 cf	Total Available Storage

2,986 cf I otal Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard Storage Group C created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	16.10'	8.270 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	17.90'	12.0" Round Culvert
			L= 66.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 17.90' / 16.50' S= 0.0212 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.28 cfs @ 11.65 hrs HW=16.14' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.28 cfs)

Primary OutFlow Max=0.41 cfs @ 12.40 hrs HW=18.26' TW=0.00' (Dynamic Tailwater) **2=Culvert** (Inlet Controls 0.41 cfs @ 1.61 fps)

Pond IS: Infiltration System - Chamber Wizard Field A

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 1 rows

15 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 107.07' Row Length +12.0" End Stone x 2 = 109.07' Base Length 1 Rows x 51.4" Wide + 12.0" Side Stone x 2 = 6.28' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

15 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 1 Rows = 741.1 cf Chamber Storage

2,415.8 cf Field - 741.1 cf Chambers = 1,674.7 cf Stone x 40.0% Voids = 669.9 cf Stone Storage

Chamber Storage + Stone Storage = 1,411.0 cf = 0.032 afOverall Storage Efficiency = 58.4%Overall System Size = $109.07' \times 6.28' \times 3.52'$

15 Chambers 89.5 cy Field 62.0 cy Stone

Pond IS: Infiltration System - Chamber Wizard Field B

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 2 rows

51.4" Wide + 5.0" Spacing = 56.4" C-C Row Spacing


8 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 57.25' Row Length +12.0" End Stone x 2 = 59.25' Base Length 2 Rows x 51.4" Wide + 5.0" Spacing x 1 + 12.0" Side Stone x 2 = 10.98' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

16 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 2 Rows = 792.6 cf Chamber Storage

2,294.1 cf Field - 792.6 cf Chambers = 1,501.5 cf Stone x 40.0% Voids = 600.6 cf Stone Storage

Chamber Storage + Stone Storage = 1,393.2 cf = 0.032 afOverall Storage Efficiency = 60.7%Overall System Size = $59.25' \times 10.98' \times 3.52'$

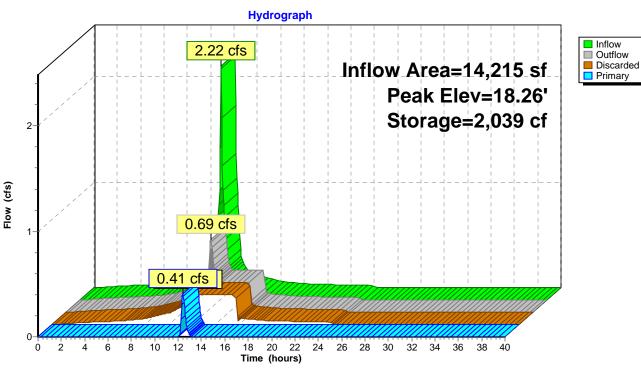
16 Chambers 85.0 cy Field 55.6 cy Stone

Pond IS: Infiltration System - Chamber Wizard Field C

Chamber Model = ADS N-12 12 (ADS N-12® Pipe)

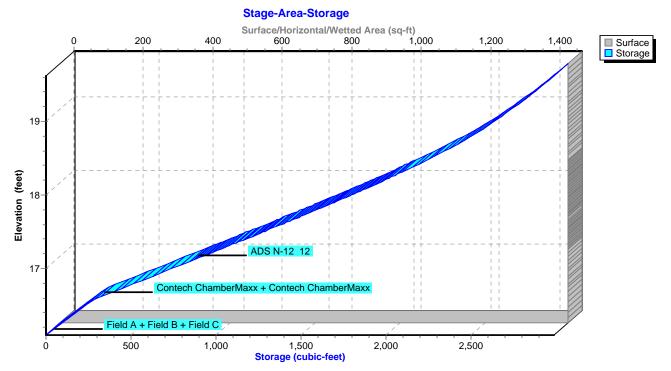
Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf Row Length Adjustment= +8.00' x 0.81 sf x 1 rows

2 Chambers/Row x 20.00' Long +8.00' Row Adjustment = 48.00' Row Length +12.0" End Stone x 2 = 50.00' Base Length 1 Rows x 14.5" Wide + 8.0" Side Stone x 2 = 2.54' Base Width


12.0" Base + 14.5" Chamber Height + 12.0" Cover = 3.21' Field Height

2 Chambers x 16.2 cf +8.00' Row Adjustment x 0.81 sf x 1 Rows = 38.9 cf Chamber Storage 2 Chambers x 20.9 cf +8.00' Row Adjustment x 1.05 sf x 1 Rows = 50.2 cf Displacement

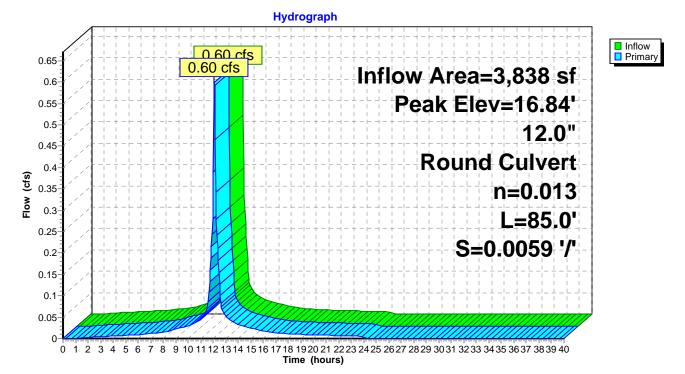
407.9 cf Field - 50.2 cf Chambers = 357.7 cf Stone x 40.0% Voids = 143.1 cf Stone Storage


Chamber Storage + Stone Storage = 181.9 cf = 0.004 afOverall Storage Efficiency = 44.6%Overall System Size = $50.00' \times 2.54' \times 3.21'$

2 Chambers 15.1 cy Field 13.2 cy Stone

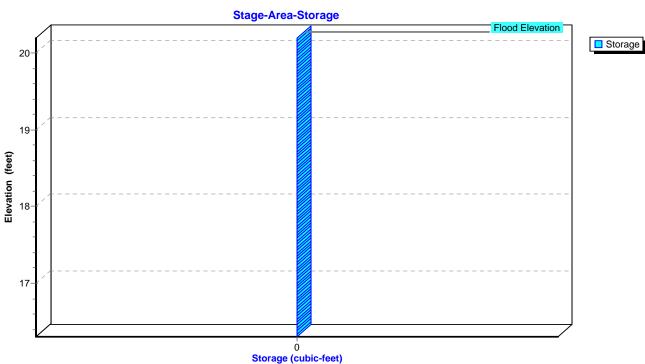
Pond IS: Infiltration System

Pond IS: Infiltration System


Summary for Pond MH1: PDMH1

Inflow Area =3,838 sf, 97.68% Impervious, Inflow Depth =6.79" for 50-yr eventInflow =0.60 cfs @12.09 hrs, Volume=2,173 cfOutflow =0.60 cfs @12.09 hrs, Volume=2,173 cf, Atten= 0%, Lag= 0.0 minPrimary =0.60 cfs @12.09 hrs, Volume=2,173 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.84' @ 12.14 hrs Flood Elev= 20.20'

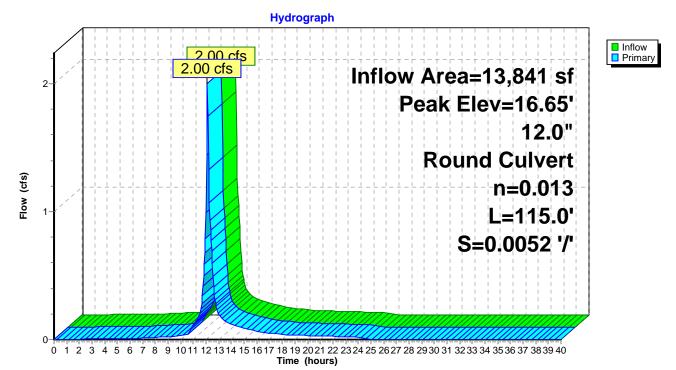

Device	Routing	Invert	Outlet Devices
#1	Primary	16.30'	12.0" Round Culvert
			L= 85.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 16.30' / 15.80' S= 0.0059 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.43 cfs @ 12.09 hrs HW=16.80' TW=16.59' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.43 cfs @ 1.60 fps)

Pond MH1: PDMH1

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond MH1: PDMH1


Summary for Pond MH2: PDMH2

Inflow Area =13,841 sf, 76.82% Impervious, Inflow Depth =5.61" for 50-yr eventInflow =2.00 cfs @12.11 hrs, Volume =6,476 cfOutflow =2.00 cfs @12.11 hrs, Volume =6,476 cf, Atten =Primary =2.00 cfs @12.11 hrs, Volume =6,476 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.65' @ 12.13 hrs Flood Elev= 21.20'

Device	Routing	Invert	Outlet Devices
	Primary		12.0" Round Culvert L= 115.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 15.70' / 15.10' S= 0.0052 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

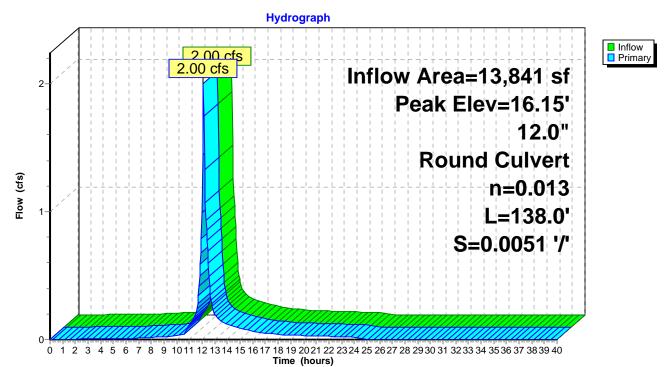
Primary OutFlow Max=1.72 cfs @ 12.11 hrs HW=16.64' TW=16.02' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.72 cfs @ 2.90 fps)

Pond MH2: PDMH2

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

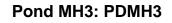
Pond MH2: PDMH2

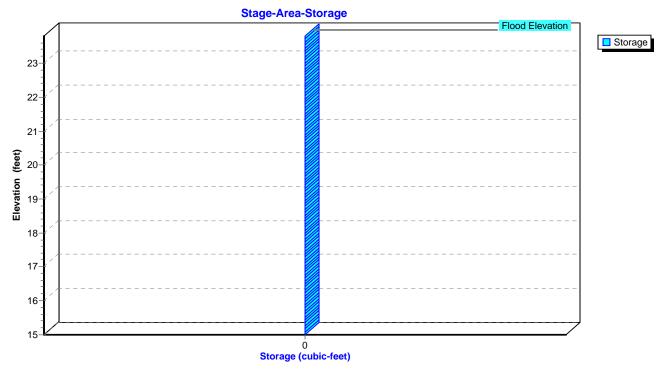
0 Storage (cubic-feet)


Summary for Pond MH3: PDMH3

Inflow Area =13,841 sf, 76.82% Impervious, Inflow Depth =5.61" for 50-yr eventInflow =2.00 cfs @12.11 hrs, Volume =6,476 cfOutflow =2.00 cfs @12.11 hrs, Volume =6,476 cf, Atten =Primary =2.00 cfs @12.11 hrs, Volume =6,476 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.15' @ 12.19 hrs Flood Elev= 23.80'


Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 138.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 15.00' / 14.30' S= 0.0051 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=1.40 cfs @ 12.11 hrs HW=16.02' TW=15.63' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.40 cfs @ 2.18 fps)

Pond MH3: PDMH3

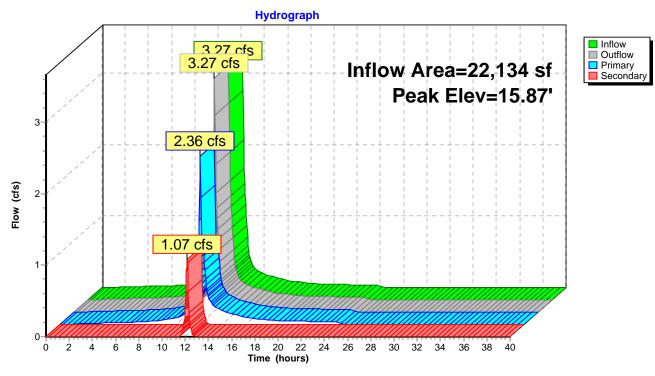
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Summary for Pond MH4: PDMH4

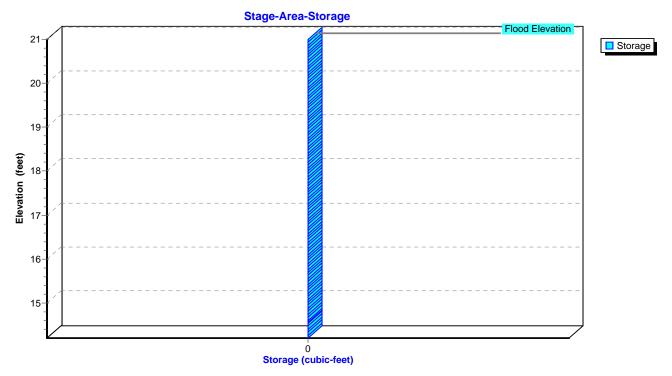
[80] Warning: Exceeded Pond CB4 by 0.11' @ 12.15 hrs (0.57 cfs 102 cf) [80] Warning: Exceeded Pond CB5 by 0.24' @ 12.15 hrs (1.29 cfs 370 cf)

Inflow Area =	22,134 sf, 85.50% Impervious,	Inflow Depth = 6.08" for 50-yr event
Inflow =	3.27 cfs @ 12.10 hrs, Volume=	11,217 cf
Outflow =	3.27 cfs @ 12.10 hrs, Volume=	11,217 cf, Atten= 0%, Lag= 0.0 min
Primary =	2.36 cfs @ 12.09 hrs, Volume=	10,018 cf
Secondary =	1.07 cfs @ 12.18 hrs, Volume=	1,200 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.87' @ 12.16 hrs Flood Elev= 21.00'


Device	Routing	Invert	Outlet Devices
#1	Primary	14.20'	12.0" Round Culvert L= 6.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= $14.20'$ / $14.10'$ S= $0.0167'$ // Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Secondary	14.20'	12.0" Round Culvert L= 8.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 14.20' / 13.70' S= 0.0625 '/' Cc= 0.900
#3	Device 2	14.55'	n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf 0.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=0.90 cfs @ 12.09 hrs HW=15.51' TW=15.42' (Dynamic Tailwater)


Secondary OutFlow Max=1.13 cfs @ 12.18 hrs HW=15.80' TW=14.72' (Dynamic Tailwater) **2=Culvert** (Passes 1.13 cfs of 3.11 cfs potential flow)

1-3=Sharp-Crested Rectangular Weir (Weir Controls 1.13 cfs @ 3.59 fps)

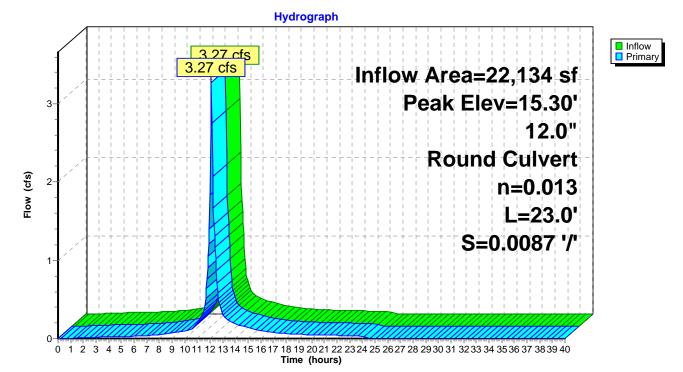
Pond MH4: PDMH4

Pond MH4: PDMH4

Summary for Pond MH5: PDMH5

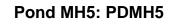
 Inflow Area =
 22,134 sf, 85.50% Impervious, Inflow Depth = 6.08" for 50-yr event

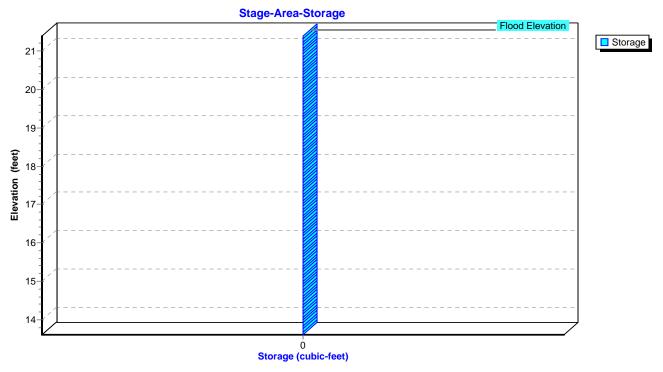
 Inflow =
 3.27 cfs @ 12.10 hrs, Volume=
 11,218 cf


 Outflow =
 3.27 cfs @ 12.10 hrs, Volume=
 11,218 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 3.27 cfs @ 12.10 hrs, Volume=
 11,218 cf

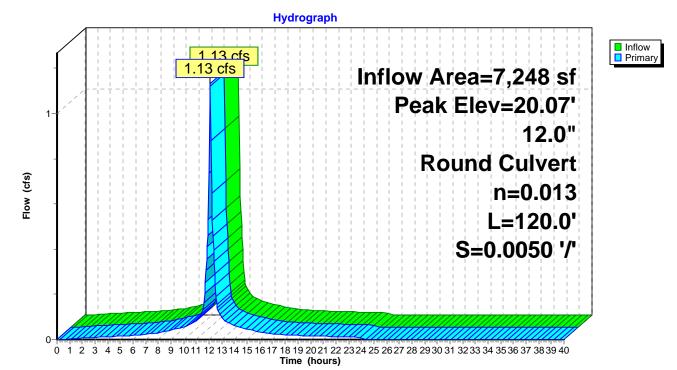
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.30' @ 12.10 hrs Flood Elev= 21.40'


Device	Routing	Invert	Outlet Devices	
<u></u> #1	Primary		12.0" Round Culvert L= 23.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 13.60' / 13.40' S= 0.0087 '/' Cc= 0.900	
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	


Primary OutFlow Max=3.25 cfs @ 12.10 hrs HW=15.28' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.25 cfs @ 4.14 fps)

Pond MH5: PDMH5

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC


Summary for Pond MH6: PDMH6

Inflow Area =7,248 sf,100.00% Impervious, Inflow Depth =6.86" for 50-yr eventInflow =1.13 cfs @12.09 hrs, Volume=4,144 cfOutflow =1.13 cfs @12.09 hrs, Volume=4,144 cf, Atten= 0%, Lag= 0.0 minPrimary =1.13 cfs @12.09 hrs, Volume=4,144 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 20.07' @ 12.09 hrs Flood Elev= 23.80'

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 120.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 19.40' / 18.80' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.06 cfs @ 12.09 hrs HW=20.06' TW=19.40' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.06 cfs @ 2.74 fps)

Pond MH6: PDMH6

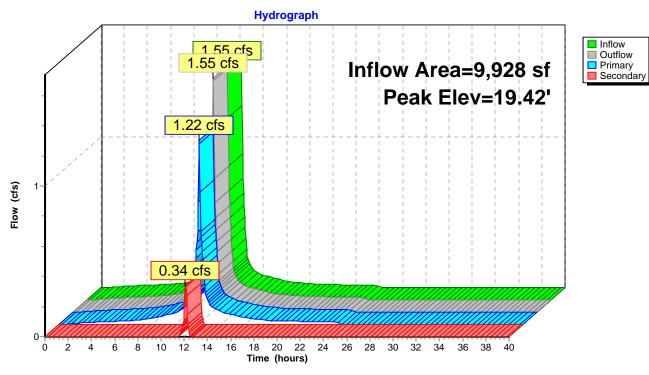
PROPOSED 12-22-17TyPrepared by Lynnfield Engineering Inc.TyHydroCAD® 10.00-18s/n 06609© 2016 HydroCAD Software Solutions LLC

Pond MH6: PDMH6

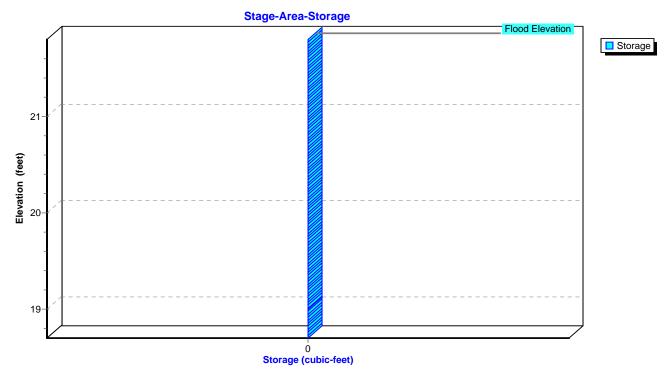
0 Storage (cubic-feet)

Summary for Pond MH7: PDMH7

[80] Warning: Exceeded Pond CB7 by 0.02' @ 12.05 hrs (0.18 cfs 32 cf)


Inflow Area =	9,928 sf,100.00% Impervious,	Inflow Depth = 6.86" for 50-yr event
Inflow =	1.55 cfs @ 12.09 hrs, Volume=	5,676 cf
Outflow =	1.55 cfs @ 12.09 hrs, Volume=	5,676 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.22 cfs @ 12.08 hrs, Volume=	5,289 cf
Secondary =	0.34 cfs @ 12.11 hrs, Volume=	387 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.42' @ 12.13 hrs Flood Elev= 21.80'

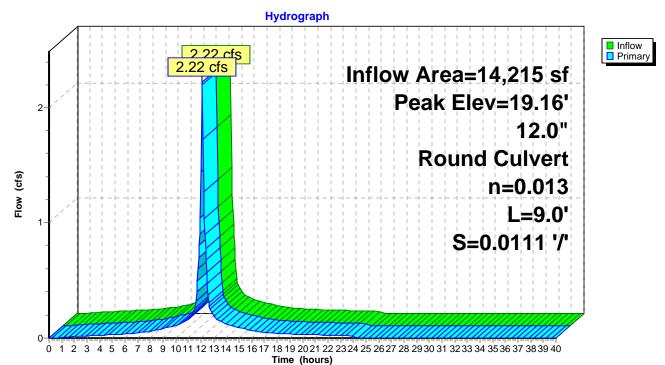

Device	Routing	Invert	Outlet Devices
#1	Primary	18.70'	12.0" Round Culvert L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.70' / 18.60' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Secondary	18.70'	12.0" Round Culvert L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.70' / 18.20' S= 0.0500 '/' Cc= 0.900
#3	Device 2	19.00'	n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf 0.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=0.95 cfs @ 12.08 hrs HW=19.40' TW=19.21' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.95 cfs @ 1.64 fps)

Secondary OutFlow Max=0.34 cfs @ 12.11 hrs HW=19.41' TW=19.11' (Dynamic Tailwater) 2=Culvert (Passes 0.34 cfs of 1.23 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Weir Controls 0.34 cfs @ 1.97 fps) Pond MH7: PDMH7

Pond MH7: PDMH7

Summary for Pond MH8: PDMH8


[80] Warning: Exceeded Pond WQU2 by 0.01' @ 12.05 hrs (0.30 cfs 53 cf)

Inflow Area =		14,215 sf	,100.00% Impervious,	Inflow Depth = 6.86"	for 50-yr event		
Inflow	=	2.22 cfs @	12.09 hrs, Volume=	8,127 cf			
Outflow	=	2.22 cfs @	12.09 hrs, Volume=	8,127 cf, Atte	n= 0%, Lag= 0.0 min		
Primary	=	2.22 cfs @	12.09 hrs, Volume=	8,127 cf	-		
Routing by Dyn-Stor-Ind method. Time Span= $0.00-40.00$ hrs. dt= 0.05 hrs.							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.16' @ 12.09 hrs Flood Elev= 22.00'

Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 9.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 18.10' / 18.00' S= 0.0111 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.16 cfs @ 12.09 hrs HW=19.13' TW=17.40' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 2.16 cfs @ 3.30 fps)

Pond MH8: PDMH8

PROPOSED 12-22-17TyPrepared by Lynnfield Engineering Inc.TyHydroCAD® 10.00-18s/n 06609© 2016 HydroCAD Software Solutions LLC

Stage-Area-Storage

Pond MH8: PDMH8

Summary for Pond RG1: Rain Garden #1

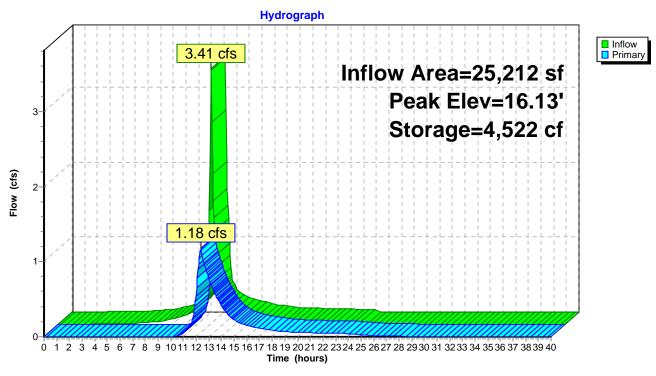
Inflow Area =		25,212 sf, 56.56% Impervious, I	Inflow Depth = 5.39" for 50-yr event
Inflow	=	3.41 cfs @ 12.09 hrs, Volume=	11,324 cf
Outflow	=	1.18 cfs @ 12.37 hrs, Volume=	10,342 cf, Atten= 65%, Lag= 17.1 min
Primary	=	1.18 cfs @ 12.37 hrs, Volume=	10,342 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.13' @ 12.37 hrs Surf.Area= 6,345 sf Storage= 4,522 cf Flood Elev= 16.70' Surf.Area= 6,703 sf Storage= 6,272 cf

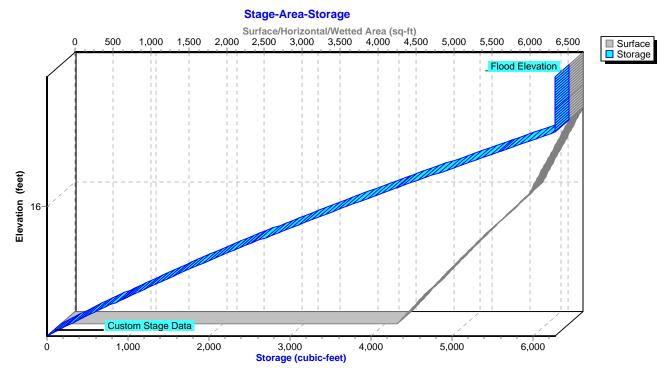
Plug-Flow detention time= 145.0 min calculated for 10,342 cf (91% of inflow) Center-of-Mass det. time= 101.1 min (888.0 - 786.9)

Volume	Invert	Avail.S	Storage	Storage Description	n	
#1	15.30'	6	6,272 cf	Custom Stage Dat	ta (Irregular) Listed	below (Recalc)
Elevatio		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
15.3 16.0 16.3 16.4	00 30	4,439 6,173 6,569 6,703	288.0 327.0 334.0 337.0	0 3,698 1,911 664	0 3,698 5,609 6,272	4,439 6,360 6,741 6,905
Device #1	Routing Primary	Inve 15.3	5' 8.0 " L= 6	et Devices Round Culvert X 2 5.0' CPP, mitered t / Outlet Invert= 15.3	to conform to fill, K	
#2 #3 #4	Device 1 Device 1 Device 1	15.5 15.8 16.1	n= 0 0' 4.0" 0' 4.0" 0' 24.0	.013 Corrugated PE Vert. Orifice/Grate Vert. Orifice/Grate " x 24.0" Horiz. Orificed to weir flow at low	E, smooth interior, X 3.00 C= 0.600 C= 0.600 fice/Grate C= 0.60	Flow Area= 0.35 sf

Primary OutFlow Max=1.17 cfs @ 12.37 hrs HW=16.13' TW=0.00' (Dynamic Tailwater)


-1=Culvert (Passes 1.17 cfs of 1.83 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.86 cfs @ 3.28 fps)


-3=Orifice/Grate (Orifice Controls 0.17 cfs @ 1.96 fps)

-4=Orifice/Grate (Weir Controls 0.14 cfs @ 0.58 fps)

Pond RG1: Rain Garden #1

Pond RG1: Rain Garden #1

Summary for Pond RG2: Rain Garden #2

[80] Warning: Exceeded Pond CB3 by 0.23' @ 24.45 hrs (0.12 cfs 1,156 cf)

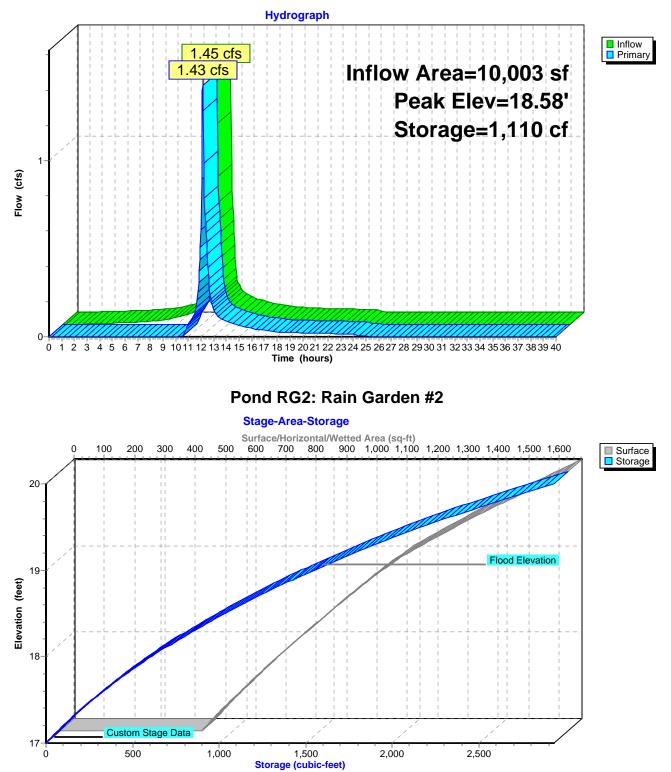
Inflow Area =	10,003 sf, 68.81% Impervious,	Inflow Depth = 5.99" for 50-yr event
Inflow =	1.45 cfs @ 12.09 hrs, Volume=	4,993 cf
Outflow =	1.43 cfs @ 12.12 hrs, Volume=	4,303 cf, Atten= 2%, Lag= 1.7 min
Primary =	1.43 cfs @ 12.12 hrs, Volume=	4,303 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.58' @ 12.12 hrs Surf.Area= 961 sf Storage= 1,110 cf Flood Elev= 19.00' Surf.Area= 1,118 sf Storage= 1,546 cf

Plug-Flow detention time= 120.9 min calculated for 4,303 cf (86% of inflow) Center-of-Mass det. time= 59.4 min (829.6 - 770.1)

Volume	Inve	ert Avai	I.Storage	Storage Description					
#1	17.0)0'	2,934 cf	Custom Stage Da	Custom Stage Data (Irregular)Listed below (Recalc)				
			Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>			
17.0	00	468	89.0	0	0	468			
18.0	00	765	108.0	610	610	782			
19.0	00	1,118	127.0	936	1,546	1,156			
20.0	20.00 1,676 152.0		152.0	1,388	2,934	1,728			
Device	Routing	In	vert Outle	et Devices					
#1	Primary	16	.50' 12.0	" Round Culvert)	(2.00				
		L= 53.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 16.50' / 15.80' S= 0.0132 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf							
#2 Device 1 18.10' 4		.10' 4.0"	4.0" Vert. Orifice/Grate X 3.00 C= 0.600						
#3	Device 1	18	.30' 4.0 "	4.0" Vert. Orifice/Grate C= 0.600					
#4	Device 1	18		24.0 vert. Ornice/Grate C= 0.600 24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads					

Primary OutFlow Max=1.36 cfs @ 12.12 hrs HW=18.57' TW=16.64' (Dynamic Tailwater)


-1=Culvert (Passes 1.36 cfs of 8.37 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.70 cfs @ 2.67 fps)

-3=Orifice/Grate (Orifice Controls 0.14 cfs @ 1.78 fps)

-4=Orifice/Grate (Weir Controls 0.52 cfs @ 0.89 fps)

Pond RG2: Rain Garden #2

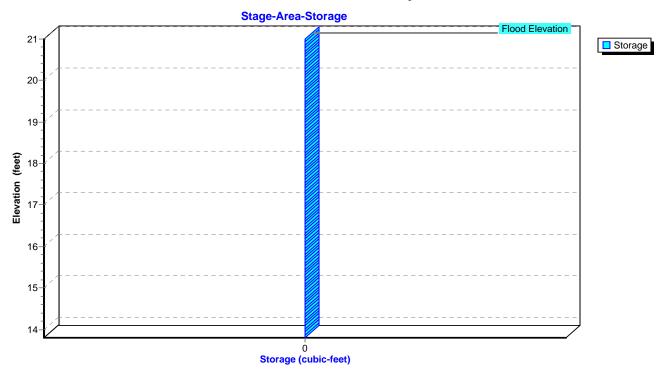
Summary for Pond WQU1: Water Quality Unit 1

 Inflow Area =
 22,134 sf, 85.50% Impervious, Inflow Depth = 5.43" for 50-yr event

 Inflow =
 2.36 cfs @ 12.09 hrs, Volume=
 10,018 cf

 Outflow =
 2.36 cfs @ 12.09 hrs, Volume=
 10,018 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 2.36 cfs @ 12.09 hrs, Volume=
 10,018 cf


Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 15.68' @ 12.13 hrs Flood Elev= 21.00'

Device	Routing	Invert	Outlet Devices
	Primary	13.80'	12.0" Round Culvert L= 9.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 13.80' / 13.70' S= 0.0111 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			5

Primary OutFlow Max=1.29 cfs @ 12.09 hrs HW=15.42' TW=15.24' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.29 cfs @ 1.64 fps)

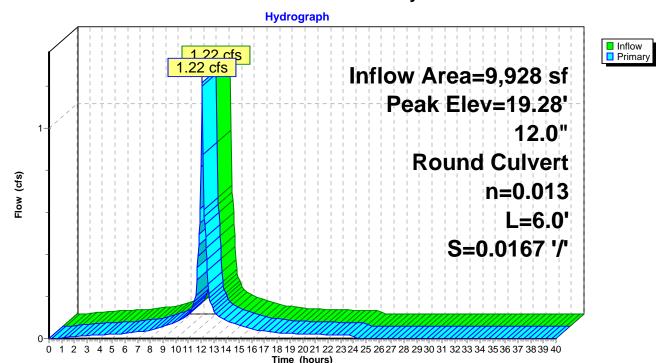
Pond WQU1: Water Quality Unit 1

Pond WQU1: Water Quality Unit 1

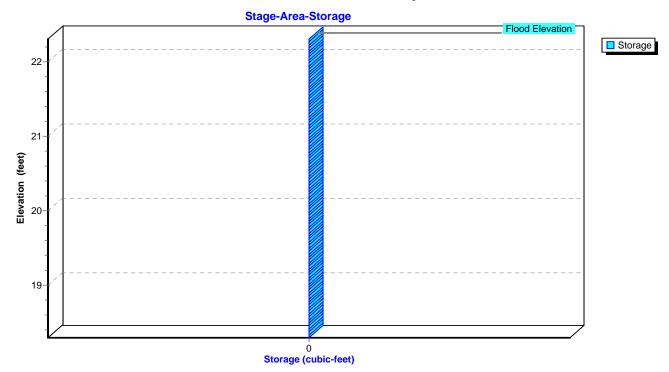
Summary for Pond WQU2: Water Quality Unit 2

 Inflow Area =
 9,928 sf,100.00% Impervious, Inflow Depth = 6.39" for 50-yr event

 Inflow =
 1.22 cfs @ 12.08 hrs, Volume=
 5,289 cf


 Outflow =
 1.22 cfs @ 12.08 hrs, Volume=
 5,289 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.22 cfs @ 12.08 hrs, Volume=
 5,289 cf


Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.28' @ 12.12 hrs Flood Elev= 22.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	18.30'	12.0" Round Culvert
			L= 6.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.30' / 18.20' S= 0.0167 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.80 cfs @ 12.08 hrs HW=19.21' TW=19.13' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.80 cfs @ 1.06 fps)

Pond WQU2: Water Quality Unit 2

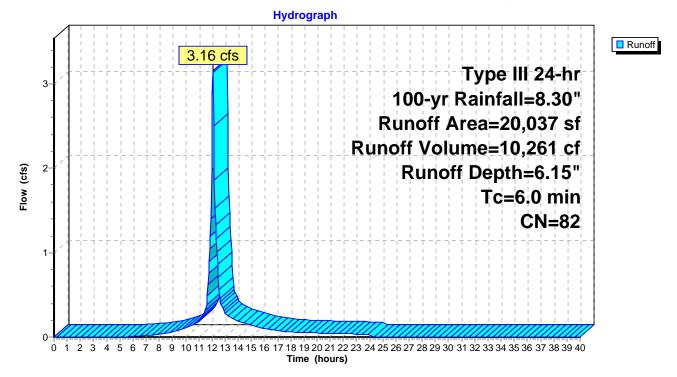
Pond WQU2: Water Quality Unit 2

Proposed Conditions Analysis 100-Year 24-Hour Storm Event

PROPOSED 12-22-17 Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 Hydro	Type III 24-hr 100-yr Rainfall=8.30"Printed 12/22/2017CAD Software Solutions LLCPage 263
Runoff by SCS TR-	40.00 hrs, dt=0.05 hrs, 801 points 20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment 100: 100 - Pavement, Lawn,	Runoff Area=20,037 sf 45.35% Impervious Runoff Depth=6.15" Tc=6.0 min CN=82 Runoff=3.16 cfs 10,261 cf
Subcatchment 101: 101 - West Side Lawn t	• Runoff Area=271 sf 0.00% Impervious Runoff Depth=5.19" Tc=6.0 min CN=74 Runoff=0.04 cfs 117 cf
Subcatchment 102: 102 - Existing Building	Runoff Area=5,175 sf 100.00% Impervious Runoff Depth=8.06" Tc=6.0 min CN=98 Runoff=0.95 cfs 3,476 cf
Subcatchment 200: 200 - Portion of	Runoff Area=2,107 sf 100.00% Impervious Runoff Depth=8.06" Tc=6.0 min CN=98 Runoff=0.38 cfs 1,415 cf
Subcatchment 201: 201 - Pavement	Runoff Area=2,187 sf 95.93% Impervious Runoff Depth=7.94" Tc=6.0 min CN=97 Runoff=0.40 cfs 1,447 cf
Subcatchment 202: 202 - Pavement	Runoff Area=1,651 sf 100.00% Impervious Runoff Depth=8.06" Tc=6.0 min CN=98 Runoff=0.30 cfs 1,109 cf
Subcatchment 203: 203 - Pavement	Runoff Area=5,013 sf 96.69% Impervious Runoff Depth=7.94" Tc=6.0 min CN=97 Runoff=0.91 cfs 3,317 cf
Subcatchment 204: 204 - Pavement	Runoff Area=4,813 sf 100.00% Impervious Runoff Depth=8.06" Tc=6.0 min CN=98 Runoff=0.88 cfs 3,233 cf
Subcatchment 205: 205 - Pavement	Runoff Area=3,480 sf 100.00% Impervious Runoff Depth=8.06" Tc=6.0 min CN=98 Runoff=0.64 cfs 2,337 cf
Subcatchment 206: 206 - Pavement	Runoff Area=5,141 sf 100.00% Impervious Runoff Depth=8.06" Tc=6.0 min CN=98 Runoff=0.94 cfs 3,453 cf
Subcatchment 207: 207 - Pavement	Runoff Area=2,680 sf 100.00% Impervious Runoff Depth=8.06" Tc=6.0 min CN=98 Runoff=0.49 cfs 1,800 cf
Subcatchment 208: 208 - Proposed	Runoff Area=4,287 sf 100.00% Impervious Runoff Depth=8.06" Tc=6.0 min CN=98 Runoff=0.78 cfs 2,879 cf
Subcatchment 209: 209 - Portion of	Runoff Area=4,990 sf 40.80% Impervious Runoff Depth=6.38" Tc=6.0 min CN=84 Runoff=0.81 cfs 2,655 cf
Subcatchment 210: 210 - Existing South	Runoff Area=44,935 sf 0.00% Impervious Runoff Depth=4.14" www.Length=210' Tc=10.6 min CN=65 Runoff=4.24 cfs 15,496 cf
Subcatchment 300: 300 - Lawn East to DP3	-
Pond CB1: PCB1 12.0" Round	Peak Elev=17.12' Inflow=0.40 cfs 1,447 cf Culvert n=0.013 L=21.0' S=0.0095 '/' Outflow=0.40 cfs 1,447 cf

PROPOSED 12-22- Prepared by Lynnfield HydroCAD® 10.00-18 s/	· · ·	0- <i>yr Rainfall=8.30"</i> Printed 12/22/2017 Page 264
Pond CB2: PCB2	Peak Elev=17.12' Infl 12.0" Round Culvert n=0.013 L=21.0' S=0.0095 '/' Outfl	,
Pond CB3: PCB3	Peak Elev=18.74' Infl 12.0" Round Culvert n=0.013 L=64.0' S=0.0063 '/' Outfl	
Pond CB4: PCB4	Peak Elev=16.47' Infl 12.0" Round Culvert n=0.013 L=94.0' S=0.0085 '/' Outfl	
Pond CB5: PCB5	Peak Elev=16.46' Infl 12.0" Round Culvert n=0.013 L=93.0' S=0.0054 '/' Outfl	
Pond CB6: PCB6	Peak Elev=20.53' Infl 12.0" Round Culvert n=0.013 L=78.0' S=0.0051 '/' Outfl	
Pond CB7: PCB7	Peak Elev=19.61' Infl 12.0" Round Culvert n=0.013 L=11.0' S=0.0091 '/' Outfl	,
Pond DP1: Design Po		w=1.92 cfs 12,871 cf ry=1.92 cfs 12,871 cf
Pond DP2: Design Po		w=7.85 cfs 30,083 cf ry=7.85 cfs 30,083 cf
Pond DP3: Design Po		nflow=0.26 cfs 832 cf mary=0.26 cfs 832 cf
Pond IS: Infiltration S	ystem Peak Elev=18.43' Storage=2,189 cf Infl Discarded=0.28 cfs 8,368 cf Primary=0.81 cfs 1,179 cf Outfl	
Pond MH1: PDMH1	Peak Elev=17.11' Infl 12.0" Round Culvert n=0.013 L=85.0' S=0.0059 '/' Outfl	
Pond MH2: PDMH2	Peak Elev=17.09' Infl 12.0" Round Culvert n=0.013 L=115.0' S=0.0052 '/' Outfl	
Pond MH3: PDMH3	Peak Elev=16.84' Infl 12.0" Round Culvert n=0.013 L=138.0' S=0.0051 '/' Outfl	
Pond MH4: PDMH4	Peak Elev=16.44' Inflo Primary=2.68 cfs 11,685 cf Secondary=1.60 cfs 1,723 cf Outflo	
Pond MH5: PDMH5	Peak Elev=15.79' Inflo 12.0" Round Culvert n=0.013 L=23.0' S=0.0087 '/' Outflo	
Pond MH6: PDMH6	Peak Elev=20.14' Infl 12.0" Round Culvert n=0.013 L=120.0' S=0.0050 '/' Outfl	
Pond MH7: PDMH7	Peak Elev=19.59' Infl Primary=1.44 cfs 6,136 cf Secondary=0.46 cfs 532 cf Outfl	
Pond MH8: PDMH8	Peak Elev=19.35' Infl 12.0" Round Culvert n=0.013 L=9.0' S=0.0111 '/' Outfl	

Pond RG1: Rain Garden #1	Peak Elev=16.20' Storage=4,934 cf Inflow=4.11 cfs 13,737 cf Outflow=1.90 cfs 12,754 cf
Pond RG2: Rain Garden #2	Peak Elev=18.60' Storage=1,128 cf Inflow=1.72 cfs 5,971 cf Outflow=1.69 cfs 5,282 cf
Pond WQU1: Water Quality Unit 1	Peak Elev=16.22' Inflow=2.68 cfs 11,685 cf
12.0" R	ound Culvert n=0.013 L=9.0' S=0.0111 '/' Outflow=2.68 cfs 11,685 cf
Pond WQU2: Water Quality Unit 2	Peak Elev=19.50' Inflow=1.44 cfs 6,136 cf
12.0"	Round Culvert n=0.013 L=6.0' S=0.0167 '/' Outflow=1.44 cfs 6,136 cf

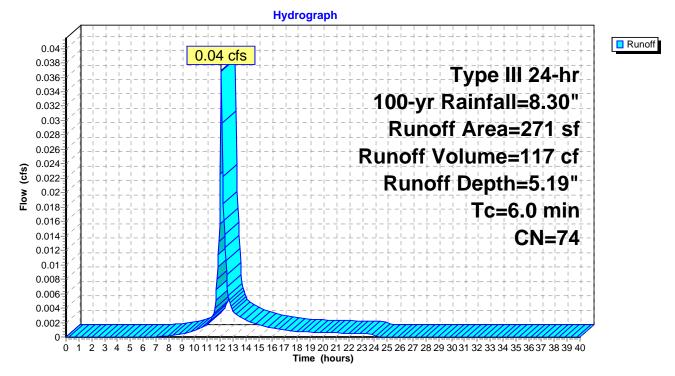

Summary for Subcatchment 100: 100 - Pavement, Lawn, and Direct Entry to Rain Garden

Runoff = 3.16 cfs @ 12.09 hrs, Volume= 10,261 cf, Depth= 6.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

	Area (sf)	CN	Description						
	4,778	74 :	>75% Gras	s cover, Go	ood, HSG C				
*	6,173	65	Rain Garde	n surface a	area				
	9,086	98	Paved park	ing, HSG C					
	20,037	82	Weighted Average						
	10,951	:	54.65% Pervious Area						
	9,086		45.35% Impervious Area						
T (min		Slope (ft/ft)		Capacity (cfs)	Description				
6.	C				Direct Entry,				

Subcatchment 100: 100 - Pavement, Lawn, and Direct Entry to Rain Garden

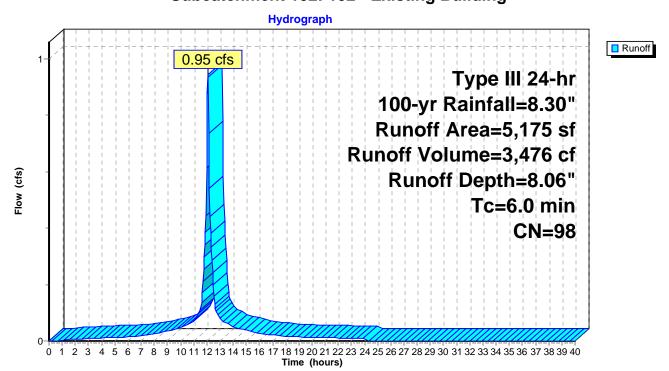

Summary for Subcatchment 101: 101 - West Side Lawn to DP1

Runoff 0.04 cfs @ 12.09 hrs, Volume= 117 cf, Depth= 5.19" _

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

A	rea (sf)	CN	CN Description					
	271	74	74 >75% Grass cover, Good, HSG C					
	271		100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 101: 101 - West Side Lawn to DP1

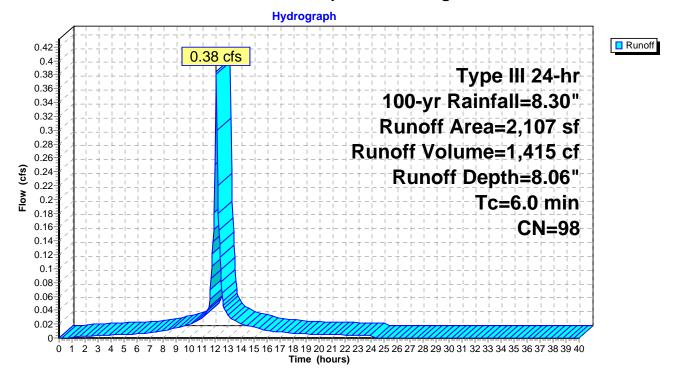


Summary for Subcatchment 102: 102 - Existing Building

Runoff = 0.95 cfs @ 12.09 hrs, Volume= 3,476 cf, Depth= 8.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

	A	rea (sf)	CN	Description					
*		5,175	98	8 Roofs, HSG C, Existing Building					
		5,175		100.00% Impervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)						
	6.0	Direct Entry,							
	Subcatchment 102: 102 - Existing Building								

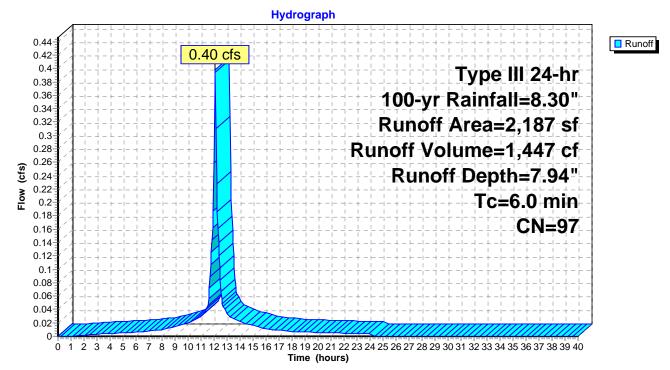

Summary for Subcatchment 200: 200 - Portion of Proposed Building Tenant A to Rain Garden #2

Runoff = 0.38 cfs @ 12.09 hrs, Volume= 1,415 cf, Depth= 8.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

	A	rea (sf)	CN [Description						
*		2,107	98 F	Roofs, HSG C, Half Prop. Building A						
		2,107		100.00% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry,				

Subcatchment 200: 200 - Portion of Proposed Building Tenant A to Rain Garden #2

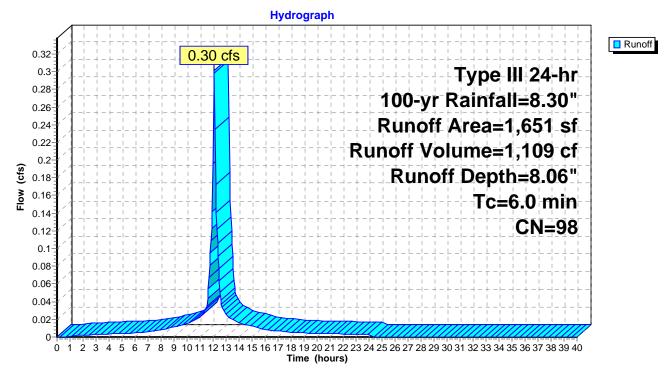

Summary for Subcatchment 201: 201 - Pavement

Runoff = 0.40 cfs @ 12.09 hrs, Volume= 1,447 cf, Depth= 7.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

Α	rea (sf)	CN	Description				
	2,098	98	Paved park	ing, HSG C	C		
	89	74	>75% Gras	s cover, Go	ood, HSG C		
	2,187	97	Weighted A	verage			
	89		4.07% Perv	rious Area			
	2,098		95.93% Impervious Area				
_		~			_		
Тс	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.0					Direct Entry,		

Subcatchment 201: 201 - Pavement

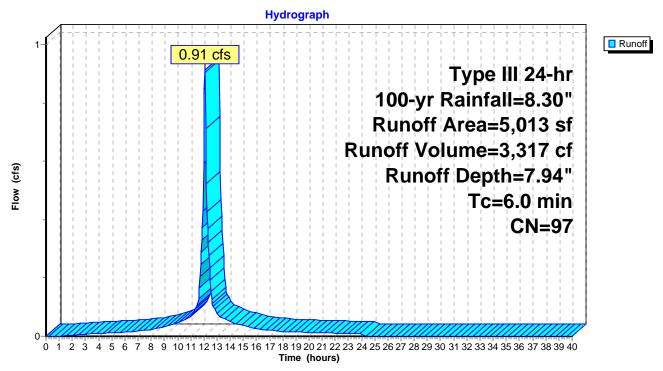

Summary for Subcatchment 202: 202 - Pavement

Runoff = 0.30 cfs @ 12.09 hrs, Volume= 1,109 cf, Depth= 8.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

A	rea (sf)	CN Description					
	1,651	98	98 Paved parking, HSG C				
	1,651	100.00% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description		
6.0					Direct Entry,		

Subcatchment 202: 202 - Pavement


Summary for Subcatchment 203: 203 - Pavement

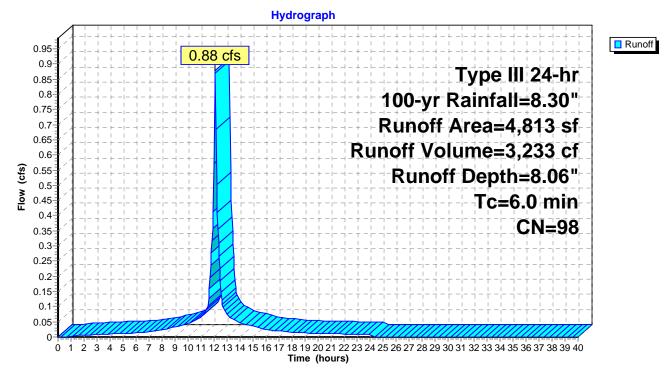
Runoff = 0.91 cfs @ 12.09 hrs, Volume= 3,317 cf, Depth= 7.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

A	rea (sf)	CN	Description		
	4,847	98	Paved park	ing, HSG C	C
	166	74	>75% Gras	s cover, Go	ood, HSG C
	5,013 166 4,847		Weighted A 3.31% Perv 96.69% Imp	ious Area	rea
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
6.0					Direct Entry,

Subcatchment 203: 203 - Pavement

Summary for Subcatchment 204: 204 - Pavement

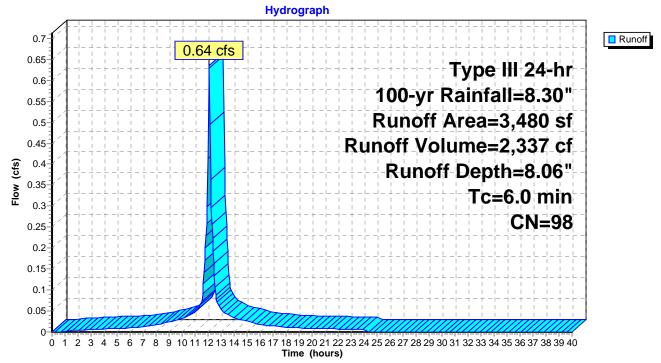

Page 273

Runoff 0.88 cfs @ 12.09 hrs, Volume= 3,233 cf, Depth= 8.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

Α	rea (sf)	CN	Description				
	4,813	98	98 Paved parking, HSG C				
	4,813	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description		
6.0			· · ·		Direct Entry,		

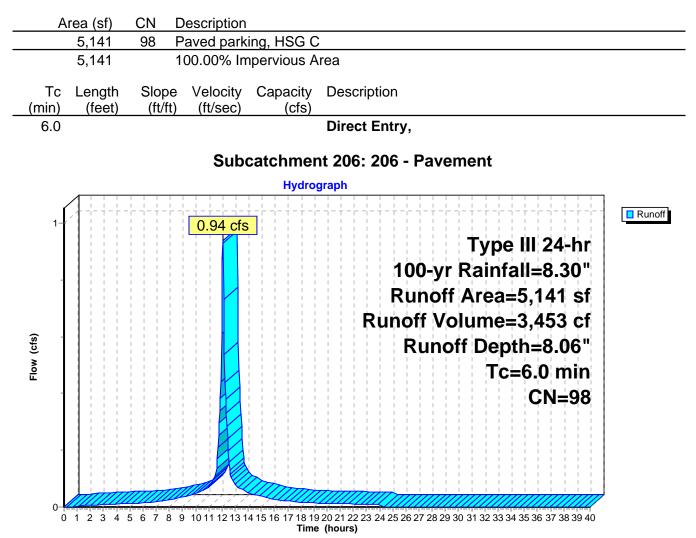
Subcatchment 204: 204 - Pavement



Summary for Subcatchment 205: 205 - Pavement

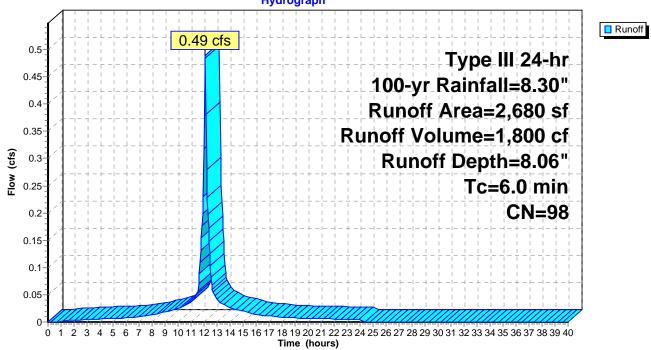
Runoff = 0.64 cfs @ 12.09 hrs, Volume= 2,337 cf, Depth= 8.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"


Α	rea (sf)	CN	Description				
	3,480	98	Paved park	ing, HSG C	C		
	3,480		100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
6.0					Direct Entry,		
	Subcatchment 205: 205 - Pavement						

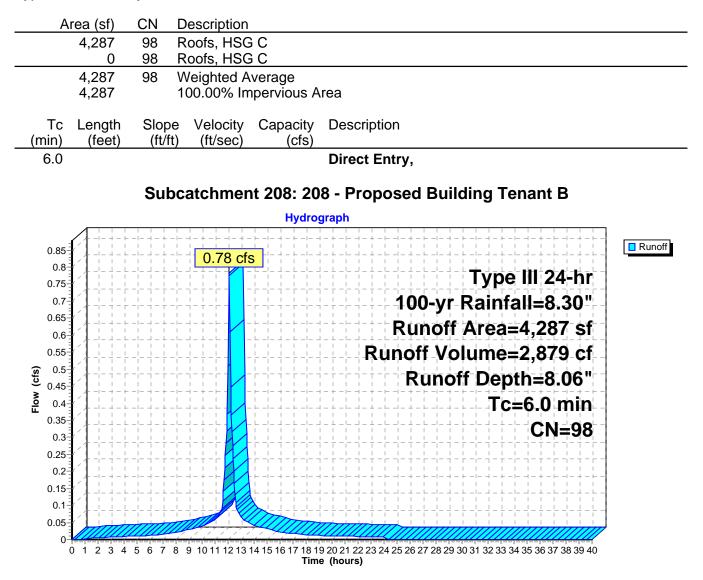
Summary for Subcatchment 206: 206 - Pavement

Runoff = 0.94 cfs @ 12.09 hrs, Volume= 3,453 cf, Depth= 8.06"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

Runoff 0.49 cfs @ 12.09 hrs, Volume= 1,800 cf, Depth= 8.06"

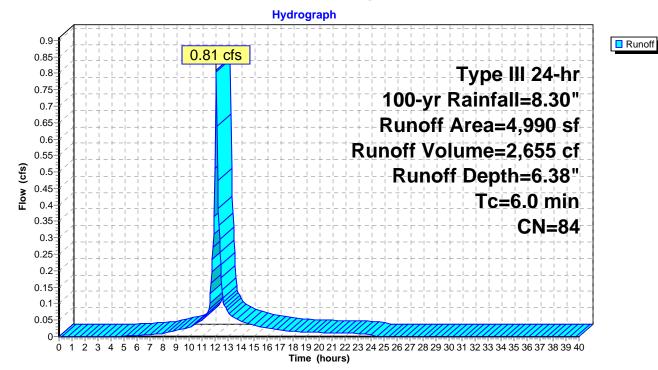
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"


Α	rea (sf)	CN E	Description				
	2,680	98 F	Paved park	ing, HSG C	C		
	2,680	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		
	Subcatchment 207: 207 - Pavement						
	Hydrograph						

Summary for Subcatchment 208: 208 - Proposed Building Tenant B

Runoff = 0.78 cfs @ 12.09 hrs, Volume= 2,879 cf, Depth= 8.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

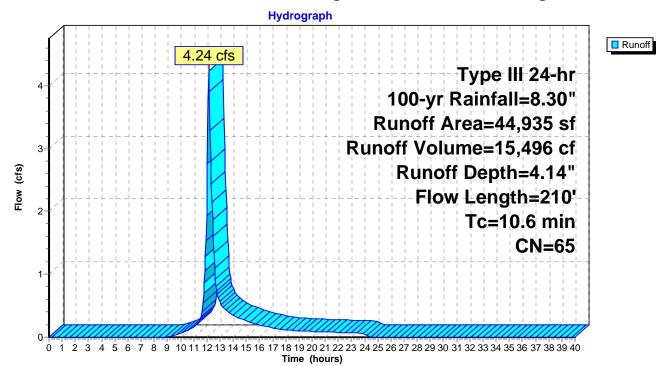

mary for Subcatchment 209: 209 - Portion of Proposed Building Tentant A, Rain Garden #2, Lawn, and V

Runoff = 0.81 cfs @ 12.09 hrs, Volume= 2,655 cf, Depth= 6.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

	A	rea (sf)	CN	Description					
*		876	65	Rain Garde	n Surface A	Area			
		2,078	79	50-75% Gra	ass cover, F	Fair, HSG C			
		84	98	Unconnecte	ed pavemer	nt, HSG C			
		1,952	98	Unconnecte	ed roofs, HS	SG C			
		4,990	84	Weighted Average					
		2,954		59.20% Pervious Area					
		2,036		40.80% Imp	pervious Ar	ea			
		2,036		100.00% Unconnected					
(r	Tc nin)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description			
	6.0					Direct Entry,			

Subcatchment 209: 209 - Portion of Proposed Building Tentant A, Rain Garden #2, Lawn, and Walkwa

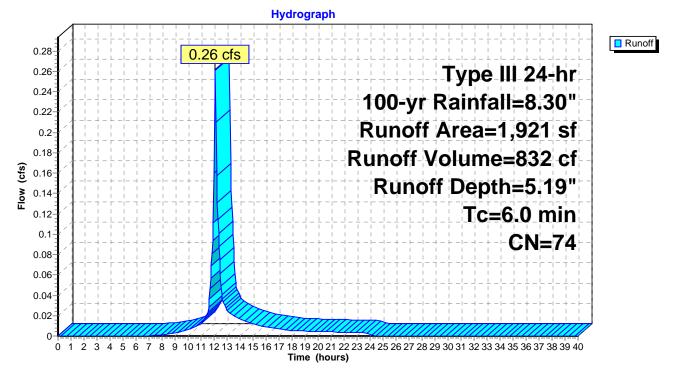

Summary for Subcatchment 210: 210 - Existing South features remaining to DP2

Runoff = 4.24 cfs @ 12.15 hrs, Volume= 15,496 cf, Depth= 4.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

_	A	rea (sf)	CN [Description			
		35,498	65 E	Brush, Goo	d, HSG C		
*		9,437	65 E	Brush, Goo	d, HSG C, '	Wetland Brush	
		44,935	65 \	Veighted A	verage		
		44,935	1	00.00% Pe	ervious Are	a	
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	9.2	100	0.0600	0.18		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 3.22"	
	1.4	110	0.0360	1.33		Shallow Concentrated Flow,	
						Short Grass Pasture Kv= 7.0 fps	
	10.6	210	Total				

Subcatchment 210: 210 - Existing South features remaining to DP2

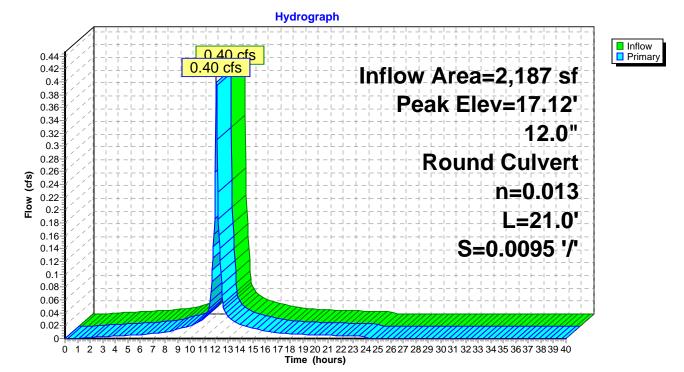

Summary for Subcatchment 300: 300 - Lawn East to DP3

Runoff 0.26 cfs @ 12.09 hrs, Volume= 832 cf, Depth= 5.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.30"

Α	rea (sf)	CN Description					
	1,921	74	74 >75% Grass cover, Good, HSG C				
	1,921		100.00% P	ervious Are	ea		
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	•		
6.0					Direct Entry,		

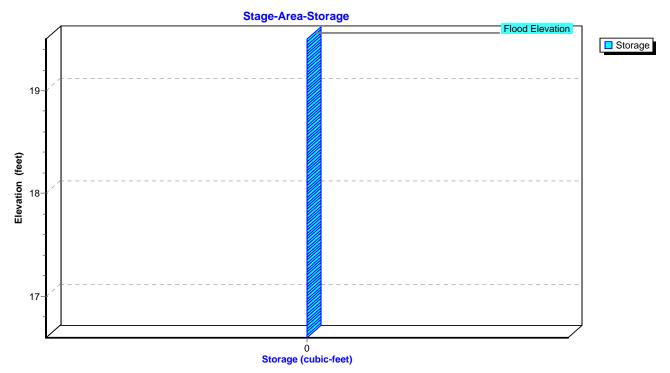
Subcatchment 300: 300 - Lawn East to DP3


Summary for Pond CB1: PCB1

Inflow Area = 2,187 sf, 95.93% Impervious, Inflow Depth = 7.94" for 100-yr event Inflow 0.40 cfs @ 12.09 hrs. Volume= 1.447 cf = 12.09 hrs, Volume= Outflow 0.40 cfs @ 1,447 cf, Atten= 0%, Lag= 0.0 min = Primary 0.40 cfs @ 12.09 hrs, Volume= = 1,447 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 17.12' @ 12.31 hrs Flood Elev= 19.50'

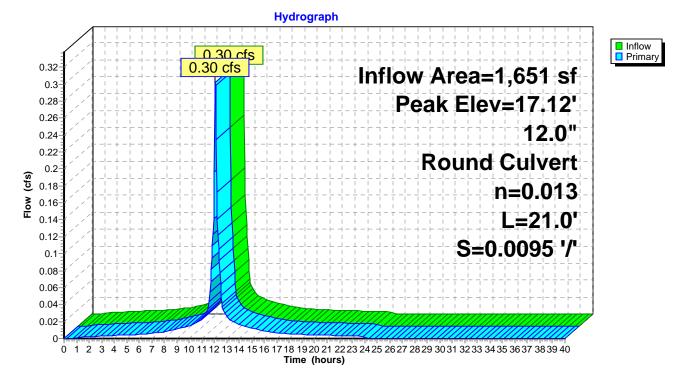
Device	Routing	Invert	Outlet Devices
#1	Primary	16.60'	12.0" Round Culvert L= 21.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $16.60' / 16.40'$ S= $0.0095 '/$ ' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.28 cfs @ 12.09 hrs HW=16.99' TW=16.89' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.28 cfs @ 1.45 fps)

Pond CB1: PCB1

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

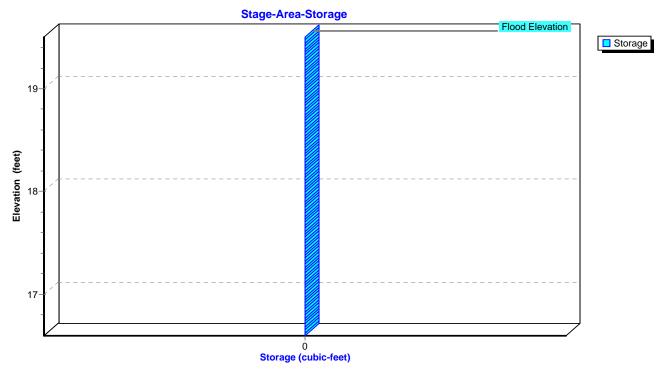
Pond CB1: PCB1


Summary for Pond CB2: PCB2

Inflow Area = 1,651 sf,100.00% Impervious, Inflow Depth = 8.06" for 100-yr event Inflow 0.30 cfs @ 12.09 hrs. Volume= 1.109 cf = Outflow 12.09 hrs, Volume= 0.30 cfs @ 1,109 cf, Atten= 0%, Lag= 0.0 min = 0.30 cfs @ 12.09 hrs, Volume= Primary = 1,109 cf

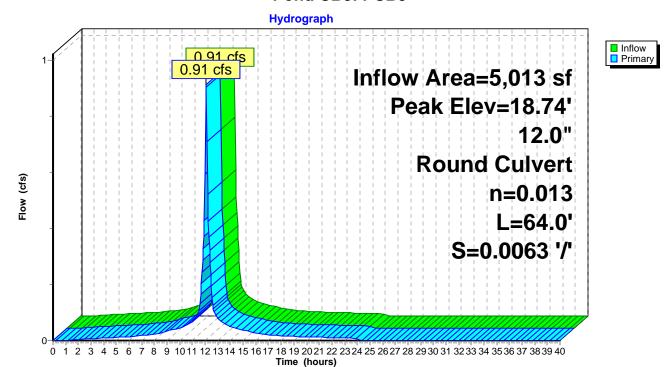
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 17.12' @ 12.31 hrs Flood Elev= 19.50'

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 21.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 16.60' / 16.40' S= 0.0095 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			5


Primary OutFlow Max=0.18 cfs @ 12.09 hrs HW=16.95' TW=16.89' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.18 cfs @ 1.12 fps)

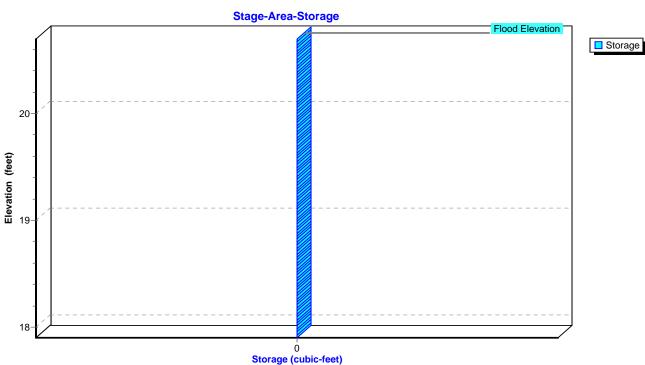
Pond CB2: PCB2

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC


Summary for Pond CB3: PCB3

Inflow Area =5,013 sf, 96.69% Impervious, Inflow Depth =7.94" for 100-yr eventInflow =0.91 cfs @12.09 hrs, Volume=3,317 cfOutflow =0.91 cfs @12.09 hrs, Volume=3,317 cf, Atten=0%, Lag=0.0 minPrimary =0.91 cfs @12.09 hrs, Volume=3,317 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.74' @ 12.11 hrs Flood Elev= 20.70'

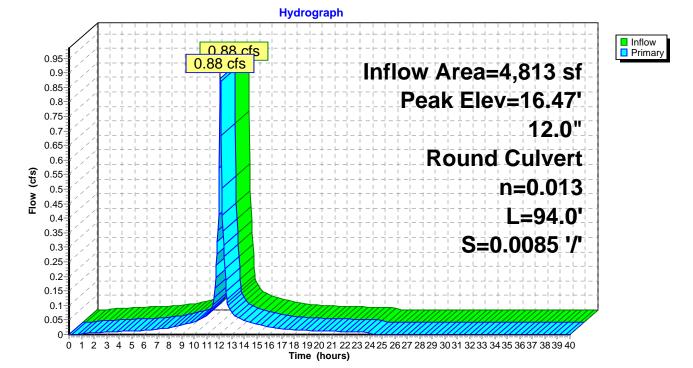

Device	Routing	Invert	Outlet Devices
#1	Primary	17.90'	12.0" Round Culvert
			L= 64.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 17.90' / 17.50' S= 0.0063 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.79 cfs @ 12.09 hrs HW=18.72' TW=18.59' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.79 cfs @ 1.54 fps)

Pond CB3: PCB3

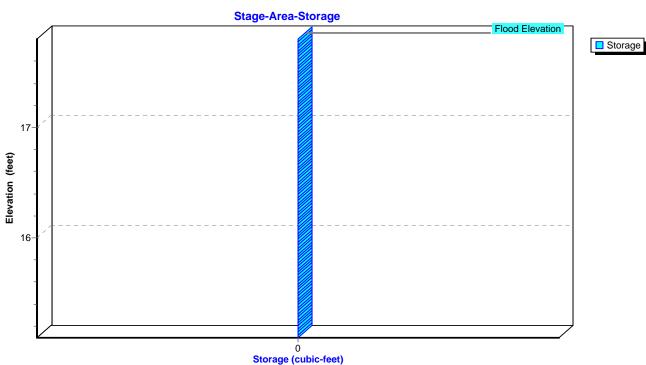
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB3: PCB3


Summary for Pond CB4: PCB4

Inflow Area = 4,813 sf,100.00% Impervious, Inflow Depth = 8.06" for 100-yr event Inflow 0.88 cfs @ 12.09 hrs. Volume= 3.233 cf = 12.09 hrs, Volume= Outflow 0.88 cfs @ 3,233 cf, Atten= 0%, Lag= 0.0 min = Primary 0.88 cfs @ 12.09 hrs, Volume= 3,233 cf =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.47' @ 12.20 hrs Flood Elev= 17.80'


Device	Routing	Invert	Outlet Devices
#1	Primary	15.10'	12.0" Round Culvert L= 94.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 15.10' / 14.30' S= 0.0085 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=15.75' TW=15.91' (Dynamic Tailwater)

Pond CB4: PCB4

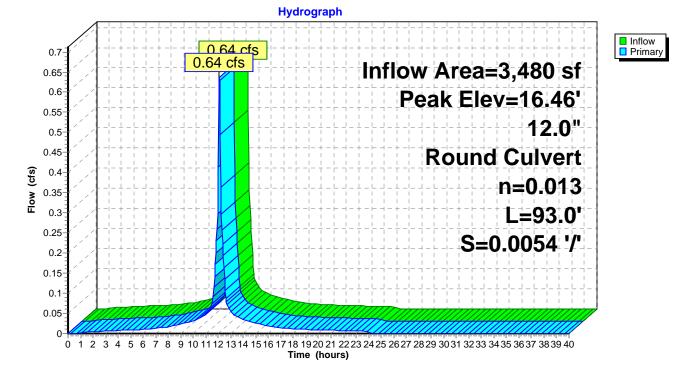
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB4: PCB4

Summary for Pond CB5: PCB5

 Inflow Area =
 3,480 sf,100.00% Impervious, Inflow Depth = 8.06" for 100-yr event

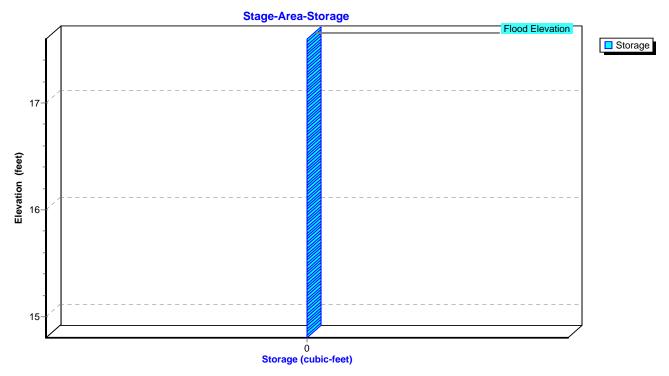
 Inflow =
 0.64 cfs @ 12.09 hrs, Volume=
 2,337 cf


 Outflow =
 0.64 cfs @ 12.09 hrs, Volume=
 2,337 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.64 cfs @ 12.09 hrs, Volume=
 2,337 cf

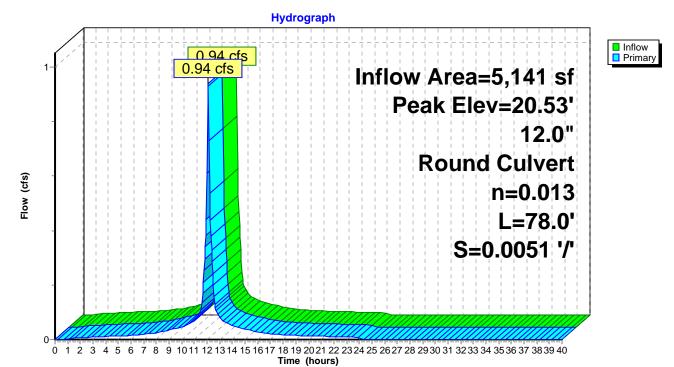
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.46' @ 12.20 hrs Flood Elev= 17.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	14.80'	12.0" Round Culvert L= 93.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 14.80' / 14.30' S= 0.0054 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=15.51' TW=15.91' (Dynamic Tailwater)

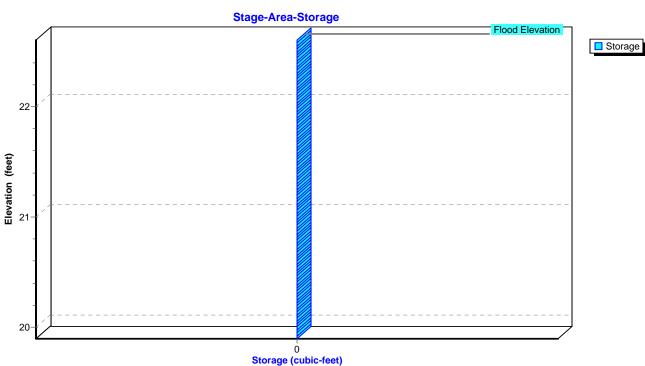
Pond CB5: PCB5

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC


Summary for Pond CB6: PCB6

Inflow Area =5,141 sf,100.00% Impervious, Inflow Depth =8.06" for 100-yr eventInflow =0.94 cfs @12.09 hrs, Volume=3,453 cfOutflow =0.94 cfs @12.09 hrs, Volume=3,453 cf, Atten= 0%, Lag= 0.0 minPrimary =0.94 cfs @12.09 hrs, Volume=3,453 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 20.53' @ 12.10 hrs Flood Elev= 22.60'


Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 78.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 19.90' / 19.50' S= 0.0051 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.84 cfs @ 12.09 hrs HW=20.52' TW=20.13' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.84 cfs @ 2.36 fps)

Pond CB6: PCB6

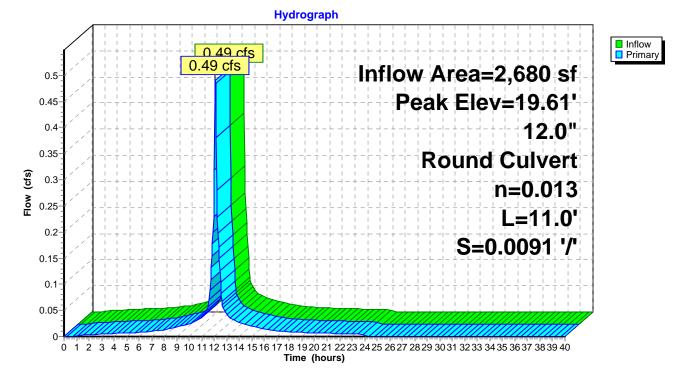
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB6: PCB6

Summary for Pond CB7: PCB7

 Inflow Area =
 2,680 sf,100.00% Impervious, Inflow Depth =
 8.06" for 100-yr event

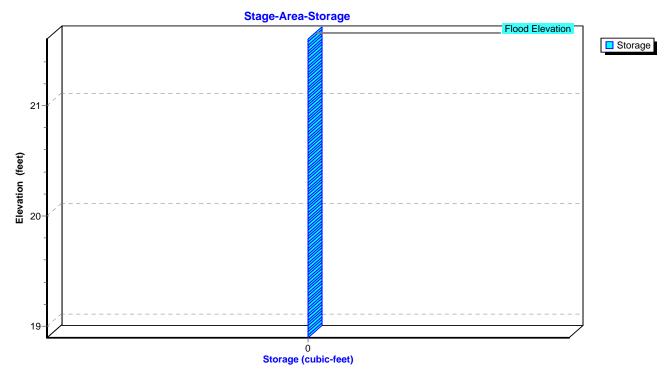
 Inflow =
 0.49 cfs @
 12.09 hrs, Volume=
 1,800 cf


 Outflow =
 0.49 cfs @
 12.09 hrs, Volume=
 1,800 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.49 cfs @
 12.09 hrs, Volume=
 1,800 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.61' @ 12.20 hrs Flood Elev= 21.60'

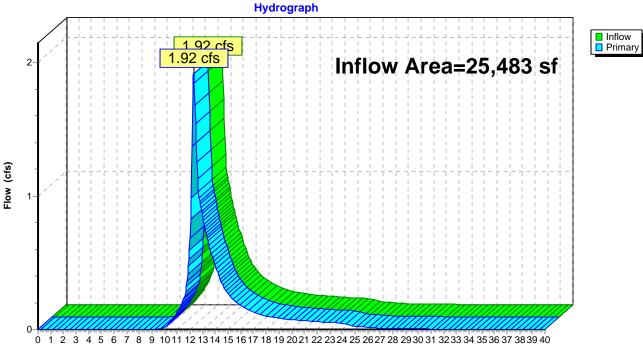
Device	Routing	Invert	Outlet Devices
#1	Primary	18.90'	12.0" Round Culvert
			L= 11.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.90' / 18.80' S= 0.0091 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.04 cfs @ 12.09 hrs HW=19.48' TW=19.48' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.04 cfs @ 0.11 fps)

Pond CB7: PCB7

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond CB7: PCB7

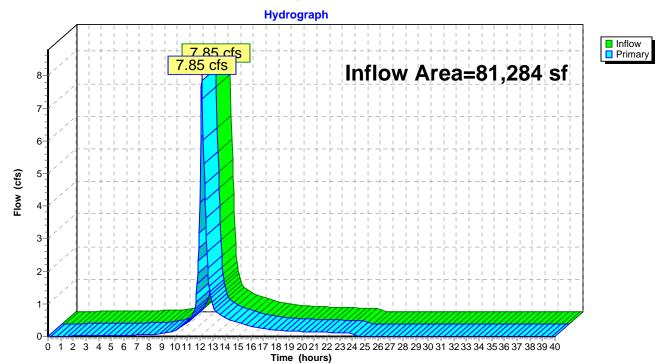

Summary for Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		25,483 sf, 55.96% Impervious, Inflow Depth > 6.06" for 100-yr event	
Inflow	=	1.92 cfs @ 12.27 hrs, Volume= 12,871 cf	
Primary	=	1.92 cfs @ 12.27 hrs, Volume= 12,871 cf, Atten= 0%, Lag= 0.0 m	nin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs

Pond DP1: Design Pont #1_18" RCP Culvert - Northwest

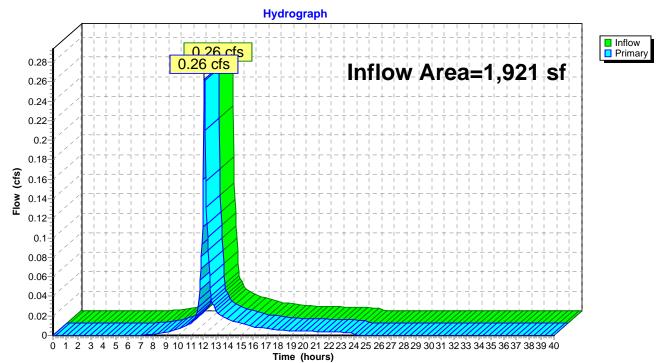

Time (hours)

Summary for Pond DP2: Design Pont #2_Wetland-South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	81,284 sf, 40.77% Impervious	, Inflow Depth = 4.44" for 100-yr event
Inflow =	=	7.85 cfs @ 12.12 hrs, Volume=	30,083 cf
Primary =	=	7.85 cfs @ 12.12 hrs, Volume=	30,083 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs


Pond DP2: Design Pont #2_Wetland-South

Summary for Pond DP3: Design Pont #3_Abutting Lot-East

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	1,921 sf,	0.00% Impervious,	Inflow Depth = 5.19"	for 100-yr event
Inflow	=	0.26 cfs @ 1	12.09 hrs, Volume=	832 cf	
Primary	=	0.26 cfs @ 1	12.09 hrs, Volume=	832 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs

Pond DP3: Design Pont #3_Abutting Lot-East

Summary for Pond IS: Infiltration System

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)

Inflow Area =	14,215 sf,100.00% Impervious,	Inflow Depth = 8.06" for 100-yr event
Inflow =	2.60 cfs @ 12.09 hrs, Volume=	9,548 cf
Outflow =	1.09 cfs @ 12.29 hrs, Volume=	9,548 cf, Atten= 58%, Lag= 12.4 min
Discarded =	0.28 cfs @ 11.60 hrs, Volume=	8,368 cf
Primary =	0.81 cfs @ 12.29 hrs, Volume=	1,179 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.43' @ 12.29 hrs Surf.Area= 1,463 sf Storage= 2,189 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 33.2 min (774.0 - 740.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.10'	670 cf	6.28'W x 109.07'L x 3.52'H Field A
			2,416 cf Overall - 741 cf Embedded = 1,675 cf x 40.0% Voids
#2A	16.60'	741 cf	Contech ChamberMaxx x 15 Inside #1
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap
			Row Length Adjustment= +0.32' x 6.92 sf x 1 rows
#3B	16.10'	601 cf	10.98'W x 59.25'L x 3.52'H Field B
			2,294 cf Overall - 793 cf Embedded = 1,502 cf x 40.0% Voids
#4B	16.60'	793 cf	Contech ChamberMaxx x 16 Inside #3
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap
			Row Length Adjustment= +0.32' x 6.92 sf x 2 rows
#5C	16.10'	143 cf	2.54'W x 50.00'L x 3.21'H Field C
			408 cf Overall - 50 cf Embedded = 358 cf x 40.0% Voids
#6C	17.10'	39 cf	ADS N-12 12 x 2 Inside #5
			Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf
			Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf
			Row Length Adjustment= +8.00' x 0.81 sf x 1 rows
		2,986 cf	Total Available Storage

2,986 cf I otal Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard Storage Group C created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	16.10'	8.270 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	17.90'	12.0" Round Culvert
			L= 66.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 17.90' / 16.50' S= 0.0212 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.28 cfs @ 11.60 hrs HW=16.14' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.28 cfs)

Primary OutFlow Max=0.81 cfs @ 12.29 hrs HW=18.42' TW=0.00' (Dynamic Tailwater) **2=Culvert** (Inlet Controls 0.81 cfs @ 1.94 fps)

Pond IS: Infiltration System - Chamber Wizard Field A

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 1 rows

15 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 107.07' Row Length +12.0" End Stone x 2 = 109.07' Base Length 1 Rows x 51.4" Wide + 12.0" Side Stone x 2 = 6.28' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

15 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 1 Rows = 741.1 cf Chamber Storage

2,415.8 cf Field - 741.1 cf Chambers = 1,674.7 cf Stone x 40.0% Voids = 669.9 cf Stone Storage

Chamber Storage + Stone Storage = 1,411.0 cf = 0.032 afOverall Storage Efficiency = 58.4%Overall System Size = $109.07' \times 6.28' \times 3.52'$

15 Chambers 89.5 cy Field 62.0 cy Stone

Pond IS: Infiltration System - Chamber Wizard Field B

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 2 rows

51.4" Wide + 5.0" Spacing = 56.4" C-C Row Spacing


8 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 57.25' Row Length +12.0" End Stone x 2 = 59.25' Base Length 2 Rows x 51.4" Wide + 5.0" Spacing x 1 + 12.0" Side Stone x 2 = 10.98' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

16 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 2 Rows = 792.6 cf Chamber Storage

2,294.1 cf Field - 792.6 cf Chambers = 1,501.5 cf Stone x 40.0% Voids = 600.6 cf Stone Storage

Chamber Storage + Stone Storage = 1,393.2 cf = 0.032 afOverall Storage Efficiency = 60.7%Overall System Size = $59.25' \times 10.98' \times 3.52'$

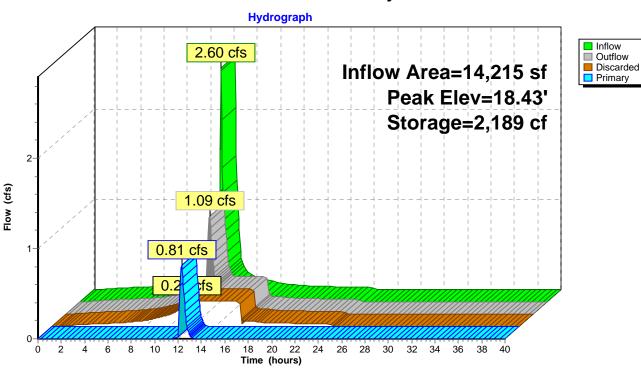
16 Chambers 85.0 cy Field 55.6 cy Stone

Pond IS: Infiltration System - Chamber Wizard Field C

Chamber Model = ADS N-12 12 (ADS N-12® Pipe)

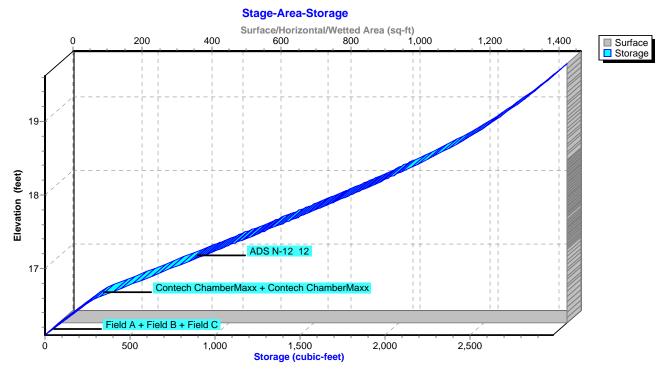
Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf Row Length Adjustment= +8.00' x 0.81 sf x 1 rows

2 Chambers/Row x 20.00' Long +8.00' Row Adjustment = 48.00' Row Length +12.0" End Stone x 2 = 50.00' Base Length 1 Rows x 14.5" Wide + 8.0" Side Stone x 2 = 2.54' Base Width


12.0" Base + 14.5" Chamber Height + 12.0" Cover = 3.21' Field Height

2 Chambers x 16.2 cf +8.00' Row Adjustment x 0.81 sf x 1 Rows = 38.9 cf Chamber Storage 2 Chambers x 20.9 cf +8.00' Row Adjustment x 1.05 sf x 1 Rows = 50.2 cf Displacement

407.9 cf Field - 50.2 cf Chambers = 357.7 cf Stone x 40.0% Voids = 143.1 cf Stone Storage

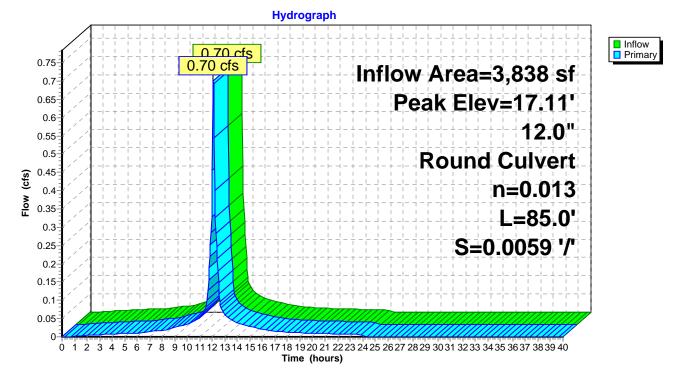

Chamber Storage + Stone Storage = 181.9 cf = 0.004 afOverall Storage Efficiency = 44.6%Overall System Size = $50.00' \times 2.54' \times 3.21'$

2 Chambers 15.1 cy Field 13.2 cy Stone

Pond IS: Infiltration System

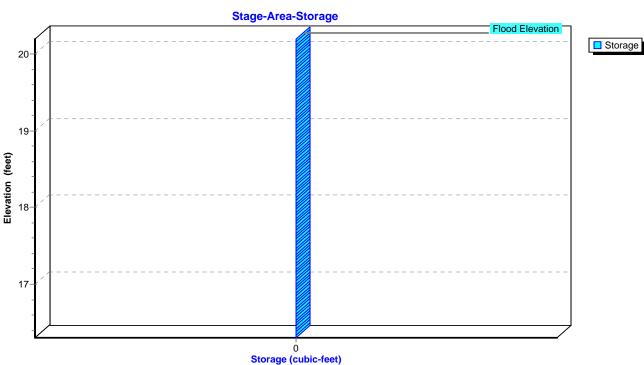
Pond IS: Infiltration System

Summary for Pond MH1: PDMH1


[80] Warning: Exceeded Pond CB1 by 0.12' @ 12.25 hrs (0.46 cfs 83 cf) [80] Warning: Exceeded Pond CB2 by 0.14' @ 12.25 hrs (0.49 cfs 89 cf)

Inflow Area =	3,838 sf, 97.68% Impervious,	Inflow Depth = 7.99" for 100-yr event
Inflow =	0.70 cfs @ 12.09 hrs, Volume=	2,556 cf
Outflow =	0.70 cfs @ 12.09 hrs, Volume=	2,556 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.70 cfs @ 12.09 hrs, Volume=	2,556 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 17.11' @ 12.26 hrs Flood Elev= 20.20'


Device	Routing	Invert	Outlet Devices
#1	Primary	16.30'	12.0" Round Culvert
			L= 85.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 16.30' / 15.80' S= 0.0059 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

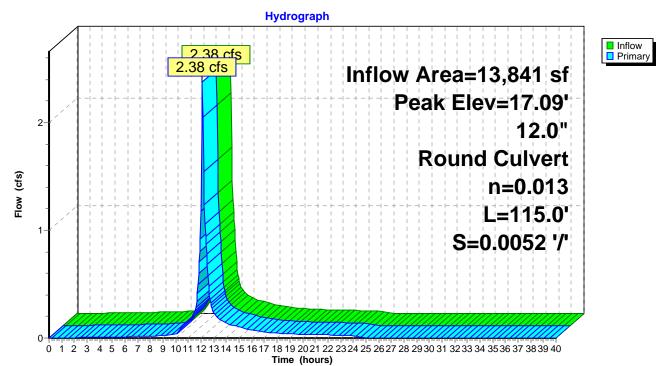
Primary OutFlow Max=0.40 cfs @ 12.09 hrs HW=16.89' TW=16.78' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.40 cfs @ 1.20 fps)

Pond MH1: PDMH1

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

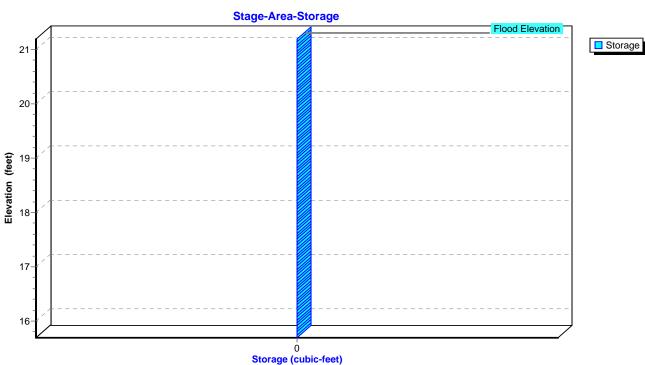
Pond MH1: PDMH1

Summary for Pond MH2: PDMH2


[80] Warning: Exceeded Pond MH1 by 0.14' @ 12.20 hrs (0.69 cfs 125 cf)

Inflow Area =	13,841 sf, 76.82% Impervious,	Inflow Depth = 6.80" for 100-yr event		
Inflow =	2.38 cfs @ 12.10 hrs, Volume=	7,838 cf		
Outflow =	2.38 cfs @ 12.10 hrs, Volume=	7,838 cf, Atten= 0%, Lag= 0.0 min		
Primary =	2.38 cfs @ 12.10 hrs, Volume=	7,838 cf		
Politing by Dyn Star Ind mathad Time Span - 0.00.40.00 bro. dt - 0.05 bro				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 17.09' @ 12.21 hrs Flood Elev= 21.20'


Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 115.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 15.70' / 15.10' S= 0.0052 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.94 cfs @ 12.10 hrs HW=16.84' TW=16.29' (Dynamic Tailwater)

Pond MH2: PDMH2

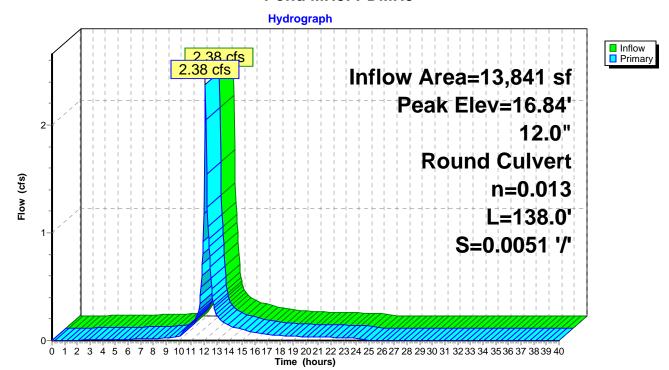
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond MH2: PDMH2

Summary for Pond MH3: PDMH3

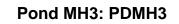
 Inflow Area =
 13,841 sf, 76.82% Impervious, Inflow Depth = 6.80" for 100-yr event

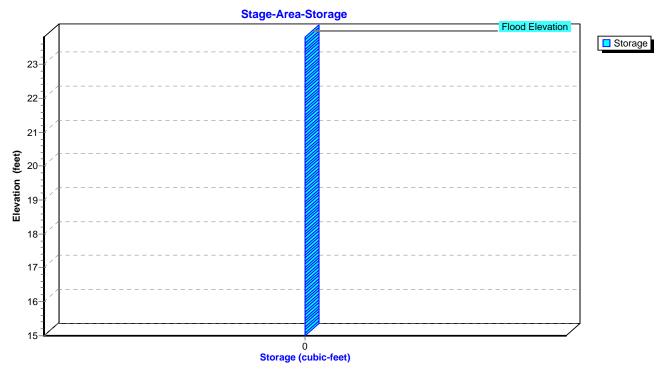
 Inflow =
 2.38 cfs @ 12.10 hrs, Volume=
 7,838 cf


 Outflow =
 2.38 cfs @ 12.10 hrs, Volume=
 7,838 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 2.38 cfs @ 12.10 hrs, Volume=
 7,838 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.84' @ 12.18 hrs Flood Elev= 23.80'


Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 138.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 15.00' / 14.30' S= 0.0051 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=1.14 cfs @ 12.10 hrs HW=16.29' TW=16.10' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.14 cfs @ 1.47 fps)

Pond MH3: PDMH3

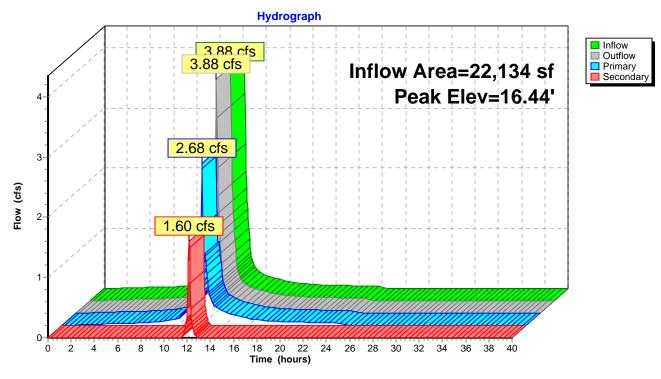
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Summary for Pond MH4: PDMH4

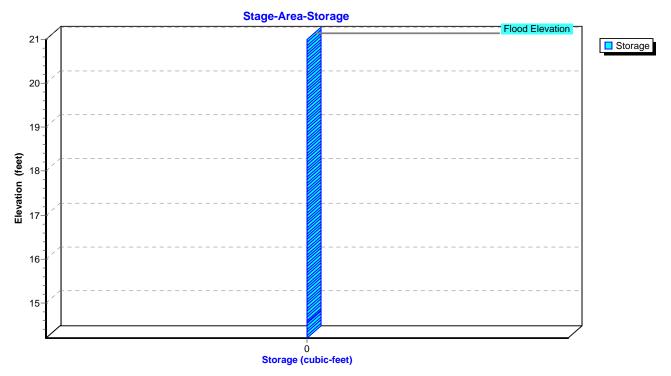
[80] Warning: Exceeded Pond CB4 by 0.29' @ 12.10 hrs (1.32 cfs 513 cf) [80] Warning: Exceeded Pond CB5 by 0.51' @ 12.10 hrs (2.12 cfs 752 cf)

Inflow Area =	22,134 sf, 85.50% Impervious,	Inflow Depth = 7.27" for 100-yr event
Inflow =	3.88 cfs @ 12.10 hrs, Volume=	13,408 cf
Outflow =	3.88 cfs @ 12.10 hrs, Volume=	13,408 cf, Atten= 0%, Lag= 0.0 min
Primary =	2.68 cfs @ 12.08 hrs, Volume=	11,685 cf
Secondary =	1.60 cfs @ 12.16 hrs, Volume=	1,723 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.44' @ 12.15 hrs Flood Elev= 21.00'


Cc= 0.900
ea= 0.79 sf
Cc= 0.900
ea= 0.79 sf
Contraction(s)
e

Primary OutFlow Max=0.40 cfs @ 12.08 hrs HW=15.83' TW=15.81' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.40 cfs @ 0.51 fps)

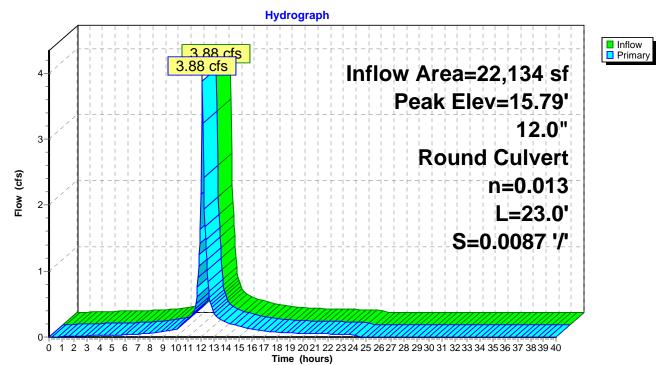

Secondary OutFlow Max=1.86 cfs @ 12.16 hrs HW=16.37' TW=15.13' (Dynamic Tailwater) -2=Culvert (Passes 1.86 cfs of 3.32 cfs potential flow)

1-3=Sharp-Crested Rectangular Weir (Weir Controls 1.86 cfs @ 4.08 fps)

Pond MH4: PDMH4

Pond MH4: PDMH4

Summary for Pond MH5: PDMH5


[80] Warning: Exceeded Pond WQU1 by 0.05' @ 12.05 hrs (0.68 cfs 123 cf)

Inflow Are	a =	22,134 sf	, 85.50% Impervious,	Inflow Depth = 7.27"	for 100-yr event	
Inflow	=	3.88 cfs @	12.10 hrs, Volume=	13,408 cf		
Outflow	=	3.88 cfs @	12.10 hrs, Volume=	13,408 cf, Atter	n= 0%, Lag= 0.0 min	
Primary	=	3.88 cfs @	12.10 hrs, Volume=	13,408 cf		
Routing by Dyn-Stor-Ind method Time Span= 0.00-40.00 hrs. dt= 0.05 hrs						

Peak Elev= 15.79' @ 12.10 hrs Flood Elev= 21.40'

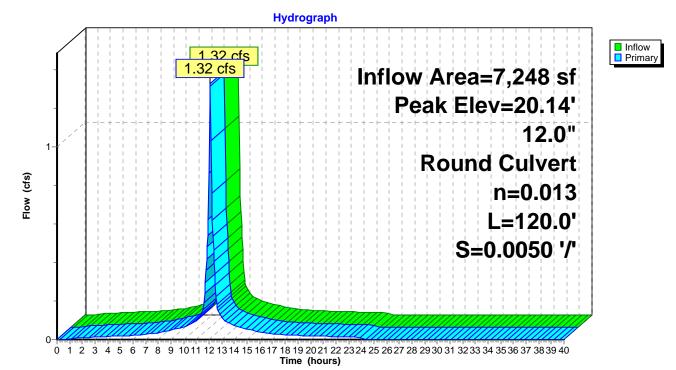

Device	Routing	Invert	Outlet Devices
#1	Primary	13.60'	12.0" Round Culvert
			L= 23.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 13.60' / 13.40' S= 0.0087 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.85 cfs @ 12.10 hrs HW=15.76' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.85 cfs @ 4.90 fps)

Pond MH5: PDMH5

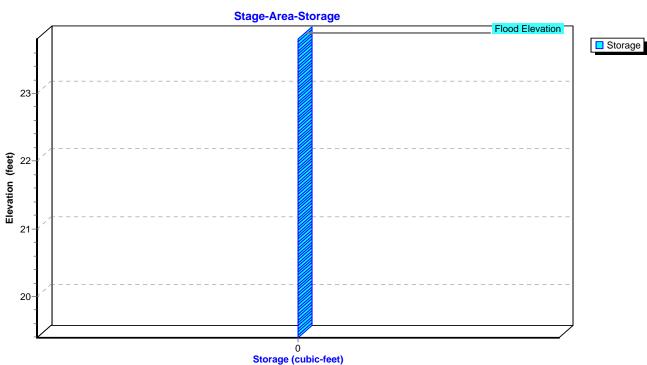
Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond MH5: PDMH5


Summary for Pond MH6: PDMH6

Inflow Area =7,248 sf,100.00% Impervious, Inflow Depth =8.06"for 100-yr eventInflow =1.32 cfs @12.09 hrs, Volume=4,868 cfOutflow =1.32 cfs @12.09 hrs, Volume=4,868 cf, Atten= 0%, Lag= 0.0 minPrimary =1.32 cfs @12.09 hrs, Volume=4,868 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 20.14' @ 12.10 hrs Flood Elev= 23.80'


Device	Routing	Invert	Outlet Devices
#1	Primary	19.40'	12.0" Round Culvert L= 120.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 19.40' / 18.80' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.22 cfs @ 12.09 hrs HW=20.13' TW=19.48' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.22 cfs @ 2.78 fps)

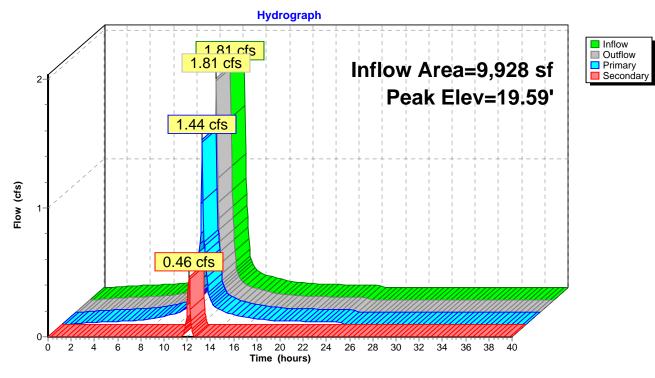
Pond MH6: PDMH6

Prepared by Lynnfield Engineering Inc. HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

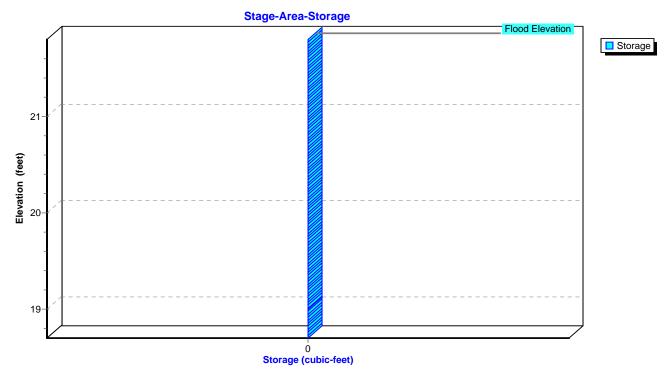
Pond MH6: PDMH6

Summary for Pond MH7: PDMH7

[80] Warning: Exceeded Pond CB7 by 0.06' @ 12.15 hrs (0.53 cfs 146 cf)


Inflow Area =	9,928 sf,100.00% Impervious,	Inflow Depth = 8.06" for 100-yr event
Inflow =	1.81 cfs @ 12.09 hrs, Volume=	6,668 cf
Outflow =	1.81 cfs @ 12.09 hrs, Volume=	6,668 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.44 cfs @ 12.09 hrs, Volume=	6,136 cf
Secondary =	0.46 cfs @ 12.17 hrs, Volume=	532 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.59' @ 12.15 hrs Flood Elev= 21.80'

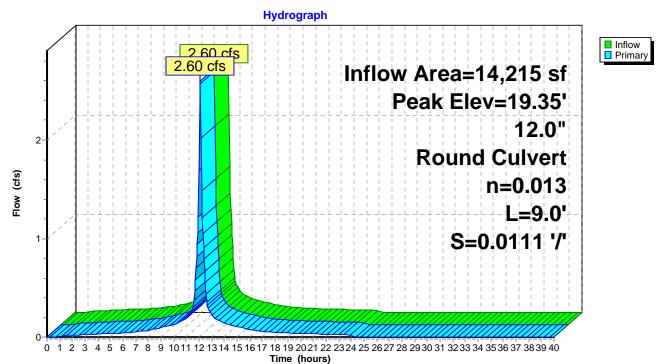

Device	Routing	Invert	Outlet Devices
#1	Primary	18.70'	12.0" Round Culvert L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.70' / 18.60' S= 0.0100 '/' Cc= 0.900
#2	Secondary	18.70'	n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf 12.0" Round Culvert
	coornaary	10110	L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 18.70' / 18.20' S= 0.0500 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#3	Device 2	19.00'	0.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=0.74 cfs @ 12.09 hrs HW=19.48' TW=19.39' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.74 cfs @ 1.12 fps)

Secondary OutFlow Max=0.52 cfs @ 12.17 hrs HW=19.55' TW=19.01' (Dynamic Tailwater) 2=Culvert (Passes 0.52 cfs of 1.77 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Weir Controls 0.52 cfs @ 2.43 fps) Pond MH7: PDMH7

Pond MH7: PDMH7

Summary for Pond MH8: PDMH8


[80] Warning: Exceeded Pond WQU2 by 0.06' @ 12.05 hrs (0.75 cfs 135 cf)

Inflow Area	a =	14,215 sf	,100.00% Impervious,	Inflow Depth = 8.06"	for 100-yr event
Inflow	=	2.60 cfs @	12.09 hrs, Volume=	9,548 cf	·
Outflow	=	2.60 cfs @	12.09 hrs, Volume=	9,548 cf, Atten	i= 0%, Lag= 0.0 min
Primary	=	2.60 cfs @	12.09 hrs, Volume=	9,548 cf	
		tor-Ind metho	d, Time Span= 0.00-40	.00 hrs, dt= 0.05 hrs	

Peak Elev= 19.35' @ 12.09 hrs Flood Elev= 22.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	18.10'	12.0" Round Culvert L= 9.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 18.10' / 18.00' S= 0.0111 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.53 cfs @ 12.09 hrs HW=19.32' TW=17.68' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.53 cfs @ 3.22 fps)

Pond MH8: PDMH8

Stage-Area-Storage Flood Elevation 22 Storage 21 Elevation (feet) 20 19 Ó Storage (cubic-feet)

Pond MH8: PDMH8

Summary for Pond RG1: Rain Garden #1

Inflow Area	a =	25,212 sf, 56.56% Impervious,	Inflow Depth = 6.54" for 100-yr event
Inflow	=	4.11 cfs @ 12.09 hrs, Volume=	13,737 cf
Outflow	=	1.90 cfs @ 12.27 hrs, Volume=	12,754 cf, Atten= 54%, Lag= 10.9 min
Primary	=	1.90 cfs @ 12.27 hrs, Volume=	12,754 cf

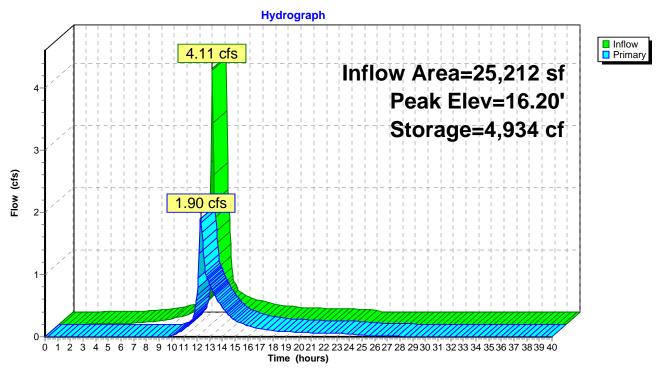
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.20' @ 12.27 hrs Surf.Area= 6,431 sf Storage= 4,934 cf Flood Elev= 16.70' Surf.Area= 6,703 sf Storage= 6,272 cf

Plug-Flow detention time= 129.0 min calculated for 12,738 cf (93% of inflow) Center-of-Mass det. time= 92.4 min (875.0 - 782.6)

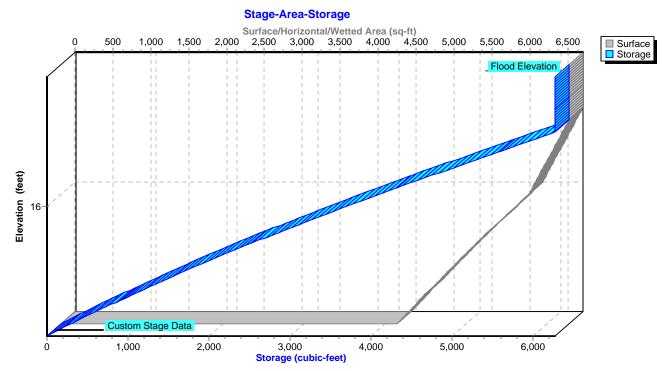
Volume	Invert	Avail.S	storage	Storage Description	า	
#1	15.30'	6	,272 cf	Custom Stage Dat	t a (Irregular) Listed	below (Recalc)
Elevatio		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
15.3 16.0 16.3	00	4,439 6,173 6,569	288.0 327.0 334.0	0 3,698 1,911	0 3,698 5,609	4,439 6,360 6,741
16.4	40	6,703	337.0	664	6,272	6,905
Device	Routing	Inve	rt Outle	et Devices		
#1	Primary	15.35	L= 6 Inlet	Round Culvert X 2 5.0' CPP, mitered t / Outlet Invert= 15.3 .013 Corrugated PE	o conform to fill, K 5' / 15.00' S= 0.00	054 '/' Cc= 0.900
#2 #3 #4	Device 1 Device 1 Device 1	15.50 15.80 16.10	0' 4.0" 0' 24.0	Vert. Orifice/Grate Vert. Orifice/Grate " x 24.0" Horiz. Orifited to weir flow at low	C= 0.600 fice/Grate C= 0.60	00

Primary OutFlow Max=1.88 cfs @ 12.27 hrs HW=16.19' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 1.88 cfs of 1.92 cfs potential flow)


2=Orifice/Grate (Orifice Controls 0.92 cfs @ 3.50 fps)

-3=Orifice/Grate (Orifice Controls 0.20 cfs @ 2.30 fps)


-4=Orifice/Grate (Weir Controls 0.76 cfs @ 1.01 fps)

PROPOSED 12-22-17Type IPrepared by Lynnfield Engineering Inc.HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

Pond RG1: Rain Garden #1

Pond RG1: Rain Garden #1

Summary for Pond RG2: Rain Garden #2

[80] Warning: Exceeded Pond CB3 by 0.23' @ 24.45 hrs (0.12 cfs 1,164 cf)

Inflow Area =	10,003 sf	, 68.81% Impervious,	Inflow Depth = 7.16"	for 100-yr event
Inflow =	1.72 cfs @	12.09 hrs, Volume=	5,971 cf	
Outflow =	1.69 cfs @	12.11 hrs, Volume=	5,282 cf, Atte	n= 2%, Lag= 1.3 min
Primary =	1.69 cfs @	12.11 hrs, Volume=	5,282 cf	

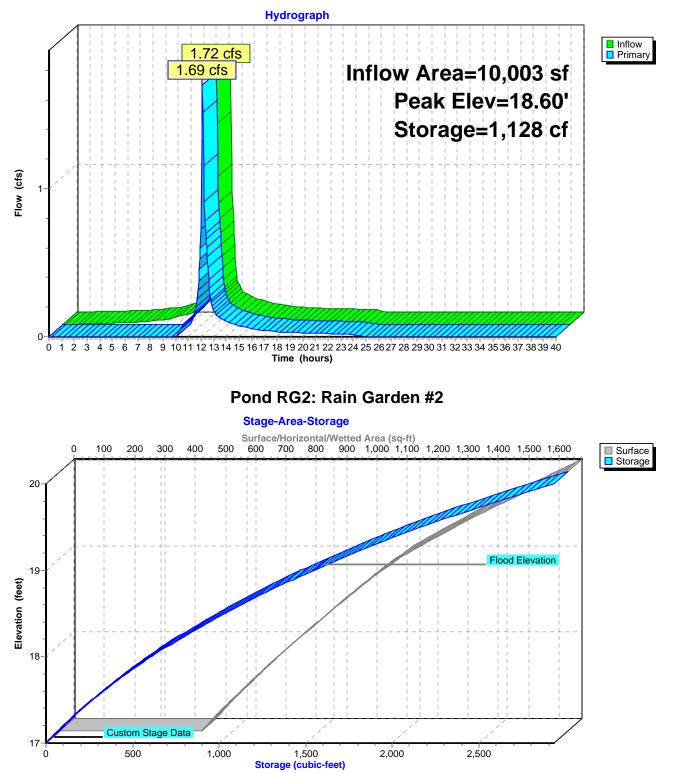
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 18.60' @ 12.11 hrs Surf.Area= 968 sf Storage= 1,128 cf Flood Elev= 19.00' Surf.Area= 1,118 sf Storage= 1,546 cf

Plug-Flow detention time= 109.2 min calculated for 5,282 cf (88% of inflow) Center-of-Mass det. time= 54.5 min (821.1 - 766.7)

Volume Inv		ert Avail.Storage		Storage Description	on	
#1 17.00' 2,93		2,934 cf	Custom Stage Da	ata (Irregular) Liste	d below (Recalc)	
Elevation Surf.Area (feet) (sq-ft)		Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
17.00 468		89.0	0	0	468	
18.0	00	765	108.0	610	610	782
19.0	00	1,118	127.0	936	1,546	1,156
20.0	00	1,676	152.0	1,388	2,934	1,728
Device	Routing	In	vert Outle	et Devices		
#1	Primary	nary 16.50' 12		" Round Culvert >	(2.00	
L= 53.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 16.50' / 15.80' S= 0.0132 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf						
#2	Device 1	18		Vert. Orifice/Grate		
#3	Device 1			Vert. Orifice/Grate C= 0.600		
#4	Device 1	18	.50' 24.0	" x 24.0" Horiz. Or ed to weir flow at lo	ifice/Grate C= 0.	600

Primary OutFlow Max=1.65 cfs @ 12.11 hrs HW=18.60' TW=16.84' (Dynamic Tailwater)

-1=Culvert (Passes 1.65 cfs of 8.43 cfs potential flow)


2=Orifice/Grate (Orifice Controls 0.72 cfs @ 2.76 fps)

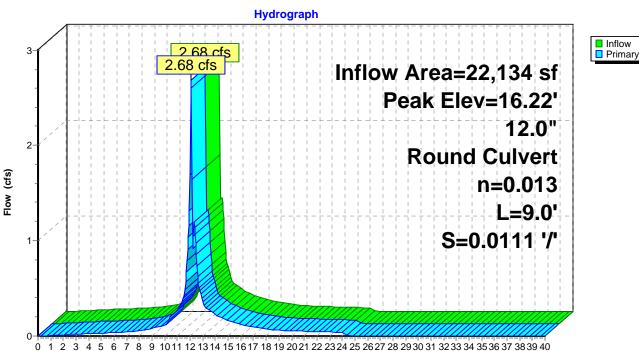
-3=Orifice/Grate (Orifice Controls 0.15 cfs @ 1.85 fps)

-4=Orifice/Grate (Weir Controls 0.78 cfs @ 1.01 fps)

PROPOSED 12-22-17TypePrepared by Lynnfield Engineering Inc.HydroCAD® 10.00-18 s/n 06609 © 2016 HydroCAD Software Solutions LLC

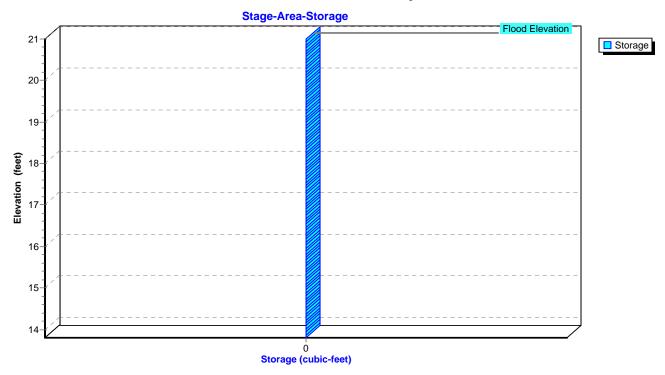
Pond RG2: Rain Garden #2

Summary for Pond WQU1: Water Quality Unit 1


[80] Warning: Exceeded Pond MH4 by 0.05' @ 12.10 hrs (0.68 cfs 123 cf)

Inflow Area =		22,134 sf	, 85.50% Impervious,	Inflow Depth = 6.34" for 100-yr event	
Inflow	=	2.68 cfs @	12.08 hrs, Volume=	11,685 cf	
Outflow	=	2.68 cfs @	12.08 hrs, Volume=	11,685 cf, Atten= 0%, Lag= 0.0 min	
Primary	=	2.68 cfs @	12.08 hrs, Volume=	11,685 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 16.22' @ 12.12 hrs					

Flood Elev= 21.00'

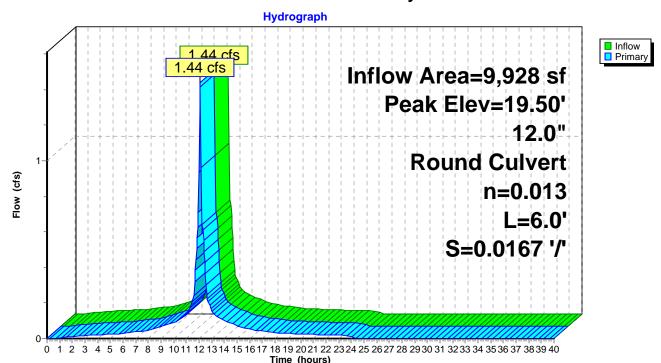

Device	Routing	Invert	Outlet Devices
#1	Primary	13.80'	12.0" Round Culvert L= 9.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 13.80' / 13.70' S= 0.0111 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.30 cfs @ 12.08 hrs HW=15.81' TW=15.62' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.30 cfs @ 1.66 fps)

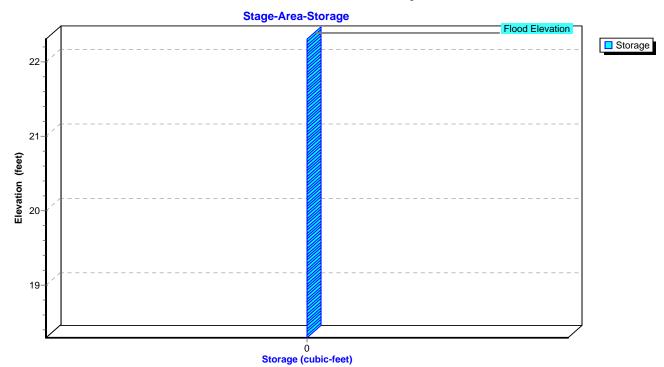
Time (hours)

Pond WQU1: Water Quality Unit 1

Pond WQU1: Water Quality Unit 1

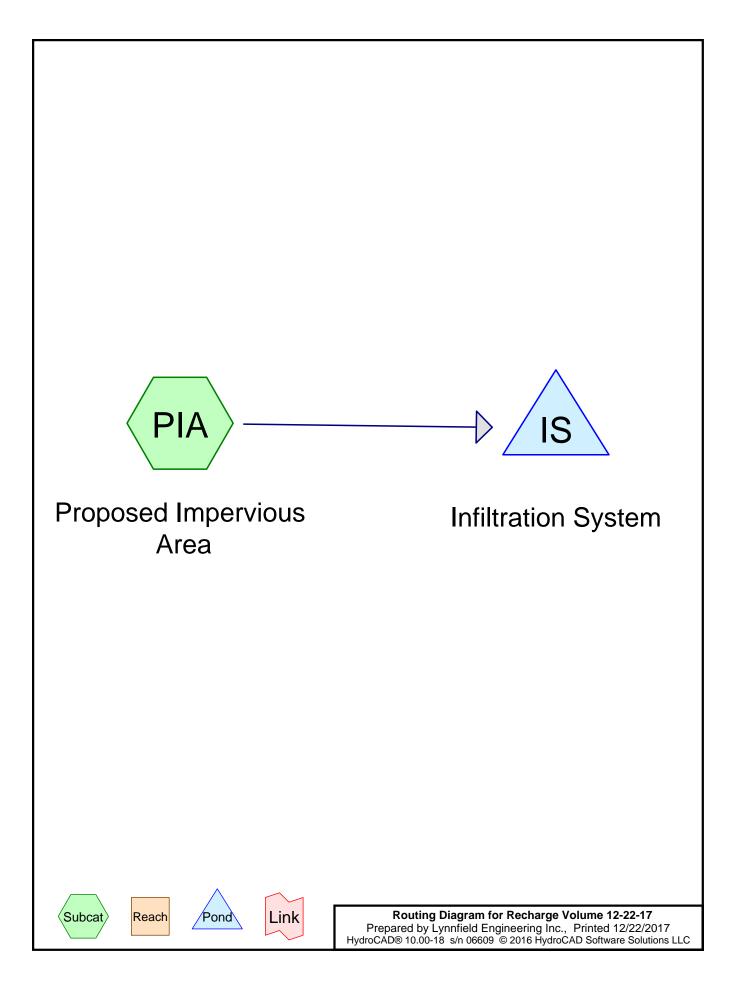

Summary for Pond WQU2: Water Quality Unit 2

Inflow Area =9,928 sf,100.00% Impervious, Inflow Depth =7.42" for 100-yr eventInflow =1.44 cfs @12.09 hrs, Volume=6,136 cfOutflow =1.44 cfs @12.09 hrs, Volume=6,136 cfPrimary =1.44 cfs @12.09 hrs, Volume=6,136 cfAtten= 0\%, Lag= 0.0 min6,136 cf


Routing by Dyn-Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Peak Elev= 19.50' @ 12.12 hrs Flood Elev= 22.30'

Device	Routing	Invert	Outlet Devices
	Primary		12.0" Round Culvert L= 6.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 18.30' / 18.20' S= 0.0167 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.82 cfs @ 12.09 hrs HW=19.39' TW=19.32' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.82 cfs @ 1.05 fps)



Pond WQU2: Water Quality Unit 2

Pond WQU2: Water Quality Unit 2

Proposed Conditions Analysis Groundwater Recharge – Simple Dynamic Method Calculations

Area Listing (all nodes)

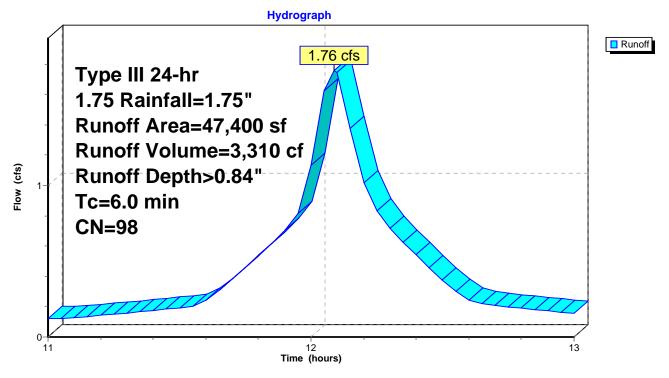
Area	a CN	Description	
(sq-ft)	(subcatchment-numbers)	
47,400) 98	total impervious area (PIA)	

Time span=11.00-13.00 hrs, dt=0.05 hrs, 41 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment PIA: Proposed Impervious Runoff Area=47,400 sf 100.00% Impervious Runoff Depth>0.84" Tc=6.0 min CN=98 Runoff=1.76 cfs 3,310 cf

Pond IS: Infiltration System Peak Elev=17.89' Storage=1,679 cf Inflow=1.76 cfs 3,310 cf Discarded=0.28 cfs 1,774 cf Primary=0.00 cfs 0 cf Outflow=0.28 cfs 1,774 cf

Summary for Subcatchment PIA: Proposed Impervious Area


Page 4

Runoff 1.76 cfs @ 12.09 hrs, Volume= 3,310 cf, Depth> 0.84" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 11.00-13.00 hrs, dt= 0.05 hrs Type III 24-hr 1.75 Rainfall=1.75"

_	A	rea (sf)	CN	Description		
*		47,400	98 1	otal imperv	rious area	
	47,400 100.00% Impervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	6.0					Direct Entry,

Subcatchment PIA: Proposed Impervious Area

Summary for Pond IS: Infiltration System

[82] Warning: Early inflow requires earlier time span

Inflow Area =	47,400 sf,100.00% Impervious,	Inflow Depth > 0.84" for 1.75 event
Inflow =	1.76 cfs @ 12.09 hrs, Volume=	3,310 cf
Outflow =	0.28 cfs @ 11.70 hrs, Volume=	1,774 cf, Atten= 84%, Lag= 0.0 min
Discarded =	0.28 cfs @ 11.70 hrs, Volume=	1,774 cf
Primary =	0.00 cfs @ 11.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 11.00-13.00 hrs, dt= 0.05 hrs Peak Elev= 17.89' @ 12.57 hrs Surf.Area= 1,463 sf Storage= 1,679 cf

Plug-Flow detention time= 18.1 min calculated for 1,726 cf (52% of inflow) Center-of-Mass det. time= 3.0 min (727.5 - 724.5)

Volume	Invert	Avail.Storage	Storage Description			
#1A	16.10'	670 cf	6.28'W x 109.07'L x 3.52'H Field A			
			2,416 cf Overall - 741 cf Embedded = 1,675 cf x 40.0% Voids			
#2A	16.60'	741 cf	Contech ChamberMaxx x 15 Inside #1			
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf			
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap			
			Row Length Adjustment= +0.32' x 6.92 sf x 1 rows			
#3B	16.10'	601 cf				
			2,294 cf Overall - 793 cf Embedded = 1,502 cf x 40.0% Voids			
#4B	16.60'	793 cf	Contech ChamberMaxx x 16 Inside #3			
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf			
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap			
			Row Length Adjustment= +0.32' x 6.92 sf x 2 rows			
#5C	16.10'	143 cf	2.54'W x 50.00'L x 3.21'H Field C			
			408 cf Overall - 50 cf Embedded = 358 cf x 40.0% Voids			
#6C	17.10'	39 cf	ADS N-12 12 x 2 Inside #5			
			Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf			
		Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf				
			Row Length Adjustment= +8.00' x 0.81 sf x 1 rows			
		2,986 cf	Total Available Storage			

2,986 cf I otal Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard Storage Group C created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	16.10'	8.270 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	17.90'	12.0" Round Culvert
			L= 23.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 17.90' / 17.00' S= 0.0391 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.28 cfs @ 11.70 hrs HW=16.15' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.28 cfs)

Primary OutFlow Max=0.00 cfs @ 11.00 hrs HW=16.11' (Free Discharge) **2=Culvert** (Controls 0.00 cfs)

Pond IS: Infiltration System - Chamber Wizard Field A

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 1 rows

15 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 107.07' Row Length +12.0" End Stone x 2 = 109.07' Base Length 1 Rows x 51.4" Wide + 12.0" Side Stone x 2 = 6.28' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

15 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 1 Rows = 741.1 cf Chamber Storage

2,415.8 cf Field - 741.1 cf Chambers = 1,674.7 cf Stone x 40.0% Voids = 669.9 cf Stone Storage

Chamber Storage + Stone Storage = 1,411.0 cf = 0.032 afOverall Storage Efficiency = 58.4%Overall System Size = $109.07' \times 6.28' \times 3.52'$

15 Chambers 89.5 cy Field 62.0 cy Stone

Pond IS: Infiltration System - Chamber Wizard Field B

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 2 rows

51.4" Wide + 5.0" Spacing = 56.4" C-C Row Spacing


8 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 57.25' Row Length +12.0" End Stone x 2 = 59.25' Base Length 2 Rows x 51.4" Wide + 5.0" Spacing x 1 + 12.0" Side Stone x 2 = 10.98' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

16 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 2 Rows = 792.6 cf Chamber Storage

2,294.1 cf Field - 792.6 cf Chambers = 1,501.5 cf Stone x 40.0% Voids = 600.6 cf Stone Storage

Chamber Storage + Stone Storage = 1,393.2 cf = 0.032 afOverall Storage Efficiency = 60.7%Overall System Size = $59.25' \times 10.98' \times 3.52'$

16 Chambers 85.0 cy Field 55.6 cy Stone

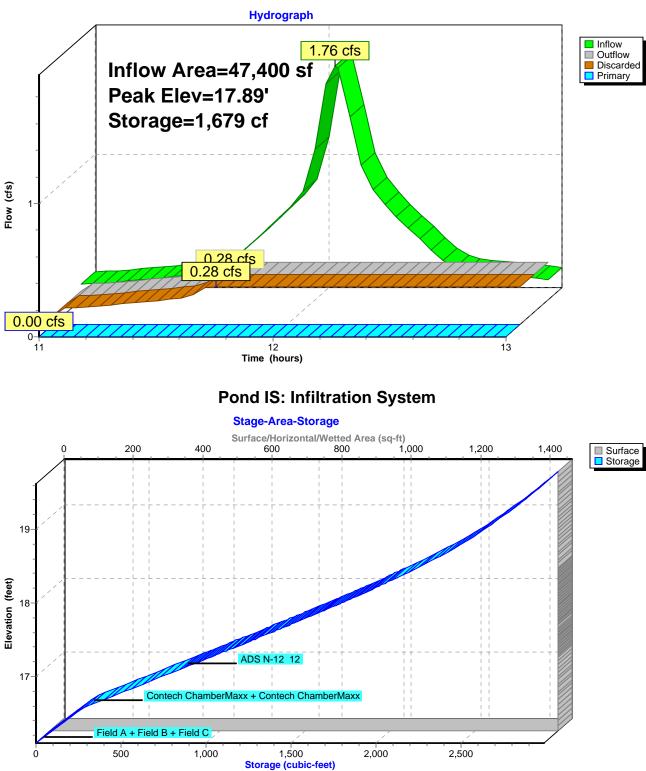
Pond IS: Infiltration System - Chamber Wizard Field C

Chamber Model = ADS N-12 12 (ADS N-12® Pipe)

Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf Row Length Adjustment= +8.00' x 0.81 sf x 1 rows

2 Chambers/Row x 20.00' Long +8.00' Row Adjustment = 48.00' Row Length +12.0" End Stone x 2 = 50.00' Base Length 1 Rows x 14.5" Wide + 8.0" Side Stone x 2 = 2.54' Base Width

12.0" Base + 14.5" Chamber Height + 12.0" Cover = 3.21' Field Height


2 Chambers x 16.2 cf +8.00' Row Adjustment x 0.81 sf x 1 Rows = 38.9 cf Chamber Storage 2 Chambers x 20.9 cf +8.00' Row Adjustment x 1.05 sf x 1 Rows = 50.2 cf Displacement

407.9 cf Field - 50.2 cf Chambers = 357.7 cf Stone x 40.0% Voids = 143.1 cf Stone Storage

Chamber Storage + Stone Storage = 181.9 cf = 0.004 afOverall Storage Efficiency = 44.6%Overall System Size = $50.00' \times 2.54' \times 3.21'$

2 Chambers 15.1 cy Field 13.2 cy Stone

 \bigcirc

Pond IS: Infiltration System

ATTACHMENT B

Massachusetts Stormwater Checklist

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

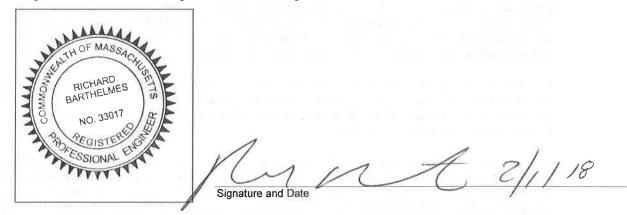
¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturba	ance to an	v Wetland	Resource	Areas
-------------	-------------	------------	-----------	----------	-------

- Site Design Practices (e.g. clustered development, reduced frontage setbacks)
- Reduced Impervious Area (Redevelopment Only)
- Minimizing disturbance to existing trees and shrubs
- LID Site Design Credit Requested:
 - Credit 1
 - Credit 2
 - Credit 3
- Use of "country drainage" versus curb and gutter conveyance and pipe
- Bioretention Cells (includes Rain Gardens)
- Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
- Treebox Filter
- Water Quality Swale
- Grass Channel
- Green Roof
- Other (describe):

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist (continued)

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

\bowtie	Soil	Analysis	provided.
	0011	7 11 101 9 010	proticiou

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static	🛛 Simple Dynamic	Dynamic Field ¹
--------	------------------	----------------------------

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

Standard 3: Recharge (continued)

- The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
- Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- · Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:

is within the Zone II or Interim Wellhead Protection Area

- is near or to other critical areas
- is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
- involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist (continued)

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Standard 4: Water Quality (continued)								
\boxtimes	The BMP is sized (and calculations provided) based on:							
	The ½" or 1" Water Quality Volume or							
	The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.							
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.							
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.							
Sta	andard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)							
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior to the discharge of stormwater to the post-construction stormwater BMPs.							
	The NPDES Multi-Sector General Permit does not cover the land use.							
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.							
	All exposure has been eliminated.							
	All exposure has not been eliminated and all BMPs selected are on MassDEP LUHPPL list.							
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.							
Sta	andard 6: Critical Areas							
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.							
	Critical areas and BMPs are identified in the Stormwater Report.							

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

- The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
 - Limited Project
 - Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
 - Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
 - Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
 - Bike Path and/or Foot Path
 - Redevelopment Project
 - Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
- The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist for Stormwater Report

Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.

- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

ATTACHMENT C

Total Suspended Solids (TSS) Removal Calculations

INSTRUCTIONS:

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

	Location:	75 Parker St., Newburypo	rt, MA	Treatment Train:	1
	A	В	С	D	E
	BMP ¹	TSS Removal Rate ¹	Starting TSS Load*	Amount Removed (B*C)	Remaining Load (C-D)
r n al	Rain Garden	0.44	1.00	0.44	0.56
TSS Removal Calculation Worksheet	Grass Channel	0.50	0.56	0.28	0.28
Rer Sula Ksl		0.00	0.28	0.00	0.28
SS I Salc		0.00	0.28	0.00	0.28
Ë O >		0.00	0.28	0.00	0.28
		Total TSS Re	moval =	72%	
	Hawton Leath, 75 Parker Street, Project: Newburyport, MA				
Prepared By: Lynnfield Engineering				*Equals remaining load from	om previous BMP (E)
	Date:	12/22/2017		which enters the BMP	

INSTRUCTIONS:

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

	Location:	75 Parker St., Newburypo	Treatment Train:	2	
	A	В	С	D	E
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (B*C)	Load (C-D)
on et	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
TSS Removal Calculation Worksheet	Contech Jellyfish WQU 1	0.80	0.75	0.60	0.15
SS I Calc Nor	Grass Channel	0.50	0.15	0.08	0.08
μ Π Π		0.00	0.08	0.00	0.08
		0.00	0.08	0.00	0.08
		Total TSS Re	moval =	93%	
		Newburyport, MA			
	Prepared By:	Lynnfield Engineering		*Equals remaining load from	om previous BMP (E)
	Date:	12/22/2017		which enters the BMP	

INSTRUCTIONS:

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

	Location:	75 Parker St., Newburypo	Treatment Train: 3		
	А	B TSS Removal	C Starting TSS	D Amount	E Remaining
	BMP ¹	Rate ¹	Load*	Removed (B*C)	Load (C-D)
llation	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
Calcu ieet	Contech Jellyfish WQU 2	0.80	0.75	0.60	0.15
TSS Removal Calculation Worksheet	Contech Chambermaxx Infiltration System	0.80	0.15	0.12	0.03
SS		0.00	0.03	0.00	0.03
Ĥ		0.00	0.03	0.00	0.03
		Total TSS Re	moval =	97%	
		Newburyport, MA			
	Prepared By:	Lynnfield Engineering		*Equals remaining load from	om previous BMP (E)
	Date:	12/22/2017		which enters the BMP	

ATTACHMENT D

Contech Jellyfish Design Sheets

PROJECT INFORMATION					
Project Name:	75 Parker Street	Project Number	573012		
City:	Newburyport, MA	State	MA		
Prepared For:	Eaglebrook Engineering & Survey	Date	10/9/17		

Hydrodynamic Separation Recommendations

Stormwater Standard No. 4 requires structural stormwater management practices to be sized to capture the required WQV in accordance with the Massachusetts Stormwater Handbook (310 CMR 10.05(6)(k)(4) and 314 CMR 9.06(6)(a)(4)). Stormwater Standard No. 4 requires that the full WQV be captured and treated to remove 80% of the average annual post-construction load of Total Suspended Solid (TSS). Only use impervious surfaces for these computations. *Runoff from pervious surfaces should not be included in the WQV computations for the Q rate.*

The recommended treatment model(s) below are designed to meet the above stated treatment requirements. Each recommended model is designed to remove at least 80% of the average annual post-construction load of Total Suspended Solids (TSS) for the preject's required treatment depth.

Treatment Depth	1"
# Rainfall Station*	69

*Based on 10 years of hourly precipitation data from NCDC Station 770, Boston WSFO AP, Suffolk County, MA

Structure Name	Impervious Area (ac)	t _c (mins)	1" WQF (cfs)	Recommended Model	Model WQF Capacity (cfs)	Predicted TSS Removal
1	0.31	5	0.39	JF 4-2-1	0.45	>80%
2	0.35	5	0.43	JF 4-2-1	0.45	>80%

Project Name:	75 Parker St			
Site Designation:	1	Date: 10/9/17		
County or Independent City:	Newburyport	Design Engineer:		
State:	MA			
Mass Loading Calculations:				
Peak Design Flow (cfs)		2.72		
Water Quality Flow (cfs)		0.39		
Annual Rainfall (inches)		50		
Total Drainage Area, A (ac)		0.31		
Post Development Impervious Area, A	_H (ac)	0.31		
Pervious Area, A _P (ac)		0.00		
Impervious Runoff Coefficient, Rv		0.95		
Pervious Runoff Coefficient, Rv		0.25		
% Impervious		100%		
Runoff Coefficient, Rc		0.95		
TSS Removal By Pretreatment		0%		
Agency Required TSS % Removal		80%		
Required TSS Removal Efficiency of Fil	ter	80%		
Percent Runoff Capture		90%		
Mean Annual Runoff, V $_{\rm t}$ (ft $^{\rm 3}$)		48,107		
Event Mean Concentration of Pollutar	nt, EMC (mg/L)	60		
Annual Mass Load, M _{total} (lbs)		180.08		
Flow Based Filter Sizing:				
Mass to be Captured by System (lbs)		144.07		
Filter Type		Jellyfish		
Structure Type		Manhole		
Cartridge Length		54"		
Allowable Load Per Hi-Flo Cartridge (II	os)	125		
Allowable Load Per Draindown Cartric	lge (lbs)	63		
# Hi-Flo Cartridges Required		2		
# Draindown Cartridges Required		1		

JF4-2-1

313.00

0.45 cfs

TSS Treatment Capacity (lbs) Maximum Water Quality Flow

Recommended Model

Date: 10/9/17 Design Engineer:
Design Engineer:
3.10
0.43
50
0.35
0.35
0.00
0.95
0.25
100%
0.95
0%
80%
80%
90%
54,314
60
203.32

Flow Based Filter Sizing:

Mass to be Captured by System (lbs)	162.66		
Filter Type	Jellyfish		
Structure Type	Manhole		
Cartridge Length	54''		
Allowable Load Per Hi-Flo Cartridge (lbs)	125		
Allowable Load Per Draindown Cartridge (lbs)	63		
# Hi-Flo Cartridges Required	2		
# Draindown Cartridges Required	1		
Recommended Model	JF4-2-1		
TSS Treatment Capacity (lbs)	313.00		
Maximum Water Quality Flow	0.45 cfs		

JELLYFISH® BUOYANCY CALCULATIONS SUMMARY JF4-2-1 - 573012-10 Preliminary 75 PARKER ST. - PROPOSED BUILDING EXPANSION NEWBURYPORT, MA

CINTECH ENGINEERED SOLUTIONS -

WQU 1

Dimensions (ft)		Heights (ft):	
Manhole Inside Diameter:	4	Riser 3 Section:	0.00
Manhole Outside Diameter:	4.83	Riser 2 Section:	4.00
Access Opening Diameter:	2.50	Riser 1 Section:	3.00
Top Slab Thickness:	0.67	Control Section:	4.00
Wall Thickness:	0.42	Base Section:	2.50
Pipe Opening Diameter:	1.00	Manhole Joint Height:	0.25
Base Slab Thickness:	0.50		
Base Extension:	0.50		
Unit Weights (Ibs/	ťť ³):	Site Elevations (ft):	
Unit Weight of Concrete:	155	Groundwater Elevation:	14.10
Unit Weight of Water:	62.4	Rim Elevation:	21.90
Unit Weight of Saturated Soil:	48	Depth of Cover (ft):	0.60
Unit Weight of Unsaturated Soil:	110	Outlet Pipe Invert Elev (ft):	14.05
		Bottom Elev (ft):	6.38
		Top Slab Shoulder Elev (ft):	21.30
		Height of GW above Top Slab (ft):	0.00

Buoyancy Calculation Assumptions:

1. The resistant forces from soil friction, pipe connections, and weight of internal parts is not included.

2. The weight of castings and grade rings are ignored and assumed to balance with the weight of soil cover.

3. The structure is assumed to be empty of water and sediment.

 sistant Forces:	WEIGHT (LBS)	WEIGHT (TONS)
Top Slab:	1,389	0.7
Riser 3 Section:	0	0.0
Riser 2 Section:	3,585	1.8
Riser 1 Section:	2,689	1.3
Control Section:	3,585	1.8
Base Section (incl. slab):	4,312	2.2
Overlying Saturated Soil:	3,077	1.5
Overlying Unsaturated Soil:	8,399	4.2
Weight of water in System:	0	0.0
TOTALS	27,035	13.5
	Upward Buoyant Force (Ibs):	9096
Resista	Int Force (Weight - Down) (lbs):	27035
Resista		

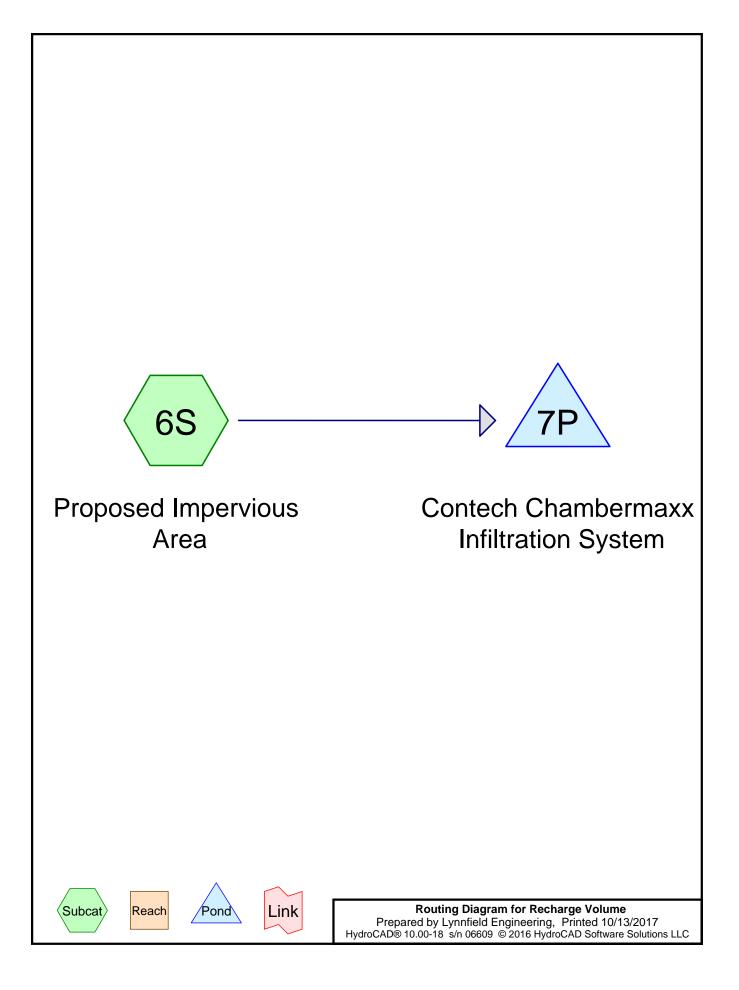
JELLYFISH[®] BUOYANCY CALCULATIONS SUMMARY JF4-2-1 - 573012-20 75 PARKER ST. - PROPOSED BUILDING EXPANSION NEWBURYPORT, MA WQU 2

Preliminary

ENGINEERED SOLUTIONS

Dimensions (ft)	:	Heights (ft):	
Manhole Inside Diameter:	4	Riser 3 Section:	0.00
Manhole Outside Diameter:	4.83	Riser 2 Section:	0.00
Access Opening Diameter:	#N/A	Riser 1 Section:	3.00
Top Slab Thickness:	0.67	Control Section:	4.00
Wall Thickness:	0.42	Base Section:	2.50
Pipe Opening Diameter:	1.00	Manhole Joint Height:	0.25
Base Slab Thickness:	0.50		
Base Extension: 0.50			
Unit Weights (Ibs/	ft ³):	Site Elevations (ft):	
Unit Weight of Concrete:	155	Groundwater Elevation:	14.10
Unit Weight of Water: 62.4		Rim Elevation:	22.30

Unit Weight of Water:	62.4	Rim Elevation:	22.30
Unit Weight of Saturated Soil:	48	Depth of Cover (ft):	0.00
Unit Weight of Unsaturated Soil:	110	Outlet Pipe Invert Elev (ft):	18.55
		Bottom Elev (ft):	10.88
		Top Slab Shoulder Elev (ft):	22.30
		Height of GW above Top Slab (ft):	0.00

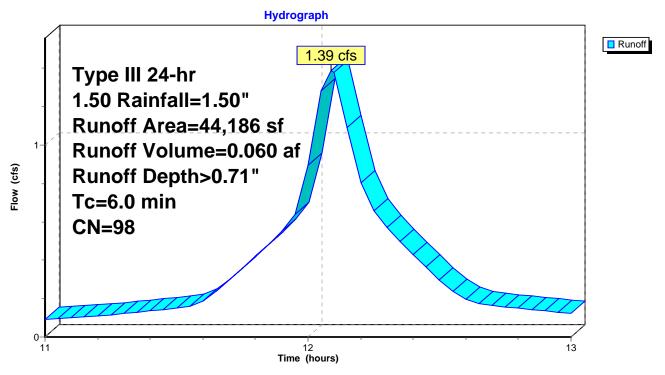

Buoyancy Calculation Assumptions:

1. The resistant forces from soil friction, pipe connections, and weight of internal parts is not included.

2. The weight of castings and grade rings are ignored and assumed to balance with the weight of soil cover.

3. The structure is assumed to be empty of water and sediment.

Resistant Forces:	WEIGHT (LBS)	WEIGHT (TONS)
Top Slab:	1,389	0.7
 Riser 3 Section:	0	0.0
Riser 2 Section:	0	0.0
Riser 1 Section:	2,689	1.3
Control Section:	3,585	1.8
Base Section (incl. slab):	4,312	2.2
Overlying Saturated Soil:	1,283	0.6
Overlying Unsaturated Soil:	7,557	3.8
Weight of water in System:	0	0.0
TOTALS	20,814	10.4
	Upward Buoyant Force (lbs):	3944
Resi	stant Force (Weight - Down) (lbs):	20814
	Net Force Down:	16,869
		10,005


Summary for Subcatchment 6S: Proposed Impervious Area

Runoff = 1.39 cfs @ 12.09 hrs, Volume= 0.060 af, Depth> 0.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 11.00-13.00 hrs, dt= 0.05 hrs Type III 24-hr 1.50 Rainfall=1.50"

_	A	rea (sf)	CN	CN Description				
*		44,186	98	98 total impervious area				
		44,186	4,186 100.00% Impervious A			Area		
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description		
	6.0					Direct Entry,		

Subcatchment 6S: Proposed Impervious Area

Summary for Pond 7P: Contech Chambermaxx Infiltration System

[82] Warning: Early inflow requires earlier time span

Inflow Area =	1.014 ac,100.00% Impervious, Inflow De	epth > 0.71" for 1.50 event
Inflow =	1.39 cfs @ 12.09 hrs, Volume=	0.060 af
Outflow =	0.23 cfs @ 11.70 hrs, Volume=	0.033 af, Atten= 83%, Lag= 0.0 min
Discarded =	0.23 cfs @ 11.70 hrs, Volume=	0.033 af
Primary =	0.00 cfs @ 11.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 11.00-13.00 hrs, dt= 0.05 hrs Peak Elev= 17.77' @ 12.56 hrs Surf.Area= 1,217 sf Storage= 1,285 cf

Plug-Flow detention time= 18.8 min calculated for 0.033 af (56% of inflow) Center-of-Mass det. time= 3.5 min (728.2 - 724.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.10'	583 cf	6.28'W x 94.84'L x 3.52'H Field A
			2,101 cf Overall - 643 cf Embedded = 1,458 cf x 40.0% Voids
#2A	16.60'	643 cf	Contech ChamberMaxx x 13 Inside #1
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap
			Row Length Adjustment= +0.32' x 6.92 sf x 1 rows
#3B	16.10'	459 cf	
			1,743 cf Overall - 596 cf Embedded = 1,147 cf x 40.0% Voids
#4B	16.60'	596 cf	Contech ChamberMaxx x 12 Inside #3
			Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf
			Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap
			Row Length Adjustment= +0.32' x 6.92 sf x 2 rows
#5C	16.10'	143 cf	2.54'W x 50.00'L x 3.21'H Field C
			408 cf Overall - 50 cf Embedded = $358 \text{ cf } \times 40.0\%$ Voids
#6C	17.10'	39 cf	ADS N-12 12 x 2 Inside #5
			Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf
			Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf
			Row Length Adjustment= +8.00' x 0.81 sf x 1 rows
		2,462 cf	Total Available Storage

2,462 cf I otal Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard Storage Group C created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	16.10'	8.270 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	17.90'	12.0" Round Culvert
			L= 23.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 17.90' / 17.00' S= 0.0391 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.23 cfs @ 11.70 hrs HW=16.15' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.23 cfs)

Primary OutFlow Max=0.00 cfs @ 11.00 hrs HW=16.11' (Free Discharge) **2=Culvert** (Controls 0.00 cfs)

Pond 7P: Contech Chambermaxx Infiltration System - Chamber Wizard Field A

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 1 rows

13 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 92.84' Row Length +12.0" End Stone x 2 = 94.84' Base Length 1 Rows x 51.4" Wide + 12.0" Side Stone x 2 = 6.28' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

13 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 1 Rows = 642.6 cf Chamber Storage

2,100.5 cf Field - 642.6 cf Chambers = 1,457.9 cf Stone x 40.0% Voids = 583.2 cf Stone Storage

Chamber Storage + Stone Storage = 1,225.7 cf = 0.028 af Overall Storage Efficiency = 58.4%Overall System Size = $94.84' \times 6.28' \times 3.52'$

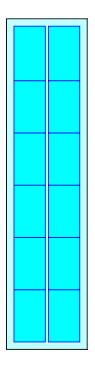
13 Chambers 77.8 cy Field 54.0 cy Stone

Pond 7P: Contech Chambermaxx Infiltration System - Chamber Wizard Field B

Chamber Model = Contech ChamberMaxx (Contech® ChamberMaxx®)

Effective Size= 49.6"W x 30.0"H => 6.92 sf x 7.12'L = 49.3 cf Overall Size= 51.4"W x 30.3"H x 7.58'L with 0.47' Overlap Row Length Adjustment= +0.32' x 6.92 sf x 2 rows

51.4" Wide + 5.0" Spacing = 56.4" C-C Row Spacing


6 Chambers/Row x 7.12' Long +0.32' Row Adjustment = 43.02' Row Length +12.0" End Stone x 2 = 45.02' Base Length 2 Rows x 51.4" Wide + 5.0" Spacing x 1 + 12.0" Side Stone x 2 = 10.98' Base Width 6.0" Base + 30.3" Chamber Height + 6.0" Cover = 3.52' Field Height

12 Chambers x 49.3 cf +0.32' Row Adjustment x 6.92 sf x 2 Rows = 595.5 cf Chamber Storage

1,743.0 cf Field - 595.5 cf Chambers = 1,147.5 cf Stone x 40.0% Voids = 459.0 cf Stone Storage

Chamber Storage + Stone Storage = 1,054.5 cf = 0.024 af Overall Storage Efficiency = 60.5%Overall System Size = $45.02' \times 10.98' \times 3.52'$

12 Chambers 64.6 cy Field 42.5 cy Stone

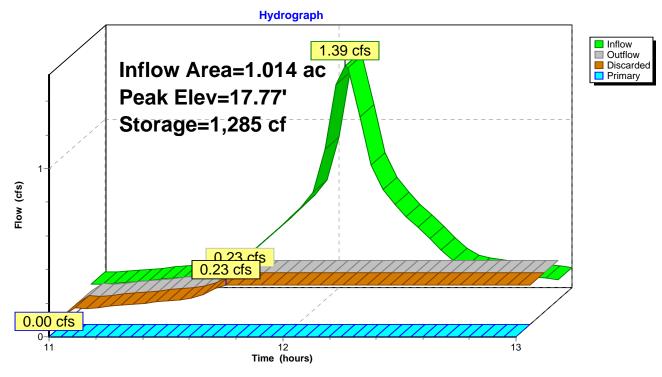
Pond 7P: Contech Chambermaxx Infiltration System - Chamber Wizard Field C

Chamber Model = ADS N-12 12 (ADS N-12® Pipe)

Inside= 12.2"W x 12.2"H => 0.81 sf x 20.00'L = 16.2 cf Outside= 14.5"W x 14.5"H => 1.05 sf x 20.00'L = 20.9 cf Row Length Adjustment= +8.00' x 0.81 sf x 1 rows

2 Chambers/Row x 20.00' Long +8.00' Row Adjustment = 48.00' Row Length +12.0" End Stone x 2 = 50.00' Base Length
1 Rows x 14.5" Wide + 8.0" Side Stone x 2 = 2.54' Base Width
12.0" Base + 14.5" Chamber Height + 12.0" Cover = 3.21' Field Height

2 Chambers x 16.2 cf +8.00' Row Adjustment x 0.81 sf x 1 Rows = 38.9 cf Chamber Storage 2 Chambers x 20.9 cf +8.00' Row Adjustment x 1.05 sf x 1 Rows = 50.2 cf Displacement


407.9 cf Field - 50.2 cf Chambers = 357.7 cf Stone x 40.0% Voids = 143.1 cf Stone Storage

Chamber Storage + Stone Storage = 181.9 cf = 0.004 afOverall Storage Efficiency = 44.6%Overall System Size = $50.00' \times 2.54' \times 3.21'$

2 Chambers 15.1 cy Field 13.2 cy Stone

0

Pond 7P: Contech Chambermaxx Infiltration System

ATTACHMENT E

NRCS Web Soil Survey Report

United States Department of Agriculture

NKCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Essex County, Massachusetts, Northern Part

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	
Map Unit Descriptions	11
Essex County, Massachusetts, Northern Part	13
1—Water.	
12A—Maybid silt loam, 0 to 3 percent slopes	13
16A—Scantic silt loam, 0 to 3 percent slopes	
228B—Buxton silt loam, 3 to 8 percent slopes	15
602—Urban land	16
651—Udorthents, smoothed	17
719B—Suffield silt loam, 3 to 8 percent slopes	
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

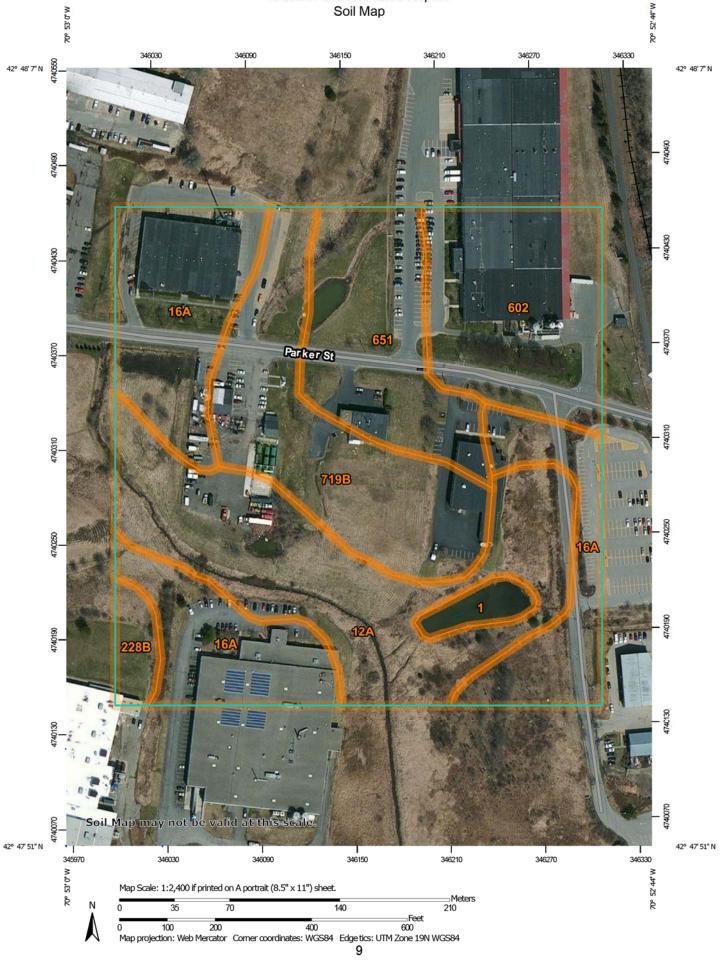
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

MAP L	EGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:15,800.
SoilsSoil Map Unit Polygons✓Soil Map Unit Points✓Soil Map Unit PointsSpecial VorterBlowout☑Blowout☑Borrow Pit☑Clay Spot✓Closed Depression☑Gravel Pit☑Gravelly Spot☑Landfill▲Lava Flow▲Mine or Quarry☑Miscellaneous Water☑Perennial Water✓Saline Spot∴Saline Spot∴Sandy Spot☑Severely Eroded Spot፩Sinkhole	Image: Story SpotImage: Wery Story SpotImage: Wery Story SpotImage: Wery Story SpotImage: Special Line FeaturesImage: Water FeaturesImage: Water FeaturesImage: Water FeaturesImage: Streams and CanalsImage: Streams and Canals <th> Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Scil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Essex County, Massachusetts, Northern Part Survey Area Data: Version 12, Sep 14, 2016 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Mar 30, 2011—Apr 8, 2011 </th>	 Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Scil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Essex County, Massachusetts, Northern Part Survey Area Data: Version 12, Sep 14, 2016 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Mar 30, 2011—Apr 8, 2011
Slide or Slip Sodic Spot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

	Essex County, Massachusetts, Northern Part (MA605)											
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI									
1	Water	0.4	1.7%									
12A	Maybid silt loam, 0 to 3 percent slopes	5.7	23.5%									
16A	Scantic silt loam, 0 to 3 percent slopes	6.7	27.7%									
228B	Buxton silt loam, 3 to 8 percent slopes	0.5	2.0%									
602	Urban land	3.6	14.7%									
651	Udorthents, smoothed	3.2	13.1%									
719B	Suffield silt loam, 3 to 8 percent slopes	4.2	17.3%									
Totals for Area of Interest		24.2	100.0%									

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not

mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Essex County, Massachusetts, Northern Part

1—Water

Map Unit Setting

National map unit symbol: vjx4 Frost-free period: 125 to 165 days Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

12A—Maybid silt loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: vjhj Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Maybid and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Maybid

Setting

Landform: Depressions, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Soft silty and clayey glaciolacustrine deposits and/or firm silty marine deposits

Typical profile

H1 - 0 to 7 inches: silt loam H2 - 7 to 19 inches: silty clay H3 - 19 to 60 inches: silty clay

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent

Available water storage in profile: Moderate (about 8.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6w Hydrologic Soil Group: C/D Hydric soil rating: Yes

Minor Components

Scantic

Percent of map unit: 12 percent Landform: Depressions Hydric soil rating: Yes

Swansea

Percent of map unit: 3 percent Landform: Bogs Hydric soil rating: Yes

16A—Scantic silt loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: vjrl Elevation: 10 to 900 feet Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Scantic and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Scantic

Setting

Landform: Depressions, drainageways Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Soft fine-silty glaciolacustrine deposits and/or soft fine-silty glaciomarine deposits over hard fine-silty glaciolacustrine deposits and/or hard fine-silty glaciomarine deposits

Typical profile

H1 - 0 to 11 inches: silt loam *H2 - 11 to 26 inches:* silty clay loam *H3 - 26 to 60 inches:* clay

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: High (about 9.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C/D Hydric soil rating: Yes

Minor Components

Maybid

Percent of map unit: 10 percent Landform: Depressions Hydric soil rating: Yes

Buxton

Percent of map unit: 5 percent Hydric soil rating: No

228B—Buxton silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: vj37 Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Buxton and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Buxton

Setting

Landform: Valleys, valleys Landform position (two-dimensional): Footslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Concave Parent material: Soft fine-loamy glaciolacustrine deposits derived from mica schist over hard fine-loamy glaciolacustrine deposits derived from mica schist

Typical profile

H1 - 0 to 10 inches: silt loam H2 - 10 to 30 inches: silt loam H3 - 30 to 60 inches: silty clay

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: About 12 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: High (about 9.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Suffield

Percent of map unit: 15 percent Hydric soil rating: No

Scantic

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

602—Urban land

Map Unit Setting

National map unit symbol: vjx3 Frost-free period: 125 to 165 days Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Urban Land

Setting

Parent material: Excavated and filled land

Minor Components

Udorthents

Percent of map unit: 10 percent Hydric soil rating: No

Charlton

Percent of map unit: 2 percent Hydric soil rating: No

Hinckley

Percent of map unit: 2 percent Hydric soil rating: No

Merrimac

Percent of map unit: 2 percent Hydric soil rating: No

Paxton

Percent of map unit: 2 percent Hydric soil rating: No

Windsor

Percent of map unit: 2 percent Hydric soil rating: No

651—Udorthents, smoothed

Map Unit Setting

National map unit symbol: vjwk Elevation: 0 to 3,000 feet Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Udorthents and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents

Setting

Parent material: Excavated and filled land loamy and/or excavated and filled land sandy and gravelly

Typical profile

H1 - 0 to 6 inches: variable H2 - 6 to 60 inches: variable

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to very high (0.06 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Hydric soil rating: Unranked

Minor Components

Urban land

Percent of map unit: 10 percent Hydric soil rating: Unranked

Beaches

Percent of map unit: 8 percent Hydric soil rating: Unranked

Dumps

Percent of map unit: 2 percent Hydric soil rating: Unranked

719B—Suffield silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: vjsr Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Suffield and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Suffield

Setting

Landform: Lakebeds (relict), lakebeds (relict) Landform position (two-dimensional): Summit Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Convex Parent material: Soft coarse-silty glaciolacustrine deposits over hard clayey glaciolacustrine deposits

Typical profile

H1 - 0 to 7 inches: silt loam

H2 - 7 to 35 inches: silt loam

H3 - 35 to 60 inches: silty clay

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 18 to 40 inches to strongly contrasting textural stratification
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C Hydric soil rating: No

Minor Components

Buxton

Percent of map unit: 10 percent Hydric soil rating: No

Scantic

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

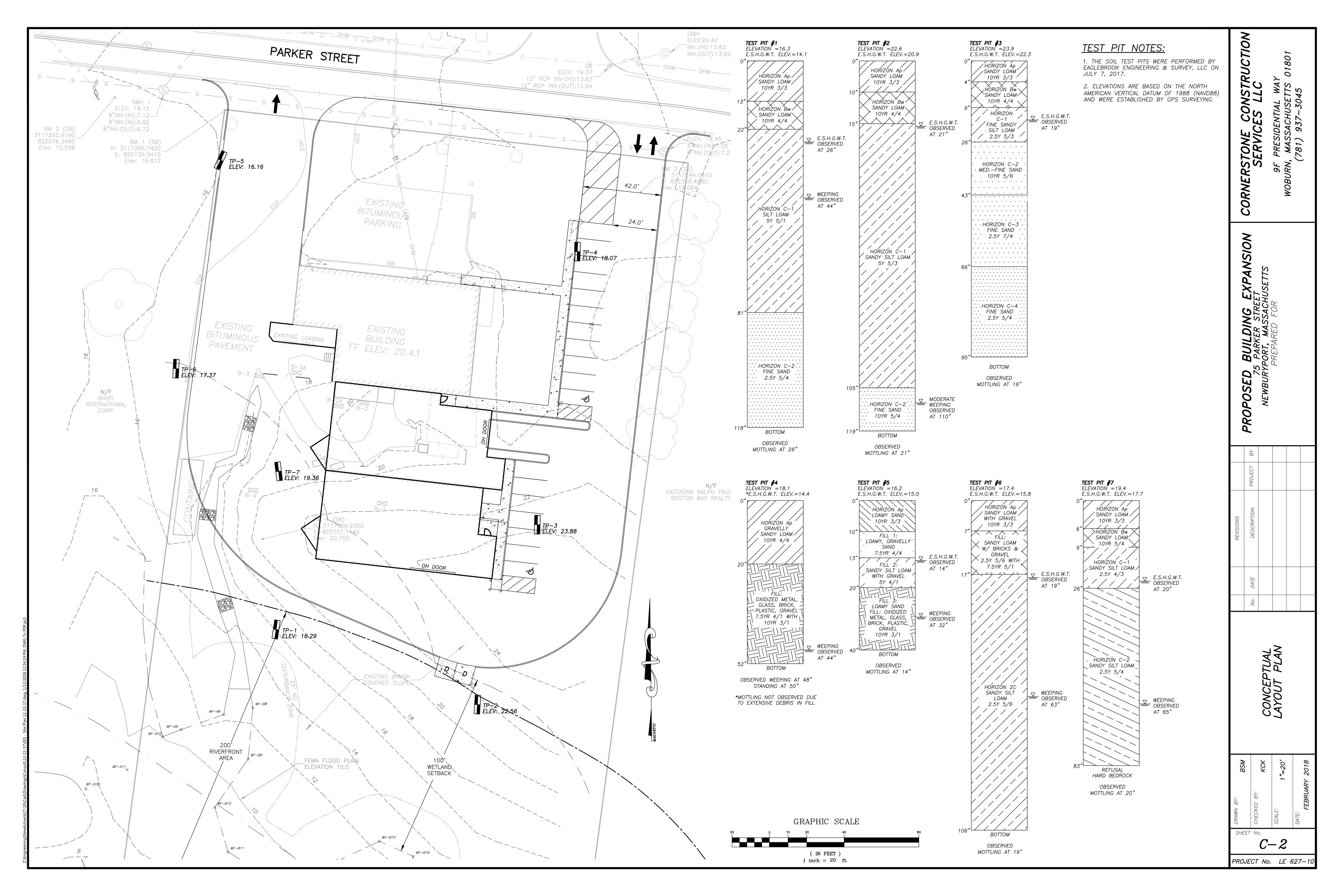
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374


United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084 United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

ATTACHMENT F

Soil Test Pit Logs

A. Facility Information

	Port City Realty LLC							
	Owner Name							
	75 Parker Street					Map 78, Block 2	I, Lot A	
	Street Address					Map/Lot #		
	Newburyport			MA		01950		
	City			State		Zip Code		
В.	Site Information							
1.	(Check one) 🛛 New Cons	ruction	Upgrade		Repair			
2.	Soil Survey Available?	🛛 Yes	🗌 No	If yes:	Web Soil Survey		719B Soil Map Unit	
	Suffield Silt Loam, 3%-8% slopes			Presenc	e of fine material, silt an	d possible clav	·	
	Soil Name			Soil Limita		- p		
	Soft coarse-silty glaciolacustrine de	posits over ha	ard clayey	Lakebed	l			
	glaciolacustrine deposits			Landform				
3.	Surficial Geological Report Available	? 🛛 Yes	🗌 No	If yes:	2006/USGS, Stone Year Published/Source	1:24,000 Publication Scale	Map Unit	
4.	Flood Rate Insurance Map							
	Above the 500-year flood boundary? If Yes, continue to #5.	🛛 Yes	🗌 No	Within th	e 100-year flood boundar Tee	y? Ves t pits located outs	No No	
5.	Within a velocity zone?	🗌 Yes	🖂 No		103			
6.	Within a Mapped Wetland Area?	🗌 Yes	🖂 No	MassGI	S Wetland Data Layer:	Wetland Type		
7.	Current Water Resource Condition	s (USGS):	7/6/17 Month/Year	Range:	Above Normal	Normal 🗌 Belo	w Normal	
8.	Other references reviewed:	SearchWell, Ma	assGIS					

С.	On-Site Revie	ew (<i>minimum</i> or	^r two holes req	uired at every pr	opose	əd primal	y and reserv	/e dispo	sal area)
	Deep Observation	Hole Number:	TP-1	July 7, 2017 Date	0830 Time)	Cloudy, Weather	Showers	, 75 deg F
1.	Location								
	Ground Elevation a	t Surface of Hole:	16.3 feet	Latit	tude/Lo	ongitude:	42.799529	/ -70.881	1553
	Description of Loca	tion: Field/La	awn adjacent to C	Commerical Buildings	s and v	vetland			
2.	(e.g	Id/Lawn for Comme	Ŷ		Ledg Surfac	ce Stones (e.	g., cobbles, stones	, boulders,	etc.) 3-8 Slope (%)
		mmed brush, grass		Lakebed Landform			houlder		
3.	Distances from:	etation Open Water Bod	y 150	Drainage Way		36	osition on Landsca Wetland		, b3, F3, T3) 52
5.	Distances nom.	Open Water Dou	feet	_ Drainage way		feet	Welland	12	feet
		Property Line	75 feet	Drinking Water	Well	>100 feet	Other		feet
4.	Parent Material:	Silt Loam		Unsuit	able M	laterials Pr	esent:] Yes	No No
	If Yes: Dist	urbed Soil	Fill Material	Impervious Layer(s	3)	🗌 Wea	athered/Fracture	d Rock	Bedrock
5.	Groundwater Obse	rved: 🛛 Yes	🗌 No	If yes:		14 Depth Weepir	ng from Pit	118 Depth S	tanding Water in Hole
	Estimated Depth to	High Groundwater:	26 inches	elevatio					

C. On-Site Review (continued)

Deep Observation Hole Number:

Test Pit-1 (TP-1)

Depth (in.)	Soil Horizon/	Soil Matrix: Color-	Redoximorphic Features			Soil Texture	Coarse Fragments % by Volume		Soil Structure	Soil Consistence	Other
Depth (m.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	Other
0-13	Ар	10YR 3/3	-	-	-	Sandy Loam	0	0	Massive	Friable	
13-22	Bw	10YR 4/4	-	-	-	Fine Sandy Loam	0	0	Massive	Friable	
22-81	С	5Y 5/1	26"	10YR 5/4	5	Silt Loam	0	0	Platy	Firm-Very Firm	Easily smeared
81-118	C2	2.5Y 5/4		7.5YR 4/4 Common		Fine Sand	0	0	Single Grain	Loose	
Bottom											

Additional Notes:

C Horizon: Somewhat greasy and sticky. Firm with added water but still friable.

Commonwealth of Massachusetts

City/Town of Newburyport

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C.	On-Site Review	(continued)						
	Deep Observation Hole	e Number: T	P-2	July 7, 2017 Date	0920 Time	Clou Weat	idy, 75 deg. F	
1.	Location							
	Ground Elevation at Sur	face of Hole: $\frac{2}{fee}$	2.6 t	Latitude	e/Longitude:	42.799406	/ -70.8811120	
2.		awn for Commerica odland, agricultural field			Ledge Surface Stor	nes (e.g., cobbles, si	ones, boulders, etc.)	<u>3%-8%</u> Slope (%)
	Trimme Vegetation	d brush		Lakebed Landform		Sho	ulder ion on Landscape (SL	1 ()
3.	Distances from: Op	pen Water Body	228 feet	_ Drainage Way	r 130 feet		ands	106 feet
	Pro	operty Line	43 feet	Drinking Wate	r Well >1		er	feet
4.	Parent Material: Sa	andy Silt Loam		Unsui	table Materi	als Present:	Yes	🛛 No
	If Yes: Disturbed	d Soil 🛛 🗌 Fi	Il Material] Impervious Layer(s) [] Weathered/Frac	tured Rock	Bedrock
5.	Groundwater Observed:	🛛 🛛 Yes	🗌 No	If yes:		moderate @ 110 Weeping from Pit		ng Water in Hole
	Estimated Depth to High		1 iches	elevatio		–	Depth Stand	ng water in Hole

C. On-Site Review (continued)

Deep Observation Hole Number: TP-2

Depth (in.)	Soil Horizon/ Layer	on/ Soil Matrix: Color-	Redoximorphic Features			Soil Texture		ragments /olume	Soil Structure	Soil Consistence	Other
Depth (m.)		Moist (Munsell)	Depth	Color	Percent	(USDA)		Cobbles & Stones		(Moist)	Other
0-10	Ар	10YR 3/3				Sandy Loam	0	0	Massive	Friiable	
10-15	Bw	10YR 4/4				Sandy Loam	0	0	Massive	Friable	
15-105	С	5Y 5/3	21"	5YR 3/4	5	Sandy Silt Loam	0	0	Platy	Firm	Easily Smeared
105-119	C2	10YR 5/4		Common		Fine Sand	0	0	Single Grain	Loose	
Bottom											

Additional Notes:

D. Determination of High Groundwater Elevation

1.	Me	thod Used:			Obs. Hole #	<u>TP-1</u>	Obs. Hole # <u>TP-</u>	2
		Depth observed standing	water in observ	ation hole				
		Depth weeping from side of	of observation l	nole	inches		inches	
		1 1 3			inches		inches	
	\boxtimes	Depth to soil redoximorphi	c features (mo	ottles)	26		21	
					inches		inches	
		Depth to adjusted seasona	al high groundv	vater (Sh)				
		(USGS methodology)			inches		inches	
		Index Well Number		Reading Date				
		$S_h = S_c - [S_r \times (OW_c - OW_c)]$	/ _{max})/OW _r]					
		Obs. Hole #	Sc	Sr	OW _c	OW _{max}	OW _r	S _h
		Obs. Hole #	Sc	Sr	OW _c	OW _{max}	OWr	S _h

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

	🛛 Yes 🗌 No				
b.	If yes, at what depth was it observed?	Upper boundary:	22	Lower boundary:	118
			inches		inches
c.	If no, at what depth was impervious material observed?	Upper boundary:		Lower boundary:	
			inches		inches

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

	Deep Observation	Hole Number:	<u>TP-3</u>	July 7, 2017 Date	0945 Time	Cloudy, Showers, 75 of Weather	deg F
1.	Location						
	Ground Elevation at	Surface of Hole:	23.9 feet	Latitu	ude/Longitude	42.799767 / -70.881106	_
	Description of Locat	ion: <u>Field/La</u>	wn adjacent to C	Commerical Buildings	and wetland		
2.		d/Lawn for Comme , woodland, agricultural f	v)	Ledge Surface Stones	(e.g., cobbles, stones, boulders, etc.)	<u>3-8</u>
	Gra	•		Lakebed		Summit/Shoulder Position on Landscape (SU, SH, BS, I	
3.	Distances from:	Open Water Body	305 feet	Drainage Way	200 feet	Wetlands	213 feet
		Property Line	13 feet	Drinking Water	Well <u>>100</u> feet	Other	feet
4.	Parent Material:	Sandy Silt Loam		Unsuita	able Materials	Present: Yes	🖾 No
	If Yes: Distu	ırbed Soil	Fill Material	Impervious Layer(s)) 🗆 V	Veathered/Fractured Rock	Bedrock
5.	Groundwater Observ	ved: 🗌 Yes	🛛 No	If yes:	Depth Wee	eping from Pit Depth Standir	g Water in Hole
	Estimated Depth to	High Groundwater:	19 inches	elevation			5

C. On-Site Review (continued)

Deep Observation Hole Number:

Test Pit-3 (TP-3)

Depth (in.)	Soil Horizon/	Soil Matrix: Color-	Redoximorphic Features			Soil Texture	Coarse Fragments % by Volume			Soil Consistence	Other	
Deptin (in.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)		
0-4	Ар	10YR 3/3	-	-	-	Sandy Loam	0	0	Massive	Friable		
4-9	Bw	10YR 4/4	-	-	-	Sandy Loam	0	0	Massive	Friable		
9-26	С	2.5Y 5/3	19"	10YR 5/4	5	Fine Sandy Silt Loam	0	0	Platy	Firm	Crumbles when dry	Sticky when wet
26-43	C2	10YR 5/6		Common		Med-Fine Sand	0	0	Single Grain	Loose	compacted layering	
43-66	C3	2.5Y 7/4		Common		Fine Sand	0	0	Single Grain	Loose		
66-95	C4	2.5Y 5/4		Common		Fine Sand	0	0	Single Grain	Loose	Slightly Moist	
Bottom												

Additional Notes:

C Horizon: Slightly Moist

C2 Horizon: Compacted layering with streaks of 10YR 4/3

C3 Horizon: Consistent soft and clean sand

C4 Horizon : Slightly moist, consistent slightly darker color than C3

Commonwealth of Massachusetts

City/Town of Newburyport

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C.	On-Site Revie	W (continued)					
	Deep Observation Hole Number:		TP-6	July 7, 2017 Date	1100 Time	Cloudy, 75 deg. F Weather	
1.	Location						
	Ground Elevation at		17.4 eet	Latitude/L	ongitude:	42.800138 / -70.880939	
2.		d/Lawn for Commerie	V	<u> </u>	etc.) 3%-8% Slope (%)		
	Grass Vegetation			Lakebed Landform		Footslope Position on Landscape	e (SU, SH, BS, FS,
3.	Distances from:	Open Water Body	224 feet	Drainage Way	121 feet	Wetlands	170 feet
		Property Line	10 feet	Drinking Water V	Vell <u>>100</u> feet	Other	feet
4.	Parent Material:	Sandy Silt Loam		Unsuitab	ole Materials	Present: 🛛 Yes	🗌 No
	If Yes: Distu	urbed Soil 🛛 🖂 I	Fill Material [Impervious Layer(s)	□ v	Veathered/Fractured Rock	Bedrock
5.	Groundwater Obser	ved: 🛛 Yes	🗌 No	If yes:	63""	104	
	Estimated Depth to	High Groundwater:	19 inches	elevation	Depth Wee	eping from Pit Depth St	anding Water in Hole

C. On-Site Review (continued)

Deep Observation Hole Number: TP-6

Depth (in.)	Soil Horizon/ Layer	Soil Matrix: Color- Moist (Munsell)	Redoximorphic Features		Soil Texture	Coarse Fragments % by Volume		Soil Structure	Soil	Other	
Deptil (III.)			Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	Other
0-7	Ар	10YR 3/3				Sandy Loam	0	0	Granular	Friable	
7-17	Fill					Fill, Bricks, some gravel	10	0	Massive	Friable	
17-106	С	2.5Y 5/6	19"	5YR 5/2	5	Sandy Silt Loam	0	0	Platy	Firm	slightly sticky
Bottom											

Additional Notes:

Slight weeping at 63". Moderate weeping at 95". Standing water at 104"

Fill layer has streaks of 7.5YR 5/1. Fill consists of predominately varying size of crushed bricks. Possible human transported organics between compacted brick material.

D. Determination of High Groundwater Elevation

1.	Me	thod Used:			Obs. Hole #	<u>TP-3</u>	Obs. Hole # <u>TP-</u>	6	
		Depth observed standing	water in observ	ation hole					
		Depth weeping from side of	of observation l	hole	inches		inches		
		1 1 3			inches		inches		
	\boxtimes	Depth to soil redoximorphi	c features (mo	ottles)	19		<u>19</u>		
					inches		inches		
		Depth to adjusted seasona	al high groundv	vater (Sh)					
		(USGS methodology)			inches		inches		
		Index Well Number		Reading Date					
		$S_h = S_c - [S_r \times (OW_c - OW_c)]$	/ _{max})/OW _r]						
		Obs. Hole #	Sc	Sr	OW _c	OW _{max}	OW _r	Sh	
		Obs. Hole #	Sr	OW _c	OW _{max}	OWr	S _h		

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

	Yes No				
b.	If yes, at what depth was it observed?	Upper boundary:	17	Lower boundary:	95
			inches		inches
c.	If no, at what depth was impervious material observed?	Upper boundary:		Lower boundary:	
			inches		inches

С.	. On-Site R	eview (minimum of	two holes req	quired at every pr	oposed pri	mary and reserve d	isposal area)
	Deep Observa	ation Hole Number:	TP-7	July 7, 2017 Date	1215 Time	Cloudy, Show Weather	wers, 75 deg F
1.	Location						
	Ground Elevat	ion at Surface of Hole:	19.4 feet	Latit	tude/Longitud	de: <u>42.799800</u> / -70	0.881546
	Description of	Location: Field/Lav	vn adjacent to C	Commerical Buildings	s and wetland	d	
2.	Land Use	Field/Lawn for Commer (e.g., woodland, agricultural fi)	Ledge Surface Stone	es (e.g., cobbles, stones, boul	Iders, etc.) 3-8 Slope (%)
		Trimmed brush, grass		Lakebed		Shoulder	
		Vegetation		Landform		Position on Landscape (S	U, SH, BS, FS, TS)
3.	Distances from	n: Open Water Body	204 feet	Drainage Way	22 feet	Wetlands	121 feet
		Property Line	69 feet	Drinking Water	Well >10	0 Other	feet
4.	Parent Materia	I: Sandy Silt Loam		Unsuit	able Materia	ls Present: 🛛 🕅 Ye	es 🗌 No
	If Yes:	Disturbed Soil	Fill Material	Impervious Layer(s	s) 🗌	Weathered/Fractured Ro	ck 🛛 Bedrock
5.	Groundwater C	Dbserved: 🛛 Yes	🗌 No	If yes:	65 Depth W	Veeping from Pit De	epth Standing Water in Hole
	Estimated Dep	oth to High Groundwater:	20		Doptil H		
			inches	elevation	n	_	

C. On-Site Review (continued)

Deep Observation Hole Number:

Test Pit-7 (TP-7)

Depth (in.)	Soil Horizon/	Soil Matrix: Color-	Red	loximorphic Feat	ures	Soil Texture	Coarse Fragments % by Volume		Coarse Fragments % by Volume			Soil	Other
Deptil (III.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		Soil Consistence (Moist) Friable Friable- Frim Friable	Other		
0-6	Ар	10YR 3/3	-	-	-	Sandy Loam	0	0	Massive	Friable			
6-9	Bw	10YR 5/4	-	-	-	Sandy Loam	0	0	Massive	Friable			
9-26	С	2.5Y 4/3	20"	10YR 5/6	5	Sandy Silt Loam	0	0	Platy		Slightly sticky		
26-83	C2	2.5Y 5/4		Common		Sandy Silt Loam	0	0	Platy	Friable	Gritty, Moist		
93	Refusal					Hard Bedrock	0	0					

Additional Notes:

C2 Horizon: Slightly higher sand content than C Horizon, not as firm but still slightly sticky when when.

C2 Horizon: Moist at 40", wet at 65"+

D. Determination of High Groundwater Elevation

1.	Ме	thod Used:			Obs. Hole #	TP-7	Obs. Hole #		
		Depth observed standing	water in observ	ation hole					
		Depth weeping from side	of observation I	hole	inches		inches		
		Depth weeping nom side (inches		inches		
	\boxtimes	Depth to soil redoximorphi	c features (mo	ottles)	20		inchoo		
					inches		inches		
		Depth to adjusted seasona (USGS methodology)	vater (Sh)	inches		inches			
		(0000 methodology)			menes		inches		
		Index Well Number		Reading Date					
		$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$							
		Obs. Hole # S _c		Sr	OW _c	OW _{max}	OWr	S _h	
		Obs. Hole # Sc S		Sr	OW _c	OW _{max}	OW _r	S _h	

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

Yes No				
If yes, at what depth was it observed?	Upper boundary:	9	Lower boundary:	83
		inches		inches
If no, at what depth was impervious material observed?	Upper boundary:		Lower boundary:	
		inches		inches
	Yes No If yes, at what depth was it observed? If no, at what depth was impervious material observed?	If yes, at what depth was it observed? Upper boundary:	If yes, at what depth was it observed? Upper boundary: 9 If no, at what depth was impervious material observed? Upper boundary:	If yes, at what depth was it observed? Upper boundary: 9 Lower boundary: If no, at what depth was impervious material observed? Upper boundary: Lower boundary:

A. Facility Information

	Port City Realty LLC								
	Owner Name								
	75 Parker Street					Map 78, Block 1	, Lot A		
	Street Address					Map/Lot #			
	Newburyport			MA		01950			
	City			State		Zip Code			
B.	Site Information								
1.	(Check one) 🛛 New Const	truction	Upgrade		Repair				
2.	Soil Survey Available?	🛛 Yes	🗌 No	If yes:	Web Soil Survey Source		651 Soil Map Unit		
	Udorthents, smoothed				·				
	Excavated and filled land loamy an sandy and gravelly	and filled land	Lakebed Landform						
3.	Surficial Geological Report Available	? 🛛 Yes	🗌 No	If yes:	2006/USGS, Stone Year Published/Source	1:24,000 Publication Scale	Map Unit		
4.	Flood Rate Insurance Map								
	Above the 500-year flood boundary? If Yes, continue to #5.	🛛 Yes	🗌 No	Within th	ne 100-year flood boundar	ry? 🗌 Yes	🛛 No		
5.	Within a velocity zone?	Yes	🛛 No						
6.	Within a Mapped Wetland Area?	🗌 Yes	🛛 No	MassGI	S Wetland Data Layer:	Wetland Type			
7.	Current Water Resource Condition	s (USGS):	7/6/17 Month/Year	Range:	Above Normal	Normal Delo	w Normal		
8.	Other references reviewed:	SearchWell							
		Note: Section	of property within	wetland.	Test pits located outside	wetland.			

	Deep Observat	on Hole Number:	TP-4	July 7, 2017 Date	1030 Time		<u>Cloudy, S</u> Weather	howers, 75	deg F
1.	Location								
	Ground Elevatio	n at Surface of Hole:	18.1	Latit	ude/Lo	ongitude:	42.800175 /	-70.880926	<u>;</u>
	Description of Lo	ocation: Field/La	awn adjacent to	Commerical Buildings	and w	vetland			
2.		Field/Lawn for Comme			Ledg				3-8
		(e.g., woodland, agricultural	field, vacant lot, etc		Surfac	e Stones (e.g	I., cobbles, stones, l	boulders, etc.)	Slope (%
	-	Grass		Lakebed			ootslope		
		Vegetation		Landform		Po	sition on Landscape	e (SU, SH, BS,	FS, TS)
3.	Distances from:	Open Water Bod		Drainage Way		>50	Wetlands	5	335
			feet			feet			feet
		Property Line	20	Drinking Water	Well	>100	Other		
			feet			feet			feet
4.	Parent Material:	Loamy Fill		Unsuit	able M	aterials Pre	esent: 🛛 🖂	Yes	🗌 No
	If Yes:	Disturbed Soil	Fill Material	Impervious Layer(s)	🗌 Wea	thered/Fractured	Rock	Bedrock
5.	Groundwater Ob	served: 🛛 🕅 Yes	🗌 No	If yes:	4	8		50	
-				y		epth Weeping	g from Pit	Depth Standi	ng Water in Hole
	Estimated Depth	to High Groundwater:							
	•	5	inches	elevation	า				

C. On-Site Review (continued)

Deep Observation Hole Number:

Test Pit-4 (TP-4)

Depth (in.)	Soil Horizon/	Soil Matrix: Color-	Red	loximorphic Feat	ures	Soil Texture		ragments /olume	Soil Structure	Soil	
Deptin (int.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles	(Moist)	Other	
0-20	Ар	10YR 4/4	-	-	-	Sandy Loam	5	0	Massive	Friable	
20-52	Fill	7.5Y 4/1	NF	-	-	Loamy Fill, Metal, Glass	10	0	Inconsistent	Loose to Firm	
Bottom											

Additional Notes:

Fill consists of old car parts, rusted metal, ashes, glass, mixed gravel. Very inconsistent. Highly oxidized material and human disturbance prevented observation of redoximorphic features in limited observable soil material.

Commonwealth of Massachusetts

City/Town of Newburyport

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C.	On-Site Revie	(continued)					
	Deep Observation	Hole Number:	TP-5	July 7, 2017	1100	Cloudy, 75 deg. F	-
				Date	Time	Weather	
1.	Location						
	Ground Elevation at		16.2	Latitude/	Longitude:	42.800276 / -70.881599)
2.	Land Use Fiel	d/Lawn for Commeri	cal Building		Ledge		3%-8%
	(e.g.	, woodland, agricultural fie	eld, vacant lot, etc.)		Surface Stone	s (e.g., cobbles, stones, boulders,	etc.) Slope (%)
	Gra		Lakebed Footslope				
	Vegetation			Landform		Position on Landscape	e (SU, SH, BS, FS,
3.	Distances from:	Open Water Body	344	Drainage Way	37	Wetlands	288
			feet		feet		feet
		Property Line	18	Drinking Water	Well >100	Octher	
			feet		feet		feet
4.	Parent Material:	Sandy Silt Loam w	/gravel	Unsuita	able Material	s Present: 🛛 🛛 Yes	🗌 No
	If Yes: 🛛 Distu	ırbed Soil	Fill Material [Impervious Layer(s)		Weathered/Fractured Rock	Bedrock
5.	Groundwater Observ	ved: 🛛 Yes	🗌 No	If yes:	32"	38"	
					Depth W	eeping from Pit Depth S	tanding Water in Hole
	Estimated Depth to	High Groundwater:	14				
	-		inches	elevation			

C. On-Site Review (continued)

Deep Observation Hole Number: TP-5

Depth (in.)	Soil Horizon/	Soil Matrix: Color-	Rec	loximorphic Feat	ures	Soil Texture		ragments /olume	Soil Structure	Soil	Gritty
Depth (m.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	
0-10	Ар	10YR 3/3				Loamy Sand	0	0	Massive	Friable	
10-13	Fill	7.5YR4/4				Loamy Sand w/ gravel	30	0	Massive	Friable	
13-20	Fill	5Y 4/1	14"	10YR 4/4	5	Sandy Silt Loam,w gravel	20	0	Massive	Friable	Gritty
20-40	Fill	10YR 3/1	NF			Loamy Fill, metal, glass	0	0	Inconsistent	Loose to Firm	
Bottom											

Additional Notes:

Fill material consists of metal, glass, nylon rope, plastic, some gravel. Very moderate weeping at 32". Standing water quick to settle at 38". Mottling not found in bottom fill layer due to extensive fill debris among limited observable soil material.

D. Determination of High Groundwater Elevation

1.	Me	thod Used:			Obs. Hole #	TP-4	Obs. Hole # <u>TP-</u>	5		
		Depth observed standing	water in observ	ation hole						
	_				inches		inches			
	\bowtie	Depth weeping from side of	of observation l	hole	44					
					inches					
	\boxtimes	Depth to soil redoximorphi	c features (mo	ottles)			14			
					inches		inches			
		Depth to adjusted seasona	al high groundv	vater (Sh)						
		(USGS methodology)			inches		inches			
		Index Well Number		Reading Date						
				Reading Date				nches 14 nches nches		
		$S_h = S_c - [S_r \times (OW_c - OW_c)]$	/ _{max})/OW _r]							
		Obs. Hole #	Sc	Sr	OW _c	OW _{max}	OW _r	S _h		
		Obs. Hole #	Sr	OW _c	OW _{max}	OW _r	S _h			

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

	Yes	🖂 No				
b.	If yes, at what o	depth was it observed?	Upper boundary:		Lower boundary:	
	-			inches	·	inches
c.	If no, at what de	epth was impervious material observed?	Upper boundary:	13	Lower boundary:	52
				inches		inches

F. Board of Health Witness

Name of Board of Health Witnes	s
--------------------------------	---

Board of Health

G. Soil Evaluator Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Signature of Soil Evaluator

Testing performed by Kenneth Knowles and Ben Minnix Typed or Printed Name of Soil Evaluator / License # Date

Expiration Date of License

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

ATTACHMENT G

Mounding Analysis Report

MOUNDING ANALYSIS

The analysis was performed using a computer model of the Hantush Method developed by GeoHydroCycle, Inc. The analysis computed the groundwater mound resulting from loading beneath the infiltration system on an annual basis. A number of references were used in determining the parameters of the mounding analysis including numerous technical manuals, USGS geology maps, on-site soil testing results, MassDEP well drilling data, and stormwater runoff calculations.

The regulatory requirements, calculation methodology, design parameters, and results of the analysis are detailed below.

Massachusetts Stormwater Management Standards

Volume 3, Chapter 1, of the Massachusetts Stormwater Handbook specifies the documentation necessary to demonstrate compliance with Standard number 3, Recharge to Groundwater. There are three benchmarks which apply:

"Mounding analysis is required when the vertical separation from the bottom of an exfiltration system to seasonal high groundwater is less than four feet and the recharge system is proposed to attenuate the peak discharge from a 10-year or higher 24-hour storm"

The subsurface infiltration system is designed as infiltration systems and are sized to attenuate the 10-year 24-hour storm event or greater and based on on-site soil testing are less than four feet above seasonal high groundwater. Therefore, a mounding analysis is required.

"...the mounding analysis must demonstrate that the Required Recharge Volume is fully dewatered within 72 hours (so the next storm can be stored for exfiltration)."

"The mounding analysis must also show that the groundwater mound that forms under the recharge system will not break out above the land or water surface of a wetland (e.g., it doesn't increase the water sheet elevation in a Bordering Vegetated Wetland, Salt Marsh, or Land Under Water within the 72-hour evaluation period)."

The mounding analysis demonstrates that a mound of 0.17' develops beneath the infiltration system after an average year of rainfall. The mound height dissipates to 0.15' twenty feet beyond the system, where the proposed toe of slope meets existing grade, and dissipates to 0.13' at the wetland edge 40' from the system. The analysis demonstrates that the mound that forms does not affect the storage layer beneath the system nor does it affect the sheet elevation in the bordering vegetated wetland. A separate analysis was also performed to check that a temporary localized mound during a 100-year event will dissipate within 72 hours. The analysis confirmed that the localized mound during a 100-year 24-hour storm event reduces to 0.57' after 72 hours, so all storage in the infiltration system is available for a subsequent storm.

Calculation Methodology and Design Parameters

The analysis was performed using a computer model of the Hantush Method developed by GeoHydroCycle, Inc. The Massachusetts Stormwater Management Standards require the Hantush or equivalent method be used for the mounding analysis.

Several references were used in determining the soil parameters and site characteristics required by the Hantush method. Each variable in the Hantush Method and the value used in the analysis is as follows:

Constant Head Boundary

A constant head boundary is not used in the analysis.

Rate of Application

The rate of application was calculated based on the annual precipitation amount for Boston, Massachusetts multiplied by the area contributing to the infiltration system.

Subsurface Infiltration System:

Annual Precipitation Amount = 43.84 inches Contributing Area = 11,070 SF Total Volume = 40,442 CF/year Total time = 365 days Infiltration system bottom area = 1,250 SF Application rate = 0.088 ft/day

Angle from Y-axis

The angle from the y-axis is defined as the angle between the y-axis (length of the infiltration system) and the constant head boundary (walls). An angle of 90 degrees was used.

Aquifer Hydraulic Conductivity

The hydraulic conductivity of the soil is a measure of the soil's ability to transmit water when subjected to a hydraulic gradient. The hydraulic conductivity depends on the soil grain size, the structure of the soil matrix, and the saturation of the soil matrix. The soils were classified as sand. Based on the Massachusetts Stormwater Regulations, Table 2.3.3, 1982 Rawls Rates, the infiltration rate used was 8.27 inches per hour. The 8.27 inches per hour was converted to 16.5 feet per day.

Initial Saturated Thickness

The saturated thickness is the depth of the parent material to an impermeable layer which will restrict the vertical movement of water. Several references were reviewed in order to estimate the depth to bedrock including the "Surficial Geology of the Salem Depot – Newburyport East – Wilmington – Rockport 12-Quadrangle area in Northeast Massachusetts" 2006, published by the United State Geologic Survey, and MassDEP online database of well drilling in Newburyport and Newbury, Massachusetts.

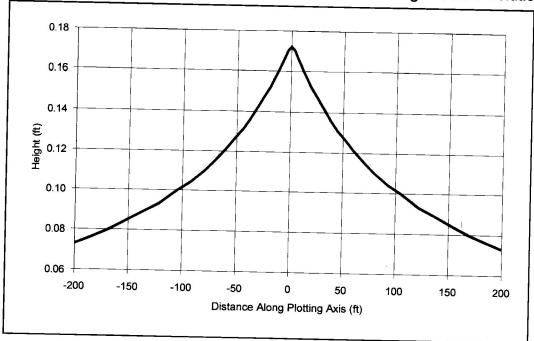
In addition to the surficial mapping, a search of the MassDEP database for drilled wells yielded several wells located in the general vicinity of the locus property. The following wells in the general vicinity of the locus property logged a depth to bedrock:

- 18 High Street in Newbury, depth to bedrock = 115'
- 7 Pouls Way, Newbury, depth to bedrock = 89'
- 212 High Street, Newburyport, depth to bedrock = 75'
- 51 High Street, Newburyport, depth to bedrock = 50'

Other wells were identified in the MADEP database that did not log or encounter bedrock in the vicinity of the locus property. These wells tended to be shallow monitoring wells typically advanced to only 25'. The analysis conservatively used 25 feet for the initial saturated thickness.

Fillable Porosity

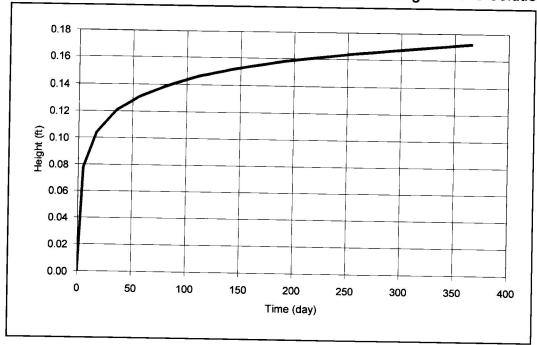
Typical values of fillable porosity range between 20-30% and increase with the distance above the water table. The Saint Johns River Water Management District prepared Special Publication SJ93-SP10 for recommended hydro-geotechnical design methodologies. The results of the study indicated, for a fine sand aquifer, a 20% porosity for Hydrologic Soil Group (HSG) D soils, a 25% porosity for HSG B & C soils, and a 30% porosity for HSG A soils. An average value of 30% (0.30) was used.


Mounding Analysis Results

Attached are the calculations Height vs. Time calculation results for the infiltration system.

The annual inflow volume to the infiltration system results in a ground water mound of 0.17 feet beneath the system, so the infiltration system storage volume is not affected by the long-term application of runoff beneath the system. The mound dissipates to 0.13' at the edge of the bordering vegetated wetlands.

The temporary mound that develops beneath the system during a 100-year 24 hour storm event dissipates to 0.57' after 72 hours, so the storage capacity of the infiltration system is available for subsequent storms.


The infiltration system complies with the requirements of the Stormwater Management Guidelines.

I

Groundwater Mounding Analysis (Hantush's Method using Glover's Solution)

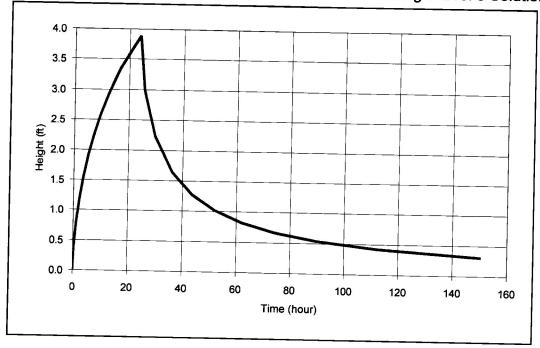
COMPANY: Eaglebrook Engineering & Survey		MODEL	RESULTS	
PROJECT: Parker St, Newburyport ANALYST: Kenneth Knowles, P.E.	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
DATE: 12/21/2017 TIME: 5:15:55 PM INPUT PARAMETERS Application rate: 0.166 c.ft/day/sq.ft Duration of application: 365 days Fillable porosity: 0.3 Hydraulic conductivity: 16.5 ft/day Initial saturated thickness: 25 ft Length of application area: 109 ft Width of application area: 6.3 ft No constant head boundary used Plotting axis from Y-Axis: 90 degrees Edge of recharge area: positive X: 3.2 ft positive Y: 0 ft Total volume applied: 41607.15 c.ft	$\begin{array}{c} -200 \\ -168.2 \\ -136.4 \\ -104.6 \\ -79.6 \\ -60.2 \\ -44.4 \\ -31 \\ -19.4 \\ -11.6 \\ -6.3 \\ 0 \\ 6.3 \\ 11.6 \\ 19.4 \\ 31 \\ 44.4 \\ 60.2 \\ 79.6 \\ 104.6 \\ 136.4 \\ 168.2 \\ 200 \end{array}$		-200 -168 -136 -105 -80 -60 -44 -31 -19 -12 -6 0 6 12 19 31 44 60 80 105 136 168 200	0.07 0.08 0.09 0.1 0.12 0.13 0.14 0.15 0.16 0.17 0.17 0.17 0.17 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.13 0.12 0.11 0.13 0.12 0.14 0.15 0.16 0.17 0.17 0.16 0.12 0.17 0.17 0.16 0.12 0.13 0.17 0.17 0.16 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.11 0.12 0.13 0.12 0.13 0.12 0.11 0.12 0.11 0.10 0.13 0.12 0.11 0.09 0.07

Groundwater Mounding Analysis (Hantush's Method using Glover's Solution)

COMPANY: Eaglebrook Engineering & Survey

PROJECT: Parker St, Newburyport

ANALYST: Kenneth Knowles, P.E.


DATE: 12/21/2017 TIME: 5:16:37 PM

INPUT PARAMETERS

Application rate: 0.166 c.ft/day/sq. ft Duration of application: 365 day Total simulation time: 365 day Fillable porosity: 0.3 Hydraulic conductivity: 16.5 ft/day Initial saturated thickness: 25 ft Length of application area: 109 ft Width of application area: 6.3 ft No constant head boundary used Groundwater mounding @ X coordinate: 0 ft Y coordinate: 0 ft Total volume applied: 41607.15 cft

MODEL RESULTS

Time (day)	Mound Height (ft)
0	0
5	0.08
17	0.1
35	0.12
57	0.13
81	0.14
110	0.15
145	0.15
191	0.16
255	0.16
365	0.17

Groundwater Mounding Analysis (Hantush's Method using Glover's Solution)

COMPANY: Eaglebrook Engineering & Survey

PROJECT: Parker St, Newburyport

ANALYST: Kenneth Knowles, P.E.

DATE: 12/21/2017 TIME: 5:22:56 PM

INPUT PARAMETERS

Application rate: 0.58 c.ft/hour/sq. ft Duration of application: 24 hour Total simulation time: 150 hour Fillable porosity: 0.3 Hydraulic conductivity: 0.69 ft/hour Initial saturated thickness: 25 ft Length of application area: 109 ft Width of application area: 6.3 ft No constant head boundary used Groundwater mounding @ X coordinate: 0 ft Y coordinate: 0 ft Total volume applied: 9558.864 cft

MODEL RESULTS

Time (hour)	Mound Height (ft)
0	0
0	0.36
1	0.79
2	1.22
4	1.58
5	1.92
7	2.24
10	2.58
13	2.94
17	3.35
24	3.89
26	2.99
30	2.23
36	1.64
44	1.28
52	1.02
62	0.83
74	0.67
90	0.54
112	0.42
150	0.31

ATTACHMENT H

Construction Inspection Log Form and Inspection and Maintenance Plan

General Information (see reverse for instructions)							
Name of Project	NPDES ID No.	Inspection Date					
Weather conditions during inspection	Inspection start time	Inspection end time					
Inspector Name, Title & Contact Information							
Present Phase of Construction							
Inspection Location (if multiple inspections are required, specify location where this inspection is being conducted)							
Standard Frequency:	may be subject to different inspection frequencies in different in the occurrence of runoff from						
Increased Frequency: Every 7 days and within 24 or Tier 3)	hours of a 0.25" rain (for areas of sites discharging to	sediment or nutrient-impaired waters or to wate	ers designated as Tier 2, Tier 2.5,				
Twice during first month, no	more than 14 calendar days apart; then once per r more than 14 calendar days apart; then once more 24 hours of a 0.25" rain (for arid, semi-arid, or droug conditions where earth-disturbing activities are beir	e within 24 hours of a 0.25'' rain (for stabilized are https://www.areas.during.seasonally dry periods o					
Was this inspection triggered by If yes, how did you determine	a 0.25" storm event? Yes No ed whether a 0.25" storm event has occurred? Weather station representative of site. Specify w						
Total rainfall amount that trig	gered the inspection (in inches):						
	the occurrence of runoff from snowmelt sufficient to	cause a discharge? 🗌 Yes 🗌 No					
Unsafe Conditions for Inspection Did you determine that any portion of your site was unsafe for inspection per CGP Part 4.5? Yes No If "yes", complete the following: - Describe the conditions that prevented you from conducting the inspection in this location:							
Location(s) where conditions were found:							

Condition and Effectiveness of Erosion and Sediment (E&S) Controls (CGP Part 2.2) (see reverse for instructions)						
Type/Location of E&S Control [Add an additional sheet if necessary]	Maintenance Needed?*	Corrective Action Required?*	Date on Which Maintenance or Corrective Action First Identified?	Notes		
1.	Yes No	□Yes □No				
2.	Yes No	Yes No				
3.	Yes No	Yes No				
4.	Yes No	Yes No				
5.	Yes No	□Yes □No				
6.	Yes No	Yes No				
7.	Yes No	Yes No				
8.	Yes No	Yes No				
9.	□Yes □No	Yes No				
10.	Yes No	□Yes □No				

* Note: The permit differentiates between conditions requiring routine maintenance, and those requiring corrective action. The permit requires maintenance in order to keep controls in effective operating condition. Corrective actions are triggered only for specific conditions, which include: 1) A stormwater control needs repair or replacement (beyond routine maintenance) if it is not operating as intended; 2) A stormwater control necessary to comply with the permit was never installed or was installed incorrectly; 3) You become aware that the stormwater controls you have installed and are maintaining are not effective enough for the discharge to meet applicable water quality standards or applicable requirements in Part 3.1; 4) One of the prohibited discharges in Part 1.3 is occurring or has occurred; or 5) EPA requires corrective actions as a result of a permit violation found during an inspection carried out under Part 4.8. If a condition on your site requires a corrective action, you must also fill out a corrective action form found at https://www.epa.gov/npdes/stormwater-discharges-construction-activities#resources. See Part 5 of the permit for more information.

Condition and Effectiveness of Pollution Prevention (P2) Practices (CGP Part 2.3) (see reverse for instructions)					
Type/Location of P2 Practices [Add an additional sheet if necessary]	Maintenance Needed?*	Corrective Action Required?*	Date on Which Maintenance or Corrective Action First Identified?	Notes	
1,	□Yes □No	∐Yes ∏No			
2.	□Yes □No	□Yes □No			
3.	□Yes □No	Yes No			
4.	∏Yes ∏No	□Yes □No			
5.	Yes No	Yes No			
6.	□Yes □No	□Yes □No			
7.	Yes No	∏Yes ∏No			
8.	□Yes □No	□Yes □No			
9.	□Yes □No	□Yes □No			
10.	□Yes □No	□Yes □No			

* Note: The permit differentiates between conditions requiring routine maintenance, and those requiring corrective action. The permit requires maintenance in order to keep controls in effective operating condition. Corrective actions are triggered only for specific conditions, which include: 1) A stormwater control needs repair or replacement (beyond routine maintenance) if it is not operating as intended; 2) A stormwater control necessary to comply with the permit was never installed or was installed incorrectly; 3) You become aware that the stormwater controls you have installed and are maintaining are not effective enough for the discharge to meet applicable water quality standards or applicable requirements in Part 3.1; 4) One of the prohibited discharges in Part 1.3 is occurring or has occurred; or 5) EPA requires corrective actions as a result of a permit violation found during an inspection carried out under Part 4.8. If a condition on your site requires a corrective action, you must also fill out a corrective action form found at https://www.epa.gov/npdes/stormwater-discharges-construction-activities#resources. See Part 5 of the permit for more information.

Stabilization of Exposed Soil (CGP Part 2.2.14) (see reverse for instructions)							
Stabilization Area [Add an additional sheet if necessary]	Stabilization Method	Have You Initiated Stabilization?	Notes				
1,		☐ YES ☐ NO If yes, provide date:					
2.		☐ YES ☐ NO If yes, provide date:					
3.		☐ YES ☐ NO If yes, provide date:					
4.		☐ YES ☐ NO If yes, provide date:					
5.		☐ YES ☐ NO If yes, provide date:					

Description of Discharges (CGP Part 4.6.6) (see reverse for instructions)						
Was a stormwater discharge or other discharge occurring from any part of your site at the time of the inspection? Yes No If "yes", provide the following information for each point of discharge:						
Discharge Location Observations [Add an additional sheet if necessary]						
1.	Describe the discharge: At points of discharge and the channels and banks of waters of the U.S. in the immediate vicinity, are there any visible signs of erosion and/or sediment accumulation that can be attributed to your discharge? Yes No If yes, describe what you see, specify the location(s) where these conditions were found, and indicate whether modification, maintenance, or corrective action is needed to resolve the issue:					
2.	Describe the discharge: At points of discharge and the channels and banks of waters of the U.S. in the immediate vicinity, are there any visible signs of erosion and/or sediment accumulation that can be attributed to your discharge? Yes No If yes, describe what you see, specify the location(s) where these conditions were found, and indicate whether modification, maintenance, or corrective action is needed to resolve the issue:					

Contractor or Subcontractor Signature and Certification (see reverse for instructions)

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Signature of Contractor or Subcontractor:	Date:
---	-------

Printed Name and Affiliation:

Operator	Signature	and	Certifica	ition
(see	reverse for	r instru	uctions)	

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Signature of Operator or "Duly Authorized Representative":

Date:

Printed Name and Affiliation:

APPENDIX I

INSPECTION AND MAINTENANCE PLAN

INSPECTION AND MAINTENANCE PLAN STORMWATER MANAGEMENT SYSTEM **PROPOSED BUILDING EXPANSION 75 PARKER STREET NEWBURYPORT, MASSACHUSETTS**

Prepared For:

Port City Realty, LLC 75 Parker Street Newburyport, Massachusetts 01950

MASSACH

RICHARD

BARTHELMES

3301 NO

COMMONIA.

AAAA

Prepared By:

JERSTONE

9F Presidential Way Woburn, MA 01801

March 30, 2018

SECTION 1: GENERAL		1
	General Inspections and Maintenance of Stormwater BMPs	1 2

TABLES

1 Operation and Maintenance Budget

FIGURES

BMP Overall BMP Plan

ATTACHMENTS

- 1 Stormwater Inspection Report Form and Site Inspection Checklist
- 2 Contech StormFilter Inspection and Maintenance Procedure Stormwater Chambers Operation and Maintenance Guidelines StormTech Chamber System Maintenance Guidelines StormTech Isolator Row Operations and Maintenance Manual

APPENDICES

A Emergency Response Plan

This page has intentionally been left blank.

SECTION 1 - PROJECT DESCRIPTION

1.1. GENERAL

The Owner, Port City Realty, LLC, is proposing the construction of a building addition, parking lot and stormwater management system in the northern portion of the existing site. The Owner will be responsible for any future maintenance and implementation of this Inspection and Maintenance Plan. This Inspection and Maintenance Plan will be implemented for the site. A copy of the plan is presented in Appendix A. Figure No. C-5 presents a plan of stormwater management system.

<u>Owner</u>

Port City Realty, LLC 75 Parker Street Newburyport, MA 01950 Telephone: 978-465-3791

Facility Contact (Site Operation and Maintenance)

Lisa Cosimano Gallagher Port City Realty, LLC 75 Parker Street Newburyport, MA 01950 Telephone: 978-465-3791

Engineer

Richard Barthelmes, P.E. Cornerstone Construction Services, LLC 9F Presidential Way Woburn, MA 01801 Telephone: 781-937-3045

1.2 CONSTRUCTION PERIOD STORMWATER POLLUTION PREVENTION AND EROSION SEDIMENTATION CONTROLS PLAN

Narrative

The applicant proposes to construct a building addition, associated parking areas, stormwater systems, and utilities to service the new site improvements. The proposed stormwater improvements include deep sump catchbasins, hydrodynamic separator units, and an underground infiltration system.

Name of Person Responsible for Plan compliance

Lisa Cosimano Gallagher Port City Realty, LLC 75 Parker Street Newburyport, MA 01950 Telephone: 978-465-3791

Construction Period Pollution Prevention Measures

The following erosion control measures are proposed:

- Silt fence and hay bale erosion control barriers.
- Stabilized construction entrance.
- Silt sock inserts at the inlet of all catchbasins to be used as temporary construction measures to prevent siltation from entering the stormwater system.
- Jute netting or other temporary measures during construction.

Erosion and Sedimentation Control Plan Drawings

The Erosion and Sedimentation Control Plan depicts the location of erosion and sedimentation controls.

Vegetation Planning

The applicant proposes to permanently vegetate all disturbed areas to prevent erosion and siltation. The areas shall be stabilized with six inches of loam and grass seed or hydroseed.

If construction ceases 21 days or more, all denuded areas shall receive temporary seeding within 14 days to ensure erosion on these areas will not occur.

Site Development Plan

Refer to Site Plans and Details for the existing and proposed site conditions.

Construction Sequencing Plan

The sequence of major events is anticipated to be:

- 1. Install erosion and sedimentation control measures.
- 2. Remove and stockpile loam.
- 3. Install stormwater management system.
- 4. Install underground utilities.
- 5. Install building foundation.
- 6. Construct proposed building.
- 7. Install proposed plants, loam, seed and stabilize areas outside limits of paved areas.
- 8. Install bituminous concrete pavement and other site structures.
- 9. Perform site cleanup.
- 10. Inspect site to assure site stabilization prior to placing the stormwater management system online.

This sequence is provided for informational purposes only. The contractor shall be responsible for all means and methods of construction and adhering to all OSHA and City of Newburyport requirements and may modify this sequence to conform to these requirements, as necessary.

Sequencing of Erosion and Sedimentation Controls

- 1. Install perimeter erosion control measures.
- 2. Install stabilized construction entrance.
- 3. Inspect and maintain erosion control measures as prescribed.
- 4. When construction is complete and site is stabilized, remove trapped sediments from collector devices as appropriate and then remove temporary erosion control measures.

Inspection Schedule

The erosion control measures shall be inspected once every 14 days, after every rainfall of 0.25 inches or greater and at least daily during prolonged rainfall events.

Maintenance Schedule

Repairs to the erosion control fences and devices shall be made as necessary and sediment shall be removed when deposits have reached one third (1/3) of the barrier height.

Repairs to the silt sacks shall be made after every rainfall as necessary. When sediment has reached one third (1/3) the depth of the trap, the sediment shall be removed.

The stabilized construction entrance stone shall be replaced as necessary to prevent tracking sediment onto public roadways.

Inspection and Maintenance Log Form

The site superintendent is responsible for maintaining inspection log forms on site during construction. A copy of the inspection form is presented in Attachment No. 1.

1.3 POST-CONSTRUCTION INSPECTIONS AND MAINTENANCE OF STORMWATER BMPS

Deep Sump Catch basins

The deep sump catchbasins shall be inspected four times per year for the first year. If the depth of sediment is not greater than two feet during the first year of inspection then the inspections shall be performed once per year. The catch basins shall be cleaned once the depth of sediment reaches two feet which is one half the sump depths. Vacuum trucks are preferred due to their effectiveness and they are less likely to damage the oil/grease hood.

Hydrodynamic Separator Units

Units shall be inspected four times per year for the first year. After the first year the unit needs to be inspected once per year. Inspections should be performed with a "sludge judge" to measure the oil depth, if any, and the sediment depth. Cleaning is required when the sediment depth reaches 75% of the storage capacity of the unit. Cleaning must be performed with a vacuum truck. Attachment No. 2 presents the manufacturer inspection/maintenance guide for the units.

Infiltration System

The infiltration system shall be inspected four times per year for the first year. After the first year, the units need to be inspected annually. The detention system has inspection ports or manholes to visibly observe the bottom of the system. Visible observations shall inspection of the bottom of bed for ponding water, debris or sediment, inspection of the inlet and outlet to ensure they are free from debris and sediment and that there are no other obstructions; inspection of the structural integrity of the units from above ground settlement or by observations from the ports/manholes

Maintenance of Landscaped Areas

Landscaped and grass areas immediately adjacent to the proposed parking areas and buildings shall be mowed as required. Grass clippings shall be directed away from the stormwater systems. Fertilizers or pesticides shall not be used with grassed and landscaped areas.

Pavement Maintenance

Paved areas of the site shall be inspected on a regular basis and cleaned of accumulated sand and debris. At a minimum, paved areas shall be cleaned on an annual basis. Pavement cleaning shall be performed by a qualified contractor and all material removed transported off site for disposal. Paved areas of the site shall be swept on an annual basis.

Snow Removal/Storage

Snow from the proposed parking lot area will be transported offsite by the snow removal contractor. No stockpiling or storage of snow from paved areas of the site is to be performed. Deicing chemicals are not to be utilized on the site. In addition, pesticides, fertilizers and other chemical shall not be used on the site. Signage will be maintained including no stockpiling of snow or salt usage at the site.

Debris and Litter Removal

Trash may collect potentially causing clogging of the facilities. All litter and debris should be collected and removed from the site on a regular basis.

Vehicle Washing

Washing of vehicles is prohibited on the site.

Operation and Maintenance Budget

Operation and maintenance costs at the site includes third-party inspections, cleaning of catch basins and separator units and sweeping of the parking lot areas,

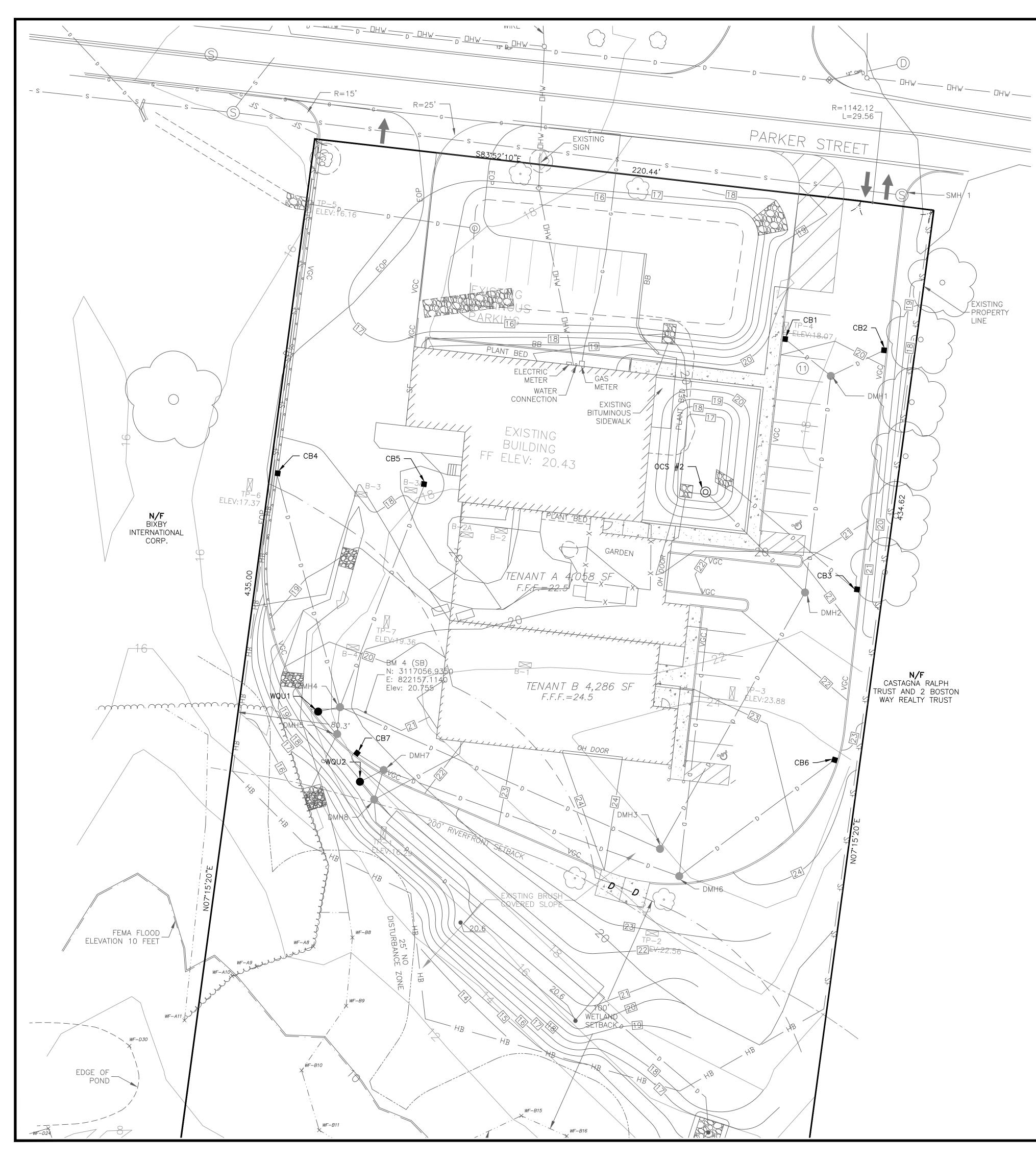
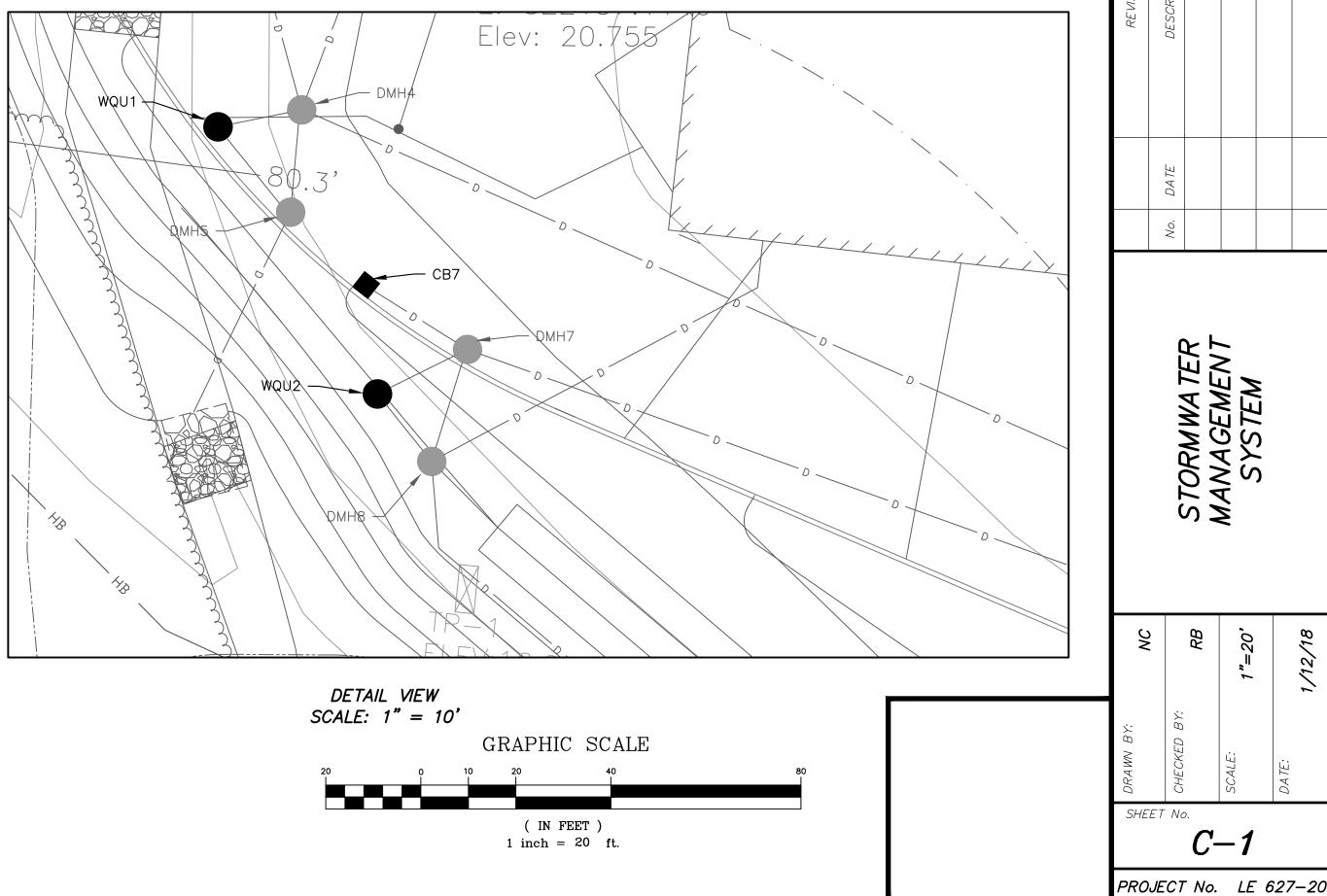
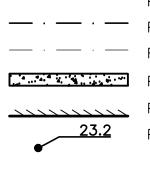

Table No. 1 presents a summary of anticipated costs in the first year of operation following construction of the site. Inspections and cleaning of catch basins and separator units at the site may be reduced to annually based on the findings of the first-year inspections completed.

TABLE NO. 1Operation and Maintenance BudgetProposed Building Expansion75 Parker StreetNewburyport, MA

Third Party Inspections (4)	\$1,600 ⁽¹⁾
Annual Parking Lot Sweeping	750
Catch Basin/Separator Cleaning (4)	2,000 ⁽¹⁾
Plant Replacement	1,000
Jellyfish Filter Cleaning	<u>1,500</u>
	\$6,850
10% Contingency	<u>685</u>
Total Estimated Annual Cost	\$7,535


⁽¹⁾Inspection frequency may be reduced to annually after year one based on the findings of quarterly stormwater inspections completed.

FIGURES



GRADING NOTES:

- RAMPS, AND SIDEWALKS.
- ANY DIRECTION.
- GRADE.
- ACCESS.

LEGEND:

- PROPOSED EDGE OF PAVEMENT ------ PROPOSED BIORETENTION SWALE FEMA FLOOD ELEVATION LINE PROPOSED 5' CONCRETE SIDEWALK PROPOSED BUILDING ADDITION PROPOSED SPOT GRADE

NO

F

RUC

NST NL WA

Q

PRESI PRESI (781)

0

S

Ś

0

00

0

1. GRADE THE PARKING LOT TO PROVIDE POSITIVE DRAINAGE AWAY FROM BUILDINGS TOWARDS PROPOSED DRAINAGE CATCHBASINS, GRASSED SWALE, AND RAIN GARDEN. THE PARKING LOT SHALL BE FREE FROM LOW SPOTS. AREAS TO PAY PARTICULAR ATTENTION TO ARE ADJACENT TO CURBED LANDSCAPED ISLANDS, LOADING DOCKS, HANDICAP

2. ALL HANDICAP ACCESSIBLE SPACES, LOADING AREAS, AND ROUTES SHALL BE GRADED AT A MAXIMUM OF 1.5% IN

3. ADJUST ALL EXISTING CATCHBASINS, MANHOLE COVERS, HYDRANTS, AND VALVE BOXES TO REMAIN TO PROPOSED

4. PROVIDE INLET PROTECTION BARRIERS AROUND ALL EXISTING AND PROPOSED CATCHBASIN INLETS WITHIN THE WORK LIMITS AND IMMEDIATELY ADJACENT TO THE LIMIT OF WORK FOR THE DURATION OF THE PROJECT UNTIL PAVEMENT HAS BEEN INSTALLED AND LANDSCAPED AREAS HAVE BEEN STABILIZED.

5. INSTALL STABILIZED CONSTRUCTION ENTRANCES AT ALL ENTRANCES TO THE SITE USED FOR CONSTRUCTION

6. ALL DISTURBED AREAS NOT TO BE PAVED OR OTHERWISE TREATED SHALL RECEIVE 6" OF LOAM AND SEED.

ATTACHMENT I

Stormwater Inspection Report Form and Site Inspection Checklist

Stormwater Inspection Report Proposed Building Expansion 75 Parker Street Newburyport, MA

Date/Time:	
Weather:	
Last Inspection:	

Description	<u>Photo</u>	Sediment Depth (in.)	Presence of oil/debris (Y/N)	<u>Comments</u>
	Ι			
	<u>I</u>			
	1			
	[

ATTACHMENT D

Contech ChamberMaxx Inspection and Maintenance Guide and Contech Jellyfish Design Sheets

ChamberMaxx[®] Inspection and Maintenance Guide

CHAMBER Maxx[•]

ChamberMaxx®

Safety

Before entering into any storm sewer or underground retention/ detention system check to make sure all OSHA and local safety regulations and guidelines are observed during the maintenance process. Hard hats, safety glasses, steel-toed boots and any other appropriate personal protective equipment shall be worn at all times.

Inspection Frequency

Inspections are recommended at a minimum annually. The first year of operation may require more frequent inspections. Frequency of inspections will vary significantly on the local site conditions. An individual inspection schedule should be established for each site.

Inspections

Inspection is the key to effective maintenance and is easily performed. Inspections may need to be performed more often in the winter months in climates where sanding operations may lead to rapid sediment accumulations, or in equipment washdown areas. It is very useful to keep a record of each inspection. A sample inspection log is included for your use.

The entire treatment train should be inspected and maintained. The treatment train may consist of an upstream sump manhole, manifold system or pre-treatment HDS device. Inspections should start at the upstream device and continue downstream to the discharge orifice if incorporated into the chamber system.

Pre-Treatment Device Inspection

Inspection and maintenance procedures provided by the manufacturer should be followed for pre-treatment systems such as a CDS[®], Vortechs[®], VortSentry[®] or VortSentry[®] HS. Expected pollutants will be floatable trash, sediment and oil and grease. Pre-treatement devices are recommended for all detention/ retention devices regardless of type.

Containment Row™ Inspection

The optional Containment Row consists of a diversion concrete manhole with a weir and a drain down orifice, and a row of chambers placed on woven geotextile. The diversion weir directs the first flush flows into the Containment Row of chambers. The majority of sediment will be captured in the Containment Row due to the extended detention time which allows the particles to settle out. Higher flows overtop (bypass) the weir into the manifold system.

The Containment Row will typically be located in the first row of chambers connected to the diversion manhole. Inspection can be done through accessing the diversion manhole and visually inspecting the Containment Row through the inlet pipe. Inspection ports throughout the system can be used for visual observation and measurement of sediment accumulation using a stadia rod. When the depth of sediment accumulates over 4-inch (102 mm), cleanout is recommended.

Manifold System Inspection

The main manifold pipe can be inspected from the diversion manhole upstream. When a quarter of the pipe volume has been filled with sediment the header system should be maintained.

Visual Inspection

Maintenance or further investigation may be required if any of the following conditions exist:

- Evidence of an unusual amount of silt and soil build-up on the surface.
- · Clogged outlet drainpipe.
- System does not drain to the elevation of the lowest pipe in dry conditions.
- Evidence of potholes or sinkholes

Maintenance

Underground stormwater retention/detention systems should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities rather than the size or configuration of the system. If accumulated silt is interfering with the operation of the detention system (i.e.: blocking outlet pipes or deposits significantly reduce the storage capacity of the system) it should be removed.

It is easiest to maintain a system when there is no flow entering. For this reason, cleanout should be scheduled during dry weather.

A vacuum truck or other similar devices can be used to remove sediment from the treatment train. Starting upstream, maintain manholes with sumps and any pre-treatment devices (following manufacturer recommended procedures). Once maintenance is complete, replace all caps, lids and covers. It is important to document maintenance events on the Inspection and Maintenance Log.

Header System Maintenance:

If maintenance is required, use a high pressure nozzle with rear facing jets to wash the sediments and debris into the diversion manhole. Use the vacuum hose stinger nozzle to remove the washed sediments from the sump of the diversion manhole. It is important to not flush sediments into the chamber system during the maintenance process.

Containment Row[™] Maintenance

If maintenance is required, a JetVac truck utilizing a high pressure nozzle (sledge dredging tool) with rear facing jets will be required. Insert the nozzle from the diversion manhole into the Containment Row through the inlet pipe. Turn the water feed hose on and feed the supply hose until the nozzle has reached the end of the Containment Row. Withdraw the nozzle slowly.

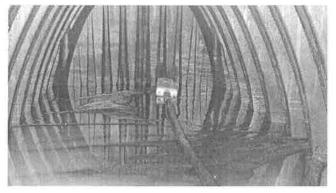
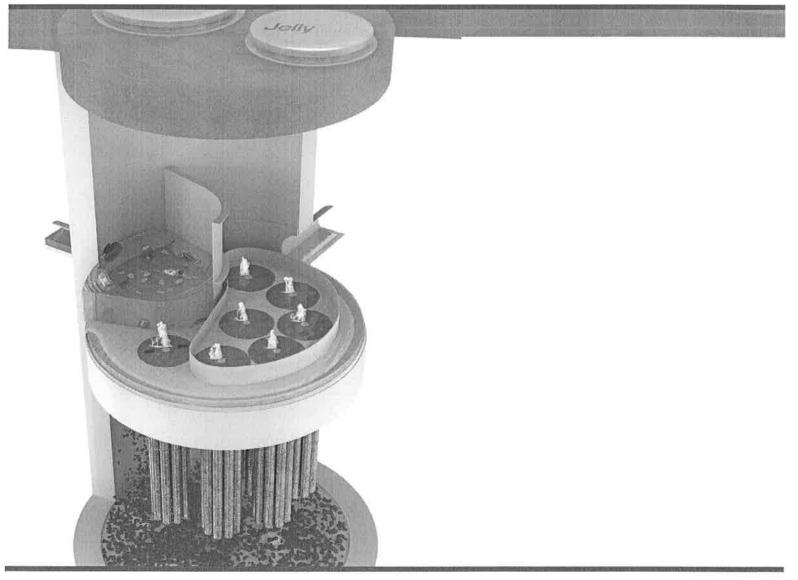


Figure 1--- Containment Row shown with high pressure cleaning nozzle


The tool will backflush the Containment Row forcing debris into the diversion manhole sump. Use the stringer vacuum hose to remove the sediments and debris from the sump of the diversion manhole. Multiple passes may be required to fully cleanout the Containment Row. Vacuum out the diversion manhole and remove all debris. See Figure 1.

Inspection & Maintenance Log Sample Template

ChamberMaxx			Location:	
Date	Depth of Sediment	Accumulated Trash	Name of Inspector	Maintenance Performed/Notes

JellyFish[®] Filter Maintenance Guide

Jellyfish®

Jellyfish®

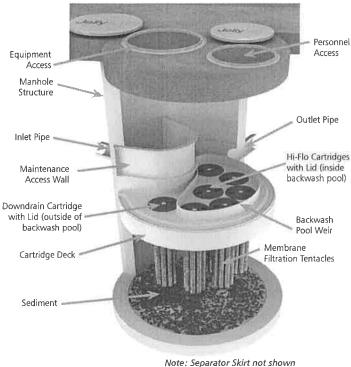
JELLYFISH® FILTER MANHOLE CONFIGURATIONS INSPECTION & MAINTENANCE GUIDE

TABLE OF CONTENTS

Inspection and Maintenance Overview	3
Inspection Procedure	4
Maintenance Procedure	4
Cartridge Assembly & Cleaning	5
Jellyfish Filter & Components	6
Inspection Process	7

1.0 Inspection and Maintenance Overview

The primary purpose of the Jellyfish® Filter is to capture and remove pollutants from stormwater runoff. As with any filtration system, these pollutants must be removed to maintain the filter's maximum treatment performance. Regular inspection and maintenance are required to insure proper functioning of the system.


Maintenance frequencies and requirements are site specific and vary depending on pollutant loading. Additional maintenance activities may be required in the event of non-storm event runoff, such as base-flow or seasonal flow, an upstream chemical spill or due to excessive sediment loading from site erosion or extreme runoff events. It is a good practice to inspect the system after major storm events.

Inspection activities are typically conducted from surface observations and include:

- Observe if standing water is present
- Observe if there is any physical damage to the deck or cartridge lids
- Observe the amount of debris in the Maintenance Access Wall (MAW)

Maintenance activities typically include:

- Removal of oil, floatable trash and debris
- Removal of collected sediments
- Rinsing and re-installing the filter cartridges
- Replace filter cartridge tentacles, as needed

2.0 Inspection Timing

Inspection of the Jellyfish Filter is key in determining the maintenance requirements for, and to develop a history of the site's pollutant loading characteristics. In general, inspections should be performed at the times indicated below; or per the approved project stormwater quality documents (if applicable), whichever is more frequent.

- Post-construction inspection is required prior to putting the Jellyfish Filter into service. All construction debris or construction-related sediment within the device must be removed, and any damage to system components repaired, before installing the filter cartridges.
- 2. A minimum of two inspections during the first year of operation to assess the sediment and floatable pollutant accumulation, and to ensure proper functioning of the system.
- 3. Inspection frequency in subsequent years is based on the inspection and maintenance plan developed in the first year of operation. Minimum frequency should be once per year.
- 4. Inspection is recommended after each major storm event.
- 5. Inspection is required immediately after an upstream oil, fuel or other chemical spill.

3.0 Inspection Procedure

The following procedure is recommended when performing inspections:

- 1. Provide traffic control measures as necessary.
- 2. Inspect the MAW for floatable pollutants such as trash, debris, and oil sheen.
- Measure oil and sediment depth in several locations, by lowering a sediment probe through the MAW opening until contact is made with the floor of the structure. Record sediment depth, and presences of any oil layers.
- 4. Inspect cartridge lids. Missing or damaged cartridge lids to be replaced.
- 5. Inspect the MAW, cartridge deck, and backwash pool weir, for cracks or broken components. If damaged, repair is required.

3.1 Dry weather inspections

- Inspect the cartridge deck for standing water, and/or sediment on the deck.
- No standing water under normal operating conditions.
- Standing water inside the backwash pool, but not outside the backwash pool indicates that the filter cartridges need to be rinsed.

Inspection Utilitzing Sediment Probe

- Standing water outside the backwash pool may indicate a backwater condition caused by high water elevation in the receiving water body, or possibly a blockage in downstream infrastructure.
- Any appreciable sediment (≥1/16") accumulated on the deck surface should be removed.

3.2 Wet weather inspections

- Observe the rate and movement of water in the unit. Note the depth of water above deck elevation within the MAW.
- Less than 6 inches, flow should be exiting the cartridge lids of each of the draindown cartridges (i.e. cartridges located outside the backwash pool).
- Greater than 6 inches, flow should be exiting the cartridge lids of each of the draindown cartridges and each of the hi-flo cartridges (i.e. cartridges located inside the backwash pool), and water should be overflowing the backwash pool weir.
- 18 inches or greater and relatively little flow is exiting the cartridge lids and outlet pipe, this condition indicates that the filter cartridges are occluded with sediment and need to be rinsed

4.0 Maintenance Requirements

Required maintenance for the Jellyfish Filter is based upon results of the most recent inspection, historical maintenance records, or the site specific water quality management plan; whichever is more frequent. In general, maintenance requires some combination of the following:

- 1. Sediment removal for depths reaching 12 inches or greater, or within 3 years of the most recent sediment cleaning, whichever occurs sooner.
- 2. Floatable trash, debris, and oil removal.
- 3. Deck cleaned and free from sediment.
- 4. Filter cartridges rinsed and re-installed as required by the most recent inspection results, or within 12 months of the most recent filter rinsing, whichever occurs sooner.
- 5. Replace tentacles if rinsing does not restore adequate hydraulic capacity, remove accumulated sediment, or if damaged or missing. It is recommended that tentacles should remain in service no longer than 5 years before replacement.
- 6. Damaged or missing cartridge deck components must be repaired or replaced as indicated by results of the most recent inspection.
- The unit must be cleaned out and filter cartridges inspected immediately after an upstream oil, fuel, or chemical spill.
 Filter cartridge tentacles should be replaced if damaged or compromised by the spill.

5.0 Maintenance Procedure

The following procedures are recommended when maintaining the Jellyfish Filter:

- 1. Provide traffic control measures as necessary.
- 2. Open all covers and hatches. Use ventilation equipment as required, according to confined space entry procedures.
- 3. Caution: Dropping objects onto the cartridge deck may cause damage.

- 4. Perform Inspection Procedure prior to maintenance activity.
- To access the cartridge deck for filter cartridge service, descend the ladder and step directly onto the deck. Caution: Do not step onto the maintenance access wall (MAW) or backwash pool weir, as damage may result. Note that the cartridge deck may be slippery.
- 6. Maximum weight of maintenance crew and equipment on the cartridge deck not to exceed 450 lbs.

5.1 Filter Cartridge Removal

- 1. Remove a cartridge lid.
- Remove cartridges from the deck using the lifting loops in the cartridge head plate. Rope or a lifting device (available from Contech) should be used. Caution: Should a snag occur, do not force the cartridge upward as damage to the tentacles may result. Wet cartridges typically weigh between 100 and 125 lbs.
- 3. Replace and secure the cartridge lid on the exposed empty receptacle as a safety precaution. Contech does not recommend exposing more than one empty cartridge receptacle at a time.

5.2 Filter Cartridge Rinsing

- Remove all 11 tentacles from the cartridge head plate. Take care not to damage or break the plastic threaded nut or connector.
- 2. Position tentacles in a container (or over the MAW), with the

threaded connector (open end) facing down, so rinse water is flushed through the membrane and captured in the container.

3. Using the Jellyfish rinse tool (available from Contech) or a low-pressure garden hose sprayer, direct water spray onto the tentacle membrane, sweeping from top to bottom along the length of the tentacle. Rinse until all sediment is removed from the membrane. Caution: Do not use a high pressure sprayer or focused stream of water on the membrane. Excessive water pressure may damage the membrane.

- 4. Collected rinse water is typically removed by vacuum hose.
- 5. Reattach tentacles to cartridge head plate. Reuse O-rings and nuts, ensuring proper placement on each tentacle.

5.3 Cleaning Procedure

- 1. Perform vacuum cleaning of the Jellyfish Filter only after filter cartridges have been removed from the system. Access the lower chamber for vacuum cleaning only through the maintenance access wall (MAW) opening, being careful not to damage the flexible plastic separator skirt that is attached to the underside of the deck. The separator skirt surrounds the filter cartridge zone, and could be torn if contacted by the wand. Do not lower the vacuum wand through a cartridge receptacle, as damage to the receptacle will result.
- Vacuum floatable trash, debris, and oil, from the MAW opening. Alternatively, floatable solids may be removed by a net or skimmer.

Tentacle Rinse Using Jellyfish Rinse Tool

- 3. Pressure wash cartridge deck and receptacles to remove all sediment and debris. Sediment should be rinsed into the sump area. Take care not to flush rinse water into the outlet pipe.
- 4. Remove water from the sump area. Vacuum or pump equipment should only be introduced through the MAW.
- 5. Remove the sediment from the bottom of the unit through the MAW opening.

Vacuuming Sump Through MAW

6. For larger diameter Jellyfish Filter manholes (≥ 8-ft) and vaults without an MAW opening, complete sediment removal may be facilitated by removing a cartridge lid from an empty receptacle and inserting a jetting wand (not a vacuum wand) through the receptacle. Use the sprayer to rinse loosened sediment toward the vacuum hose in the MAW opening, being careful not to damage the receptacle.

- 7. After the unit is clean, re-fill the lower chamber with water if required by the local jurisdiction, and re-install filter cartridges.
- 8. Dispose of sediment, floatable trash and debris, oil, spent tentacles, and water according to local regulatory requirements.

5.4 Filter Cartridge Replacement

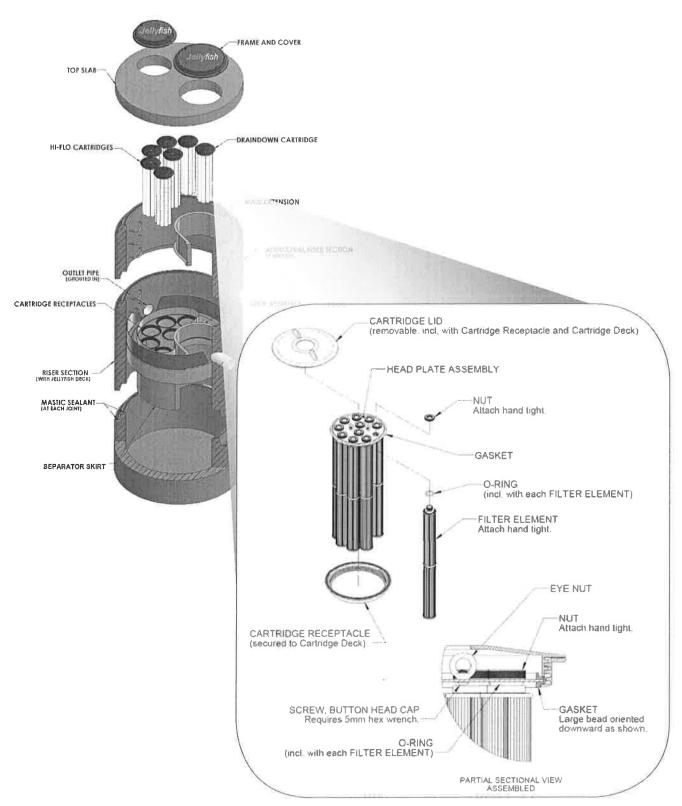
- 1. Cartridges should be installed after the deck has been cleaned. It is important that the receptacle surfaces be free from grit and debris.
- If rinsing is ineffective in removing sediment from the tentacles, or if tentacles are damaged, provisions must be made to replace the spent or damaged tentacles with new tentacles. Contact Contech to order replacement tentacles.
- 3. Lower filter cartridge to the cartridge deck. Remove cartridge lid from deck and carefully lower the filter cartridge into the receptacle until head plate gasket is seated squarely in receptacle. Caution: Should a snag occur when lowering the cartridge into the receptacle, do not force the cartridge downward; damage may occur.
- 4. Replace the cartridge lid and check fit before completing rotation to a firm hand-tight attachment.

5.5 Chemical Spills

Caution: If a chemical spill has been captured, do not attempt maintenance. Immediately contact the local hazard response agency and contact Contech.

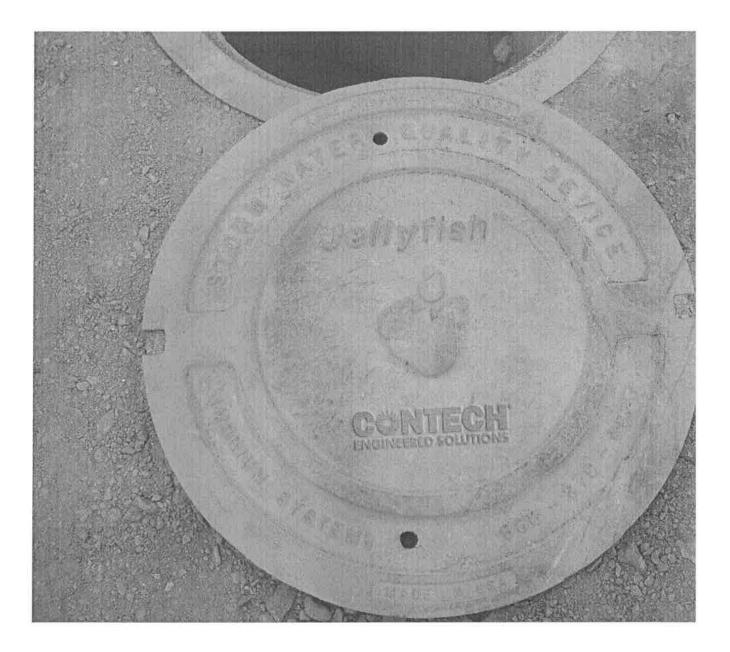
6.0 Related Maintenance Activities

Jellyfish units are often just one of many structures in a more comprehensive stormwater drainage and treatment system.


In order for maintenance of the Jellyfish filter to be successful, it is imperative that all other components be properly maintained. The maintenance and repair of upstream facilities should be carried out prior to Jellyfish maintenance activities.

In addition to considering upstream facilities, it is also important to correct any problems identified in the drainage area. Drainage area concerns may include: erosion problems, heavy oil loading, and discharges of inappropriate materials.

7.0 Material Disposal


The accumulated sediment found in stormwater treatment and conveyance systems must be handled and disposed of in accordance with regulatory protocols. It is possible for sediments to contain measurable concentrations of heavy metals and organic chemicals (such as pesticides and petroleum products). Areas with the greatest potential for high pollutant loading include industrial areas and heavily traveled roads. Sediments and water must be disposed of in accordance with all applicable waste disposal regulations. When scheduling maintenance, consideration must be made for the disposal of solid and liquid wastes. This typically requires coordination with a local landfill for solid waste disposal. For liquid waste disposal a number of options are available including a municipal vacuum truck decant facility, local waste water treatment plant or on-site treatment and discharge.

Jellyfish Filter Components & Filter Cartridge

Jellyfish Filter Inspection and Maintenance Log						
Owner:				Jellyfish Model No:		
Location:				GPS Coordinates:		
Lande Use:	Commercial:		Industrial:		Service Station:	
	Roadway/Highway:		Airport:		Residential:	

Date/Time:			
Inspector;			
Maintenance Contractor:			
Visible Oil Present: (Y/N)			
Oil Quantity Removed;			
Floatable Debris Present: (Y/N)			
Floatable Debris Removed: (Y/N)			
Water Depth in Backwash Pool			
Draindown Cartridges externally rinsed and recommissioned: (Y/N)			
New tentacles put on Cartridges: (Y/N)			
Hi-Flo Cartridges externally rinsed and recommissioned: (Y/N)			
New tentacles put on Hi-Flo Cartridges: (Y/N)			
Sediment Depth Measured: (Y/N)			
Sediment Depth (inches or mm):			
Sediment Removed: (Y/N)			
Cartridge Lids intact: (Y/N)			
Observed Damage:			
Comments:			

Jellyfish*

CINTECH ENGINEERED SOLUTIONS

800.338.1122 www.ContechES.com

Support

- Drawings and specifications are available at ContechES.com/jellyfish.
- Site-specific design support is available from Contech Engineered Solutions.

@2017 Contech Engineered Solutions LLC

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stortmwater, wastewater treatment and earth stabilization products. For information on other Contech segment offerings, visit ContechES, corn or call 800,338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY, APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION, CONTECH MAKES NO WARRANTY WHATSGEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN, ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH, SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WAWLCONTECHES, COM/COS) FOR MORE INFORMATION.

The product(s) described may be protected by one or more of the following US platents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,948; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; related foreign patents or other platents pending.

Jellyfish Maintenance DRAFT 2/17