

Prepared for: The City of Newburyport Newburyport, MA

Prepared by: Stantec Consulting Service Inc. 5 Burlington Woods, Burlington, MA 01803

September 8, 2017

Insert revision record

Sign-off Sheet

This document entitled Analysis of Brownfields Cleanup Alternatives at the Former Railroad Right of Way Newburyport, MA was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of The City of Newburyport (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(signature)

Robert Nicoloro, LSP Principal

Reviewed by ____

(signature)

Enter Name

Table of Contents

1.0	INTRODUCTION
2.0 2.1 2.2	DESCRIPTION OF THE RELEASE
2.3 2.4	APPLICABLE MCP STANDARDS2.1PHASE I ENVIRONMENTAL SITE ASSESSMENT 20052.1PRECHARACTERIZATION SAMPLING 20162.22.4.1Composite samples collected on November 10, 2016 from the
2.5 2.6 2.7 2.8	following Stations: 2.3 DISCRETE SOIL SAMPLING EVENT JANUARY 19, 2017. 2.5 JANUARY 31, 2017 ARCHIVED SAMPLE SET ANALYSIS 2.7 ADDITIONAL ANALYSIS MARCH 8, 2017 2.9 ADDITIONAL ANALYSIS MAY 4, 2017 2.10
3.0 3.1	DESCRIPTION OF THE REMEDIATION WASTE AREA
4.0 4.1	SELECTED REMEDIAL ACTION ALTERNATIVE
LIST O	F FIGURES
Figure	1 Site Locus Plan Error! Bookmark not defined 2 CCRT Path 2.1 3 Sampling Plan 3.1

APPENDICES

APPENDIX A – PHASE I ENVIRONMENTAL SITE ASSESSMENT REPORT APPENDIX B – 2006 RESPONSE ACTION OUTCOME (RAO) APPENDIX C – ABCA COST SUMMARY APPENDIX D – 2017 LAB DATA REPORTS

1.0 INTRODUCTION

This Analysis of Brownfields Cleanup Alternatives is prepared on behalf of the City of Newburyport, and the Massachusetts Department of Transportation (MassDOT) who are jointly undertaking design and construction of a 1.6 mile rail to trail repurposing of the former Boston & Maine railroad right of way located in Newbury and Newburyport, MA. The project is identified as the Clipper City Rail Trail (CCRT) and extends from Parker Street in Newbury to the waterfront area in Newburyport. As a result of pre-construction characterization soil sampling, a portion of the CCRT has been identified as impacted by polychlorinated biphenyls (PCBs) in soil above applicable regulatory standards. The area of impacted soil is a former railroad right of way that is located at the rear of 157 Water Street in Newburyport, MA. The impacted soil area is co-owned by the City of Newburyport and the utility company National Grid. National Grid operates underground electric service transmission lines through and adjacent to this right of way. National Grid has provided a long-term (99 year) lease to the City, for the portion of the right of way that they own in fee. National Grid has an easement on the City-owned portions of the right of way.

Actions are currently being developed to abate, prevent, or mitigate the potential risk of harm to human health, public safety, public welfare, and the environment from the discovered presence of PCBs in soil on a now designated portion of the right of way. This portion of the property was part of the route of the former B&M Railroad which had been decommissioned circa 1972 to remove track rail and ties, ballast rock and signals associated with the railroad. The current condition of the property is soil covered open land which functions as an unimproved walking path. There is no evidence that the soil conditions are different from that of the time when the railroad was present. A site location map is provided as Figure 1.

MassDOT, who is funding construction and provides construction oversight of the CCRT, awarded this phase of construction to ET&L Construction Corporation (ET&L) of Stow, MA. ET&L deployed its partner, Strategic Environmental Services (Strategic) of Sutton, MA to collect test pit soil samples for the purpose of characterization of potential excess soil for beneficial reuse on and off the property or disposal as necessary during construction. The results of those test pit samples identified PCBs along a portion of the CCRT footprint ranging from below 1 parts per million (ppm) to over 100 ppm. These results were brought to the attention of the City. The City of Newburyport immediately retained a Massachusetts Licensed Site Professional (LSP) from Stantec Consulting Services Inc. (Stantec) of Burlington, MA. The LSP notified the Massachusetts Department of Environmental Protection (MassDEP) within 2 hours of knowledge of the Strategic soil confirmation data on January 25, 2017. The City immediately established a plan for isolation of the area from the public and to initiate an assessment Immediate Response Action (IRA) in accordance with the Massachusetts Contingency Plan (MCP). MassDEP was also notified that this IRA would include requirements under the federal Toxic Substance Control Act (TSCA).

Responsible Party:	City of Newburyport
	60 Pleasant Street
	Newburyport MA 01950
Point of Contact:	Geordie Vining
	Planning and Development Office
	(978) 465-4400 Ext 2

Site RTN:3-0034101Location Aid:Adjacent to Rail Trail – Rear of 157 Water StreetLSP of Record:Robert Nicoloro, LSP #4290
Stantec Consulting Services Inc.

Burlington MA 01803 (978) 577-1406

2.0 DESCRIPTION OF THE RELEASE

2.1 DESCRIPTION OF THE RELEASE

The CCRT is identified as a 1.6-mile former rail road right of way that is being converted to a paved rail trail for recreational use by the public. Figure 2 is provided to show the portion of the rail trail associated with the MCP response actions. The portion of the property that is specifically being addressed, i.e., the Disposal Site is shown in detail on Figure 3 (Figure 3 is a series of three sheets), is approximately 600 linear feet and approximately, 14 feet in width that runs between the rear of the City Wastewater Treatment Plant property boundary and the Merrimack River shoreline. This area is depicted in Figure 3 by the boring locations which have been sampled. The areas of impact are depicted by color graded polygons and notation of sample identification, depth of sample and analytical results for PCBs. This land is relatively flat, runs generally north to south, is soil covered and bordered to the west by a strip of grass and small trees and shrubs, on what used to be the former Boston & Maine (B&M) freight rail right-of-way. The Disposal Site is currently isolated from the public and trespassers by a perimeter fence with warning signs, erected around the impacted area following receipt of soil sampling results.

For the purpose of design and construction of the CCRT, the corridor was measured off in 100 linear foot sections, termed "Stations". Each Station was consecutively numbered and identified on plans by the Station number and the linear footage being measures, for example; 50 feet from Station 65 is designated on plans as 65+50. Soil sampling plans use these Station designations. Each boring location for the collection of soil samples was surveyed with GPS coordinates. The Disposal Site is located within the general centerline of the 14-foot wide path between design Station number 57 through Station 76. Soils are generally characterized as medium brown sands with silt, occasional black fill, slag, and coal ash.

The CCRT is also characterized by the utility-owned corridor and utility easement to National Grid (NG), where NG has direct buried high voltage cables and a concrete duct bank providing electrical service. These cables are buried approximately 3 to 6 feet below grade and are in service. The presence and location of these utilities has influenced where soil borings were advanced and samples collected.

2.2 SITE CONDITIONS, SURROUNDING RECEPTORS, AND DETERMINATION OF APPLICABLE MCP STANDARDS

Due diligence assessment activities occurred along this railroad right of way at the time when the City was considering purchase of the property in 2005 (Appendix A). This information provides useful background on the land use, date of the end of railroad operations and environmental conditions prior to the proposed rail trail. The presence of PCBs was not identified above standards at that time.

Analytical data from a 2016 pre-construction characterization soil sampling event prompted additional soil sampling as an effort to understand preliminary boundaries of the impacted soil. Initially, data from soil samples was collected from 0-3 foot composite soil samples collected over a significant distance (at approximately centerline) along the CCRT path. The objective of the follow-up sampling event was to identify the presence of PCBs in the surficial soil, 0-12 inches, and to determine the vertical and lateral extent of the PCB impacted soil using discrete sampling techniques. These data will be discussed later in this document.

Due to the discovery of PCBs in the soil, there was consideration as to the applicability of the Toxic Substance Control Act (TSCA) as well as requirements of compliance with the MCP. The due diligence assessment conducted in 2005, discussed below, helps to clarify that impacted soil is most likely present due to former railroad operations and those railroad operations are documented to have ceased at the location circa 1972, which is prior to applicability of TSCA (1978). The planned response actions will include both MCP preliminary and comprehensive response actions and appropriate waste characterization and disposal in compliance with TSCA 761.61 remediation waste. Additional supporting data collected at the site is discussed below.

2.3 PHASE I ENVIRONMENTAL SITE ASSESSMENT 2005

A Phase I Environmental Site Assessment (ESA) of the 1.6 miles of railroad right of way was conducted in 2005 by TRC Solutions of Lowell, MA for the City. The purpose of the Phase I ESA was to identify recognized environmental conditions associated with the property prior to the purchase of the land by the City. The Phase I ESA identified two potential environmental issues: (1) soil and groundwater contamination from former railroad use, and (2) soil and groundwater contamination from properties.

TRC conducted a subsequent site investigation to evaluate the potential environmental issues identified in the Phase I ESA. Data from the site investigation was presented in an MCP Response Action Outcome (Class B-1 RAO), dated May 2006, which is provided in Appendix B. The site investigation included 10 soil borings (B-1 through B-10) and the installation of 5 monitoring wells (MW-1, MW-2, MW-4, MW-9, and MW-10).

TRC reported that soil samples were collected and analyzed for extractable petroleum hydrocarbons (EPH), Massachusetts Contingency Plan (MCP) metals, polychlorinated biphenyls (PCBs), and pesticides. One round of groundwater samples was collected from the five monitoring

wells. Groundwater samples were analyzed for EPH and MCP Metals. Additionally, the groundwater sample collected from MW-10 was sampled for volatile organic compounds (VOCs) and cyanide, based on the presence of a former metals plating facility (i.e. the former Circle Finishing Site, RTNs 3-0392, 3-10321, and 3-24164) to the north of this portion of the right of way.

The site investigation identified concentrations of lead and several polycyclic aromatic hydrocarbon (PAH) compounds, including benzo(a)anthracene, chrysene, benzo(a)pyrene, and dibenzo(a,h)anthracene, above applicable MCP RCS-1 Reportable Concentrations in soil between 0 and 3 feet at boring B-2. In addition, arsenic was detected slightly above the RCS-1 Reportable Concentration of 20 mg/kg in several borings. Exceedances of the RCS-1 reportable criteria triggered a 120-day notification requirement under the MCP.

Because the City did not yet own the Site, results of the Site investigation were transmitted to the former B&M predecessor company. Following purchase of the Site on August 4, 2006, the City prepared and submitted a Release Notification Form to MassDEP on August 31, 2006. As a result, a Release Tracking Number (RTN) 3-26210 was assigned to the Site.

The results reported by TRC also included the detection of Nickel and cyanide in a groundwater sample collected from monitoring well MW-10 at concentrations of 777.1 ug/L and 167 ug/L, respectively. TRC reported that these concentrations exceed applicable MCP RCGW-2 criteria. In accordance with the MCP, 310 CMR 40.0317(16), which states that exceedances of reportable concentrations at disposal sites where a response action is being undertaken do not require additional notification. Monitoring well MW-10 is located within the boundaries of the Circle Finishing disposal site (RTNs 3-0392, 3-10321, and 3-24164), thus, notification to MassDEP of these concentrations was not considered necessary.

The Phase I ESA reported that, given the proximity of the Merrimack River and the Atlantic Ocean, groundwater flow direction is likely tidally influenced in the northern portion of the rail corridor. Based on topography, groundwater flow across northerly portions of the former railroad right of way is expected to be in a northerly direction towards the Merrimack River (TRC, 2005). Between Parker Street and High Street, groundwater is expected to flow southeasterly from the hill where the water tower is located. At the southern portion of this section of rail corridor, groundwater flow measured at the Circle Finishing Site is estimated to flow in a southeasterly direction (LFR, 2003).

2.4 PRECHARACTERIZATION SAMPLING 2016

Strategic Environmental Services (SES), working under an agreement with ET&L, who was hired by MassDOT to construct the CCRT, conducted test pit soil sampling on November 10, 2016. The objective of this sampling, according to SES, were to determine the contamination profile of soils, to determine reuse options and to determine suitable disposal facilities prior to excavation by ET&L. The pre-characterization would allow soil to be live-loaded for disposal, which is necessary due to the lack of stockpiling space within the project limits. Soil was initially characterized based on two composite samples: South-1, which was composed of soil sampled from Station 56+00 to Station 77+30, and North-1 which was composed of soil sampled from approximately Station 77+30 to Station 91+15. The sample locations that make up the North 1 composite and the South 1 composite samples are noted in the table below by station number.

Test pit sampling and analysis identified the presence of PCBs in soil in the South1 composite sample at a concentration of 3,500 ug/kg PCBs reported as Aroclor 1260. Additional sampling was for soil delineation data for the presence of PCBs within the area identified by the test pit samples that made up the South 1 composite sample. This area of additional sampling was within designated stations; Station 55 to Station 70. A summary of analytical results for the November 10, 2016 pre-construction characterization soil sampling is provided below. The Laboratory analytical report is provided in Appendix B.

2.4.1 Composite samples collected on November 10, 2016 from the following Stations:

Analytical results from the November 10, 2016 sampling event identify exceedances of the applicable MCP soil category S-1 Method 1 Standards for the following composite soil samples.

South composite sample (South-1): the exceedances noted by Strategic are: Arsenic at 66.3 mg/Kg; Lead at 317 mg/kg; and PCBs (Aroclor 1260) at 3,500 ug/Kg as compared to the S-1 Standard of 20 mg/Kg Arsenic and guidance on historic fill of 20 mg/kg Arsenic; the S-1 Standard for Lead of 200 mg/Kg and the guidance on historic fill of 600 mg/Kg Lead; and the S-1 standard for PCBs of 1,000 ug/Kg.

North composite sample (North-1): the exceedances noted by Strategic are: Arsenic at 25.3 mg/Kg; Lead at 326 mg/kg; and benzo(a)pyrene at 2,200 ug/Kg as compared to the S-1 Standard of 20 mg/Kg Arsenic and guidance on historic fill of 20 mg/Kg; the S-1 Standard for Lead of 200 mg/kg and the guidance on historic fill of 600 mg/Kg Lead; and the S-1 Standard for benzo(a) pyrene of 2,000 ug/kg and guidance on historic fill guidance of 7,000 ug/Kg. An exceedance of PCBs was not reported for the North 1 composite sample.

It was determined that additional analysis was warranted based on the South 1 composite sample results of 3,500 ug/Kg PCBs and 66.3 mg/Kg Arsenic when compared to the MCP Method 1 PCBs in soil standard of S-1/GW-3 of 1 ug/g and Method 1 soil standard of S-3/GW-3 of 4 ug/g; and the Method 1 Arsenic in soil standard of S-1/GW-3 and S-2/GW-3 of 20 ug/g. The results above the Method 1 standard for Arsenic are shown in the table below in Bold.

Under current conditions, the appropriate MCP soil characterization is S-1/GW3, where-as the planned finished improvement of the path with a paved rail-trail will change the soil to a S-2/GW-3 category. As a future condition, these analytical results exceed only for Arsenic and PCBs. The presence of metals, including arsenic, are documented in the 2005 Phase I ESA and the 2006 Class B-1 Response Action Outcome, concluding that no further actions are needed until such time a soil management plan will be necessary for the excavation and disposal of soil conducted as part of the rail trail development. Based on the results above, it was determined that additional analysis was necessary to characterize soil prior to excavation.

Eleven discrete soil samples were collected from the South portion of the work area along the CCRT at the same time the South 1 composite sample was collected. These locations are

identified as S-1 to S-11. Samples were submitted as a composite of soil depths at these eleven locations collected at a depth between zero and 36 inches. The results of PCB analysis identified Aroclor 1260 at concentrations above the method detection levels at 5 locations. The results of Arsenic analysis identified six of the eleven samples over the applicable standard of 20 ug/g. These locations and results are identified below. The analytical report for these sample locations is provided as Appendix B. Sampling points are shown on the Figure 4 series of drawings.

In the tables that follow, exceedances of the MCP Method 1 standard for PCBs in S-1/GW-3 soil of 1 ug/g soil are shown in BOLD; exceedances of the S-2/GW-3 standard for PCBs of 4 ug/g are shown in <u>BOLD Underline</u>; and exceedances of 50 mg/Kg requiring TSCA remediation waste disposal are shown in red text, and exceedance of the upper concentration limits (UCL) of the MCP of 100 ug/g is shown as a yellow box.

South Sample ID	Station	Sample composite Depth (Inches)	PCB Detections (Aroclor 1260) ug/Kg	Arsenic Detections (mg/Kg)
S-1	57+00	0-36	ND	22.1
S-2	59+00	0-36	ND	17.2
S-3	61+00	0-36	1,380	16.3
S-4	63+00	0-36	<u>39,200</u>	16.4
S-5	65+00	0-36	1,430	36.3
S-6	67+00	0-36	371	31.9
S-7	68+30	0-36	ND	21.6
S-8	68+60	0-36	ND	14.7
S-9	69+00	0-36	139	31.7
S-10	72+00	0-36	ND	16.1
S-11	76+00	0-36	ND	24.0

			- ···	-
Table 1 –	November	10 2016	Sampling	Results
	10000111001	10,2010	oamping	resource

Based on the results above for Arsenic, the concentrations in soil averaged over the 11 samples equals 22.6 mg/Kg which is only 13% above the MCP applicable standard of 20 mg/Kg. The

averaging of soil results is appropriate given the linear distance covered by the sampling, that the concentrations at each sample location is within the same order of magnitude; and that concentrations vary but in a close range to each other. One sample (S-5) is 44.9% higher than the standard, two samples (S-6 and S-9) are an average of 37.1% higher, and 3 samples (S-1, S-7, and S-11) are an average of 12.8 % higher than the standard. Conversely and similarly, there are five samples that are lower than the standard. Sample S-8 is the lowest concentration and 26.5 % lower than the standard. There are 4 samples (S-2, S-3, S-4 and S-10) that are an average of 16.9% lower than the standard. Eliminating the highest and the lowest concentrations, the average concentration is 23.6 mg/Kg which is only 18% above the standard. The results of the analysis of the individual grab samples indicated the presence of arsenic at concentrations ranging from 14.7 to 36.3 mg/kg, which represented a pattern more consistent with the prior data obtained. This suggests that the 66.3 mg/kg concentration obtained from the composite sample is considered an anomaly or outlier and not representative of the overall data set. Both slag material and coal ash have been identified both visually and via laboratory analysis, therefore, it is more likely that a fragment of slag or coal ash is present in the composite sample South 1 resulting in a biased high concentration. Given the low and consistent concentrations of Arsenic, which is determined to be attributable to historic industrial activities associated with the railroad at this site, the detections of metals to include Arsenic will not be carried through to risk characterization nor any planned remedial actions. The focus of the continuation of response actions at this site is on PCBs.

2.5 DISCRETE SOIL SAMPLING EVENT JANUARY 19, 2017

As a result of the detections reported by Strategic in December 2016, a follow-up work plan was prepared for sampling discrete soil at designated depth intervals at boring locations for further delineation of PCBs based on the previous detections. The work plan was implemented on January 19, 2017 and involved the Station locations listed below.

The locations of previous sampling, S-3, S-4, and S-5 (Stations 61+00, 63+00, and 65+00 respectively) were re-sampled first to determine the depth at which the PCBs were detected. Borings were advanced, at each of these locations (centerline samples) and then one boring each, approximately 5 feet to the East and West of the center boring at each of the three previous sampling locations (peripheral samples). A total of nine (9) soil borings were advanced at these locations. At each boring location, samples were collected from the following depth intervals: 0-1 foot, 1 to 3 foot, and 3 to 5 foot, for a total of twenty-seven (27) samples.

The results of the January 19, 2017 sampling and analysis event are identified in Table 2. The analytical report is provided in Appendix B. Sampling points are shown on the series of sheets that make up Figure 4.

Table 2 – January 19, 2016 Sampling Results

Station	Sample Location East (E) Along River side of path, West (W) side of the path adjacent to the WWTP, Middle (M) mid- path of the CCRT; and 0 – Previous Test Pit Location	Sample composite Depth (Inches)	PCB Detections (Aroclor 1260) ug/Kg ¹
60+75 M-0	Middle (M) mid-path of the CCRT	0-12	538
61+00 E-0	Location East (E) Along River side of path	0-12	635
61+00 E-1	Location East (E) Along River side of path	12-24	281
61+00 E-3	Location East (E) Along River side of path	24-36	ND
61+00 M-0	Middle (M) mid-path of the CCRT	0-12	618
61+00 M-1	Middle (M) mid-path of the CCRT	12-24	104
61+00 M-3	Middle (M) mid-path of the CCRT	24-36	ND
61+00 W-0	West (W) side of the path adjacent to the WWTP	0-12	273
61+00 W-1	West (W) side of the path adjacent to the WWTP	12-24	402
61+00 W-3	West (W) side of the path adjacent to the WWTP	24-36	ND
61+00-0	Previous Test Pit Location	0-12	648
61+50 M-0	Middle (M) mid-path of the CCRT	0-12	2,300
62+50 M-0	Middle (M) mid-path of the CCRT	0-12	10,300
63+00-0	Previous Test Pit Location	0-12	<u>51,000</u>
63+00 E-0	Location East (E) Along River side of path	0-12	<u>5,910</u>
63+00 E-1	Location East (E) Along River side of path	12-24	343
63+00 E-3	Location East (E) Along River side of path	24-36	ND
63+00 M-0	Middle (M) mid-path of the CCRT	0-12	<u>115,000</u>
63+00 M-1	Middle (M) mid-path of the CCRT	12-24	3,490

63+00 M-3	Middle (M) mid-path of the CCRT	24-36	ND
63+00 W-0	West (W) side of the path adjacent to the WWTP	0-12	27,300
63+00 W-1	West (W) side of the path adjacent to the WWTP	12-24	<u>5,240</u>
63+00 W-3	West (W) side of the path adjacent to the WWTP	24-36	ND
63+50 M-0	Middle (M) mid-path of the CCRT	0-12	7,380
64+50 M-0	Middle (M) mid-path of the CCRT	0-12	2,340
65+00 E-0	Location East (E) Along River side of path	0-12	27,800
65+00 E-1	Location East (E) Along River side of path	12-24	ND
65+00 E-3	Location East (E) Along River side of path	24-36	ND
65+00 M-0	Middle (M) mid-path of the CCRT	0-12	1,370
65+00 M-1	Middle (M) mid-path of the CCRT	12-24	1,820
65+00 M-3	Middle (M) mid-path of the CCRT	24-36	ND
65+00 W-0	West (W) side of the path adjacent to the WWTP	0-12	ND
65+00 W-1	West (W) side of the path adjacent to the WWTP	12-24	428
65+00 W-3	West (W) side of the path adjacent to the WWTP	24-36	1,200
65+00-0	Previous Test Pit Location 0-12 1,990		1,990
65+25 M-0	Middle (M) mid-path of the CCRT	0-12	3,030

¹ The MCP Method 1 standard for PCBs in S-1/GW-3 soil of 1 ug/g soil are shown in BOLD; exceedances of the S-2/GW-3 standard for PCBs of 4 ug/g are shown in <u>BOLD Underline</u>; and exceedances of 50 mg/Kg requiring TSCA remediation waste disposal are shown in red text, and exceedance of the upper concentration limits (UCL) of the MCP of 100 ug/g is shown as a yellow box.

2.6 JANUARY 31, 2017 ARCHIVED SAMPLE SET ANALYSIS

As a result of the detections reported by Strategic on January 25, 2017, MassDEP was notified of the elevated concentrations of PCBs above 10.0 ug/g in sufficial soil. A follow-up set of samples collected on January 19, 2017, but archived pending results of the first set of samples shown in the table above, were analyzed for PCBs on January 31, 2017 (Appendix B). Sampling points are

shown on the series of sheets that make up Figure 4. The objective was to identify PCB soil concentrations stepping away from or below the sample locations where the previous PCB data show elevated results.

Station	Sample Location East (E) Along River side	Sample	РСВ
	of path, West (W) side of the path	composite	Detections
	adjacent to the WWTP, Middle (M) mid-	Depth	(Aroclor
	path of the CCRT; and 0 – Previous Test Pit	(Inches)	1260) ug/Kg ¹
	Location		
61+25 M-0	Middle (M) mid-path of the CCRT	0-12	3,620
61+50 E-0	Location East (E) Along River side of path	0-12	<u>4,070</u>
61+50 M-1	Middle (M) mid-path of the CCRT	12-24	299
61+50 W-0	West (W) side of the path adjacent to the WWTP	0-12	642
62+50 E-0	Location East (E) Along River side of path	0-12	<u>17,300</u>
62+50 M-1	Middle (M) mid-path of the CCRT	12-24	507
62+50 W-0	West (W) side of the path adjacent to the WWTP	0-12	<u>9,170</u>
62+75 M-0	Middle (M) mid-path of the CCRT	0-12	<u>24,200</u>
63+25 M-0	Middle (M) mid-path of the CCRT	0-12	<u>39,300</u>
63+50 E-0	Location East (E) Along River side of path	0-12	<u>9,710</u>
63+50 M-1	Middle (M) mid-path of the CCRT	12-24	3,530
63+50 W-0	West (W) side of the path adjacent to the WWTP	0-12	<u>23,300</u>
64+50 E-0	Location East (E) Along River side of path	0-12	960
64+50 M-1	Middle (M) mid-path of the CCRT	12-24	2,160
65+50 W-0	West (W) side of the path adjacent to the WWTP	0-12	901
65+25 E-0	Location East (E) Along River side of path	0-12	2,300

Table 3 – January 31, 2017 Archived Sampling Results

65+25 W-0	West (W) side of the path adjacent to the WWTP	0-12	227
65+50 M-0	Middle (M) mid-path of the CCRT	0-12	866

¹ Units of ug/kg are used in this table to be consistent with laboratory reporting results. The MCP Method 1 standard for PCBs in S-1/GW-3 soil of 1 ug/g soil are shown in BOLD; exceedances of the S-2/GW-3 standard for PCBs of 4 ug/g are shown in <u>BOLD Underline</u>; and exceedances of 50 mg/Kg requiring TSCA remediation waste disposal are shown in red text, and exceedance of the upper concentration limits (UCL) of the MCP of 100 ug/g is shown as a yellow box.

2.7 ADDITIONAL ANALYSIS MARCH 8, 2017

Following review of the January 31, 2017 sample results, an additional evaluation was conducted to determine whether or not to have the final batch of samples archived at the laboratory since the January 19 and 20, 2017 sampling event, analyzed for PCBs. Based on the need to develop a better defined remediation area, the remaining samples in the laboratory were extracted on March 7, 2017 and analyzed on March 8, 2017(Appendix B). Sampling points are shown on the series of sheets that make up Figure 4. This analysis was conducted 45 days from the date of sampling. Holding times for PCBs is estimated to be 1 year from the date of sampling.

Station	Sample Location East (E) Along River side of path, West (W) side of the path adjacent to the WWTP, Middle (M) mid- path of the CCRT; and 0 – Previous Test Pit Location	Sample composite Depth (Inches)	PCB Detections (Aroclor 1260) ug/Kg ¹
62+50 E-1	Location East (E) Along River side of path	12-24	ND
62+50 E-3	Location East (E) Along River side of path	24-36	ND
62+75 M-1	Middle (M) mid-path of the CCRT	12-24	<u>4,310</u>
63+75 M-3	Middle (M) mid-path of the CCRT	24-36	ND
63+50 W-1	West (W) side of the path adjacent to the WWTP	12-24	443
63+50 W-3	West (W) side of the path adjacent to the WWTP	24-36	ND
64+75 M-0	Middle (M) mid-path of the CCRT	0-12	375
65+75 M-1	Middle (M) mid-path of the CCRT	12-24	3,920

Table 4 – March 8, 2017 Archived Sampling Results

65+75 M-3	Middle (M) mid-path of the CCRT	24-36	ND

¹ Units of ug/kg are used in this table to be consistent with laboratory reporting results. The MCP Method 1 standard exceedances for PCBs in S-1/GW-3 soil of 1 ug/g soil are shown in BOLD; exceedances of the S-2/GW-3 standard for PCBs of 4 ug/g are shown in <u>BOLD Underline</u>; and exceedances of 50 mg/Kg requiring TSCA remediation waste disposal are shown in red text, and exceedance of the upper concentration limits (UCL) of the MCP of 100 ug/g is shown as a yellow box.

Based on the results of soil sampling and analysis described above in Section 2, soil delineation for PCBs was considered adequate at that point to plan the IRA to mitigate potential risk of harm and to move forward with the planned construction of the CCRT.

2.8 ADDITIONAL ANALYSIS MAY 4, 2017

Additional soil sampling was conducted on May 4, 2017 to fill in data gaps between Stations 61+00 and 64+00, to fill in data gaps between Stations 65+00 and 66+00, at two proposed bench locations at approximate Stations 61 and 67, and at two proposed sculpture locations off to the west side of the trail between Stations 60 and 61.

Station	Sample Location West (W) side of the path adjacent to the WWTP	Sample Depth (Inches)	PCB Detections (Aroclor 1260) ug/Kg ¹
SW-1	Sculpture West Location -off trail located near Station 60+50	0-12	325
		12-24	505 As Aroclor 1262
SW-2	Sculpture West Location – off trail located near Station 60+50	0-12	356
		12-24	ND
Seal	Sculpture west location North of SW-2 – off trail Located near Station 60+50	0-12	ND
		12-24	ND
B-1	Bench Cutout off trail located near Station 60+75	0-12	127
		12-24	155

Table 5 – May 4, 2017	Additional Sampling Results

B-2 Bench Cutout off trail located near Station 61+25	0-12	423
	12-24	230
61+80 W West (W) side of the path adjacent to the WWTP	0-12	1030
	12-24	923
62+30 W West (W) side of the path adjacent to the WWTP	0-12	370
	12-24	516
West (W) side of the path adjacent to the WWTP	0-12	23900
63+30 W West (W) side of the path adjacent to the WWTP	0-12	ND
	12-24	9430
63+90 W West (W) side of the path adjacent to the WWTP	0-12	2110
	12-24	1140
West (W) side of the path adjacent to the WWTP	0-12	1190
66+05 W West (W) side of the path adjacent to the WWTP	0-12	548
	12-24	526
B-3 Bench Cutout off trail located near Station 66+50	0-12	64.1
	12-24	59.1
B-4 Bench Cutout off trail located near Station 66+50	0-12	ND
	12-24	19.9
	61+25 West (W) side of the path adjacent to the WWTP West (W) side of the path adjacent to the WWTP West (W) side of the path adjacent to the WWTP West (W) side of the path adjacent to the WWTP West (W) side of the path adjacent to the WWTP West (W) side of the path adjacent to the WWTP West (W) side of the path adjacent to the WWTP West (W) side of the path adjacent to the WWTP West (W) side of the path adjacent to the WWTP Bench Cutout off trail located near Station 66+50 Bench Cutout off trail located near Station	

¹ Units of ug/kg are used in this table to be consistent with laboratory reporting results. The MCP Method 1 standard for PCBs in S-1/GW-3 soil of 1 ug/g soil are shown in BOLD; exceedances of the S-2/GW-3 standard for PCBs of 4 ug/g are shown in <u>BOLD Underline</u>; and exceedances of 50 mg/Kg requiring TSCA remediation waste disposal are shown in red text, and exceedance of the upper concentration limits (UCL) of the MCP of 100 ug/g is shown as a yellow box.

September 8, 2017

3.0 DESCRIPTION OF THE REMEDIATION WASTE AREA

For the purpose of evaluating remedial action alternatives, consideration was given to current and future land use conditions and the TSCA rules under 40 CFR 761(a) and (c); 761(a) being the section on *Self-Implementing on-site cleanup and disposal of PCB remediation waste*, and 761(c) being the section on *Risk-based disposal approval*. For the purpose of this Analysis, TSCA 761.61(a) is being applied to this Site at this time subject to re-evaluation when additional data results are available. The requirements of the MCP are also considered in addressing this remediation waste area.

The remediation waste area associated with the PCB impacts is identified as the former railroad right of way and is located behind 157 Water Street Municipal Wastewater Treatment Plant and neighboring structures. To the west, there is land associated with the right of way that varies in width due to a fenceline and other physical boundaries. To the east, there is land associated with the right of way that varies in width due to rip-rap along the shoreline of the Merrimack River. The remediation area, based on sampling, is identified within the approximate 600-linear foot Disposal Site between stations 61+00 and 65+75, or approximately 475 linear feet. This dimension is subject to change based on additional sampling data, other site features, and observation of field conditions.

Two underground electric utilities run adjacent to and along the right of way. One utility is a directburied set of cables, located an average 4 to 5 feet below grade, running beyond the length of the remediation area. The second utility is a concrete encased electrical duct bank, also running adjacent to and along the right of way for a distance beyond the limits of the remediation area. The electrical duct bank is known to be buried approximately 3 feet below grade. Each utility has a restriction issued by the utility company, National Grid, notifying to not dig within 3 feet of the direct buried cables and not to uncover the electrical duct bank. This poses a safety restriction on the remedial actions being evaluated for this site.

The extent of PCBs in soil requiring consideration in remedial actions has been generally characterized as soil to a depth of 48 inches from existing grade along the path. The exception is the areas restricted by National Grid. There are soils along this path that are considered undisturbed from the time that the railroad abandoned the line. There are soils that are considered disturbed as the result of the 2003 installation of the electrical duct bank by, at that time, Massachusetts Electric, now National Grid. The area of the direct buried cables is considered undisturbed since the cables have been in place since the 1930's.

Future land use of this area is expected to be a recreational walking and bike path. There will also be two to three benches that will overlook the water. An interactive sculpture is planned for an area just west of the path. With the exception of the interactive sculpture area, other accessible

September 8, 2017

areas of the path will be paved. The surfacing for the interactive sculpture area will likely be wood fiber safety surface to reduce the potential for injury as a result of falls.

3.1 IDENTIFICATION OF REMEDIAL ACTION ALTERNATIVES

Four remedial action alternatives (RAA) have been identified as feasible for this remedial waste area. The identification of these RAA is based on future land use, access, future liability and obligations, implementation and constructability, and comparison of remedial action costs. A cost outline and supporting spreadsheet is attached as Appendix C

In the initial screening of remedial action alternatives for this site, the remediation technologies of on-site thermal desorption, soil processing for de-chlorination, and in-situ biological and chemical treatment of soil were not carried through the analysis due to the limited area for the work to be conducted, nearby residential properties, costs of the technologies for ex-situ treatment following excavation and the questionable reliability and completeness of in-situ treatment alternatives for PCBs. Therefore, the evaluation criteria of Reduction of Toxicity, Mobility or Volume Through Treatment, will not be evaluated, since treatment options are not considered feasible. The RAAs discussed below include actions that have high probability of approval with the regulatory agencies as well as contrasting, but feasible actions with low probability of agency approval.

3.1.1 RAA#1 Cover and No Excavation

Under this RAA, the soil would be left in place and covered by a minimum of 3 inches of asphalt. The grade would remain essentially the same with minimal soil leveling so there would be no side slope work other than loam and seed along the edges of pavement. The sculpture areas would be surfaced with a wood fiber safety surface.

Overall Protection to Human Health and the Environment

This alternative is considered to be effective in protecting the public from direct contact with soil as long as there is no significant deterioration with the pavement. Deterioration such as wash-out areas, cracks, pot holes, and exposure due to pavement repair work are possible over time. This alternative is also protective of the environment as long as soils are not disturbed or washed away into an area that is environmentally sensitive or where the public can be exposed to the washed-out soil.

A deed restriction (Activity and Use Limitation – AUL) pursuant to the MCP would be required to notify the public that a hazard exists in the soils below the cover if those soils were to be exposed to the surface.

September 8, 2017

Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)

Applicable regulations include the Toxic Substance Control Act 40 CFR 761, and the Massachusetts Contingency Plan (MCP). Compliance with TSCA and the MCP would be determined by the regulatory agencies of USEPA and the Massachusetts Department of Environmental Protection (MassDEP) who would provide a determination of the completeness of compliance to the respective regulations. For this RAA, it is assumed that each agency would have significant comments regarding the adequacy of the rail trail cover design and whether or not a condition of no significant risk can be achieved with this remedy. TSCA compliance would require interaction with USEPA, which is expected to raise questions regarding this remedy in meeting the requirements of TSCA. This RAA, may have a low probability of agency acceptance.

Long Term Effectiveness and Performance

The long-term effectiveness of this alternative is dependent on inspections and repairs needed, undertaken and the frequency of occurrence. Major storm events, sea level rise and other natural changes could stress the paved area into failure. Failures would, in most scenarios, not be catastrophic but would rather require soil replacement and repaving. A deed restriction (AUL) would be required that obligates the property owner(s) to a schedule of inspections, repairs and long term liability, as the paved cover over soil would be required in perpetuity or as long as the PCBs are present in concentration above 1 mg/kg, whichever comes first.

Short Term Effectiveness

This remedial action alternative has short-term benefits in that the work would be relatively simple to design and implement and would require minimal leveling and the application of pavement. Once installed, the paved surface would act as a barrier to direct contact hazard and/or to minimize the potential for soil disturbance that could relocate PCBs. This action would not reduce toxicity, concentrations or the presence of PCBs below the pavement along this section of the path.

Implementability

This remedial action is highly implementable involving limited construction and disturbance of soil. There would likely be only limited potential for fugitive dust during construction as compared to extensive excavation of impacted soil. Paving this area would not be hindered by the presence of PCBs in soil.

Cost

The cost of this remedial action is lowest of all technically feasible RAA. The material and installation cost of asphalt binder and top courses are currently included in the rail trail project. Installation and material cost may be expanded by 10-20% if the pavement is extended further on either side of the railroad right of way. Paving cannot be conducted between December 1 and March 30 due to seasonal shut-down of the asphalt plants.

September 8, 2017

The estimated cost of this RAA is: \$66,400 with estimated costs of \$105,000 for inspections and maintenance for 30 years.

State Agency Acceptance

Neither the USEPA or the MassDEP are expected to approve this RAA without some soil excavation, limited to removal of "hot spots" of equal to or greater than 50 mg/kg PCBs in soil, or removal of soil impacted with greater than 1 mg/kg of PCBs. TSCA and MCP compliance is not considered complete with the implementation this RAA – as is.

Community Acceptance

The public may raise concerns regarding the remaining presence of PCBs in soil at elevated concentrations beneath a public recreation trail. The City municipal officers that are currently involved must be comfortable with the alternative as being protective of human health and the environment. The public may question why the implementation of this RAA is protective if the RAA does not meet the requirements of TSCA and the MCP. Such questions would require support from the regulatory agencies to answer, however that support may not be given for this particular remedy.

3.1.2 RAA#2 Excavate Soil as TSCA Remediation Waste

Under this RAA, the soil would be excavated to the limits of PCB detection regardless of the concentrations of PCBs in place. This approach would comply with TSCA 40 CFR 761.61(a) with the determination by USEPA that, due to disturbance of soil from past operations, the concentrations of soil have been mixed, moved, and diluted due to the past soil disturbance activities. The result is that all soil with PCBs concentrations is now subject to TSCA remediation. The TSCA RAA under this scenario is excavation, therefore all soil with PCB concentrations would be excavated and disposed of off-site to a licensed TSCA disposal facility. Acceptance by that facility for landfilling would be subject to waste profile approval and facility-State approval. The volume and frequency of shipments will be determined by the accepting disposal facility. Soil would be landfilled in an out of State TSCA/RCRA approved landfill cell. The estimated amount of soil to be removed under this RAA is 1200 tons.

Overall Protection to Human Health and the Environment

This alternative is considered to be effective in protecting the public from direct contact with soil as the contaminated soil will be removed. Remediation will also include confirmation sampling following excavation to demonstrate that excavation was successful in removing the potential risk to human health and the environment.

Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)

September 8, 2017

Applicable regulations include the Toxic Substance Control Act 40 CFR 761, and the Massachusetts Contingency Plan (MCP). Compliance with TSCA and the MCP would be determined based on USEPA approval of the TSCA remediation Plan and the Massachusetts Licensed Site Professional's opinion regarding compliance with the MCP. For this RAA, it is assumed that each agency would have review comments regarding the extent of excavation, conditions for implementation and confirmation sampling for closure. This RAA, may have a high probability of agency acceptance.

Long Term Effectiveness and Performance

The long-term effectiveness of this alternative is ensured by the removal of the contaminated soil. No weather effects or new uses of the land will compromise the RAA once completed. Major storm events, sea level rise and other natural changes would not cause an increase exposure risk under this RAA as the source of the potential risk has been removed and not subject to the stress of severe weather conditions. Implementation of this remedy would be scheduled around major weather events and periods such as hurricane and heavy snowfall seasons. There will be no need for institutional controls such as a deed restriction.

Short Term Effectiveness

This remedial action alternative has short-term benefits in that the work would involve the complete removal of PCBs in soil to a standard of 1 mg/kg or less. The excavation can be accomplished within a reasonable time and duration. There would be no need to return to the site years later for a more aggressive remediation.

Implementability

This remedial action is implementable with restrictions and limitations involving construction and disturbance of soil. There would likely be a potential for fugitive dust during construction which would need to be monitored and potential risks mitigated as necessary. The excavation would be backfilled and compacted for future construction of the rail trail. Since there is limited space in the area, stockpiling of excavated soils pending loading and shipping to the off-site disposal facility would be complicated and not feasible. Live loading, therefore, would be needed which presents logistical issues associated with space to work, decontamination of vehicles, truck or roll-off holding areas, and truck traffic issues. These issues would need to be solved well in advance of the excavation.

As noted above, there are two underground electric services adjacent to and beneath the former railroad right of way; one is a set of direct buried electric cables at an average depth of 5 feet below existing grades; and the other is a concrete encased electrical duct bank buried approximately 3 feet below existing grade. The existence of these utilities pose a public safety concern and have excavation restrictions near them. Soil that is immediately adjacent to these utilities could not be removed. These soils will remain place and therefore cause a conflict with gaining approval of a total removal RAA scenario. The alternative is to remove the utility to access

September 8, 2017

the soils in the restricted area. This option is feasible, but disruptive to the utility and would come with a high cost.

It is unclear at this point if the utility company would agree to self-perform the excavation of soil immediately adjacent to these utilities.

The remediation plan would require USEPA approval and MassDEP review. The timing for this agency approval could be significant.

Cost

The cost of this remedial action is highest of all reasonable RAAs. Transportation and disposal of PCBs soil at a TSCA permitted landfill is estimated \$308.00 to \$330.00 per ton. The approximate volume of soils to be excavated could exceed 1,200 tons. Experience has shown that there is typically over excavation, and possibly additional excavation needed after the initial excavation due to a discovered impacted area not seen in the pre-excavation sampling data. This raises the cost significantly to remobilize. Excavation is complicated by decontamination protocols required for TSCA work especially given the limited space available. This is another reason for costs to escalate. Fugitive dust monitoring has the potential to slow the excavation due to dust excursions.

Remediation near the underground utilities is a significant cost if those utilities are required to be removed and relocated.

The estimated cost of this RAA is: \$440,000

State Agency Acceptance

Neither the USEPA or the MassDEP would object to this RAA. As mentioned above, TSCA and MCP compliance would be complete with this RAA which would prompt agency acceptance of this RAA.

Community Acceptance

The public may raise concerns regarding PCB soil dust as well as truck traffic through this very congested part of the City. The City municipal officers that are currently involved must be comfortable with the alternative as not becoming a public safety issue due to dust emissions or traffic and noise concerns. The public should not question that the implementation of this RAA is protective if the RAA meets the requirements of TSCA and the MCP. The public may ask questions regarding the implementation, schedule and confirmation that the work was successful.

3.1.3 RAA#3 Targeted Excavation and Capping

Under this RAA, the soil would be left in place and covered by a regulatory compliant cover or "cap". Targeted excavation to a depth of approximately 2 to 2.5 feet below current grade is necessary to remove PCB in soil. This depth of excavation will likely achieve cleanup of generally

September 8, 2017

25 mg/kg or less based on current data. Excavation will be conducted based on pre-excavation sampling data within the area of concern. The data will assist in the preparation of the TSCA Remediation Plan. The cap will involve, at a minimum, 2 feet of clean fill compacted for future paving of the rail trail. Variations of the cap could include increasing the thickness of the rail trail pavement, or increasing the thickness of clean fill, a synthetic liner with clean fill and pavement, or other subtle variations of these options as long as the cap is compliant with TSCA. The ground at the sculpture area would be surfaced with a wood fiber safety surface.

Overall Protection to Human Health and the Environment

This alternative is considered to be effective in protecting the public from direct contact with soil as long as there is no significant deterioration or damage to the cap. Deterioration such as washout, cracking, pot holes, and exposure due to repair work are less likely due to the engineered design of the cap which would protect against such occurrences under reasonable weather scenarios and maintenance This alternative is protective of the environment around this area as long as the cap is not disturbed or compromised, and that the pavement is maintained.

Targeted excavation of elevated concentration of PCBs above 25 mg/kg will remove the more significant hazards associated with the site leaving behind low concentrations of PCBs in soil that are unlikely to be accessible due to the engineered cap. Dust monitoring during the targeted excavation would be necessary to demonstrate that public safety is not at risk and that exceedances are immediately mitigated.

A deed restriction would be required to notify the public that a hazard exists in the soils below the cap, if those soils were to be excavated to the surface.

Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)

Applicable regulations include the Toxic Substance Control Act 40 CFR 761, and the Massachusetts Contingency Plan (MCP). Compliance with TSCA and the MCP would be determined by the regulatory agencies of USEPA and the Massachusetts Department of Environmental Protection (MassDEP) who would provide a review of the plan of compliance with the respective regulations. TSCA compliance would require interaction with USEPA, which is expected to raise minimal questions regarding this remedy in meeting the requirements of TSCA. This RAA, may have a moderate probability of agency acceptance.

Long Term Effectiveness and Performance

The long-term effectiveness of this alternative is dependent on inspections and repairs. Major storm events, sea level rise and other natural changes could stress the capped area, however, that would be addressed in the engineered design. Failures would, in most scenarios, not be catastrophic but would rather require pavement repair of the trail surface. Major storm events, sea level rise and other natural changes could stress the paved area into failure. Capping design would meet the requirements of TCSA and as well as the MCP to withstand weather related

September 8, 2017

stresses. This RAA would require periodic and post weather vent inspection to gauge damage or potential deterioration of the cap. A deed restriction would be required that obligates the property owner(s) to a schedule of inspections, repairs and long term liability, as the cap over soil would be required for perpetuity or as long as the PCBs are present in concentration above 1 mg/kg, whichever comes first.

Short Term Effectiveness

This remedial action alternative has short-term benefits in that the work would be engineered and implement to specifications. Once in place, the cap and paved surface are an engineered barrier to direct contact hazard and/or minimize the potential for soil disturbance that could relocate PCBs. This action would not reduce toxicity, concentrations or the presence of PCBs below 25 mg/kg below the cap.

Implementability

This remedial action is marginally implementable and involve engineering design, specification development, construction, construction oversight and preparation of "As Built" plans. There would be the potential for fugitive dust during construction. Capping would cause grade changes which then would involve storm water conveyance controls. Cap construction should not be conducted when soil is frozen.

As noted above there are underground electric services adjacent to and beneath the former railroad right of way; one is a set of direct buried cables at an average depth of 5 feet below existing grades; and the other is a concrete encased electrical duct bank buried approximately 3 feet below existing grade. The existence of these utilities pose public safety issues concerns and therefore, present excavation restrictions. This causes excavation next to and above or below the cables to be not feasible due to safety concerns.

Additionally, these utilities cause an issue if the area is to be capped. Should the utility company need to access these utilities for repair or replacement, the cap would be compromised requiring a new or repair design, specifications, and implementation to restore the cap. It is unclear at this point if the utility company would agree to the excavation, cap and AUL of which they would be a signatory party to.

In planning of utility work, a soils management plan and health & safety plan would be required, the work would need to have the oversight of an LSP and the approval from USEPA and possibly MassDEP.

Cost

The cost of this remedial action is moderate to high as compared to the reasonable RAAs. The costs include engineering design plan development and interactions with USEPA until a plan is

September 8, 2017

approved. Public involvement may be significant and time consuming. Material import and construction would have a higher cost than just paving as in RAA#1.

Experience has shown that there is typically over excavation and possibly additional excavation needed after the initial excavation due to a discovered impacted area not seen in the preexcavation sampling data. This raises the cost significantly to remobilize. Excavation is complicated by decontamination protocols required for TSCA work especially given the limited space available. This is another reason that costs could escalate. Fugitive dust monitoring has the potential to slow the excavation due to dust excursions. The volume of soil to be excavated is estimated at approximately 200 tons of soil.

Remediation near the underground utilities is a significant cost if those utilities are required to be removed and relocated. Additionally, the cost would be significant to design repairs to the engineered cap should the cap be compromised for utility access and repair.

The estimated cost of this RAA is: \$264,400

State Agency Acceptance

USEPA and the MassDEP are expected to approve this RAA with comments and likely with conditions. TSCA and MCP compliance is complete with this RAA but would require an agency approved notice of activity and use limitation (AUL) for the cap area.

Community Acceptance

The public may raise concerns regarding the remaining PCBs in the soil at concentrations above 1 mg/kg beneath a public recreational walking trail. The City municipal officers are currently involved and must be comfortable with the alternative as being protective of human health and the environment and be ready to fulfil the obligations of the AUL. The public may question why the implementation of this RAA is protective if the RAA does not completely remove the PCBs. Such questions would require support from the regulatory agencies to answer.

3.1.4 RAA#4 Target Excavation of Soils, Cap Utility Conveyance Areas

This RAA involves the removal of soil to a cleanup goal of PCBs of 1 mg/kg in the accessible areas of the former railroad right of way. Areas within the right of way that are not accessible to the excavation include the area near the direct buried electric cables at a depth of 5 feet with a **recommended safety "do not approach"** zone of 36 inches around these cables; and the concrete encased electrical duct bank along the right of way. Excavation of soil around the duct bank is allowed as long as the duct bank is not destabilized or exhumed. This scenario suggests that excavation of soil could expose the top of the duct bank and as much as 50% of the duct bank side walls utilizing specialized equipment to remove soil.

Under this RAA, the soil not accessible to excavation due to the restrictions on and around the immediate area of these utilities, would be left in place and covered by a regulatory compliant

September 8, 2017

cover or "cap" over the direct buried cables and concrete encased electrical duct bank. Excavation in the unrestricted portion of the former railroad right of way is feasible to a depth of approximately 48 inches below current grade to remove PCB concentrations in soil above 1 mg/kg. Excavation would be conducted based on pre-excavation sampling data within the area of concern. The data will assist in the preparation of the TSCA Remediation Plan for USEPA approval and MassDEP review. Excavated soil from the top and sides of the duct bank will be disposed of offsite as a TSCA waste regardless of the concentration of PCBs. This is due to the argument that the soils in this specific utility corridor were disturbed by utility actions to install the duct bank. Soil excavated from the unrestricted areas of the former railroad right of way will be disposed of as a non-TSCA waste, provided the sampling data support the concentrations of PCBs is below 50 mg/kg. Soil found to contain PCBs at or above a concentration of 50 mg/kg will be disposed of offsite as TSCA remediation waste. Above the utilities, the cap will involve, at a minimum, 2 feet of clean fill compacted for paving of the rail trail. Variations of the cap could include increasing the thickness of the rail trail pavement along with clean fill, a synthetic liner with clean fill and pavement, or other subtle variations of this as long as the cap is regulatory compliant with TSCA. The ground at the sculpture area would be surfaced with wood fiber safety surface.

Overall Protection to Human Health and the Environment

This alternative is considered to be effective in protecting the public from direct contact with soil remaining that has elevated concentrations of PCBs and is inaccessible due to the presence of the utilities as long as there is no significant deterioration or damage to the cap. Since the cap would be constructed at a depth of 36 inches or more above the direct buried cables, the cap is not vulnerable to weather conditions impacting the surface of the rail trail. The cap over the duct bank would be constructed on the top surface of the duct bank following excavation of soil in those locations. The cap surface would have a minimum of 12 inches below the current grade. Therefore, damage to the cap from weather events is unlikely. This alternative is protective of the environment around this area as long as the cap is not disturbed or compromised and impacted soil is not allowed to be dispersed on the surface of the right of way.

Excavation of targeted elevated concentration of PCBs above 1 mg/kg will remove the hazards associated with the unrestricted soil leaving behind low concentrations of PCBs in soil, less than 1 ppm which is below the applicable standards under the MCP. Therefore, no cap or restrictions would be needed. These remaining soils are unlikely to cause a condition of significant risk even if they became accessible. Dust monitoring during the targeted excavation would be necessary to demonstrate that public safety is not at risk and that exceedances are immediately mitigated.

A deed restriction (AUL) would be required to notify the public that a hazard exists in the soils below the cap if those soils were to be excavated to the surface.

Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)

Applicable regulations include the Toxic Substance Control Act 40 CFR 761, and the Massachusetts Contingency Plan (MCP). Compliance with TSCA and the MCP would be

September 8, 2017

determined by the regulatory agencies of USEPA and the Massachusetts Department of Environmental Protection (MassDEP) who would provide a review of the plan for compliance to the respective regulations. TSCA compliance would require interactions with USEPA, which is expected to raise minimal questions regarding this remedy in meeting the requirements of TSCA. This RAA, may have a moderate probability of agency acceptance.

Long Term Effectiveness and Performance

The long-term effectiveness of this alternative is dependent on inspections and repairs. Major storm events, sea level rise and other natural changes are unlikely to stress the capped area. Failures would, in most scenarios, not be catastrophic but would rather require repair. Major storm events, sea level rise and other natural changes could stress the paved area into failure. Capping design would meet the requirements of TCSA and as well as the MCP to withstand weather related stresses. This RAA would require periodic and post weather vent inspection to gauge damage or potential deterioration of the cap. Those inspections would likely involve both City and the Utility company owning the utility and maintaining lines. A deed restriction would be required that obligates the property owner(s) to a schedule of inspections, repairs and long term liability, as the cap would be required in perpetuity or as long as the PCBs are present in concentration above 1 mg/kg, whichever comes first.

Short Term Effectiveness

This remedial action alternative has short-term benefits in that the work would be engineered and implemented to specifications. The cap and paved surface are the installation of an engineered barrier to direct contact hazard and/or minimize the potential for soil disturbance that could relocate PCBs. This action would reduce toxicity of a significant portion of the impacted soil area through excavation of the unrestricted areas.

Implementability

This remedial action is highly implementable involving engineering design, specification development, construction, construction oversight and preparation of "As Built" plans. Capping in this scenario is unlikely to cause grade changes and storm water conveyance controls are not anticipated. Cap construction should not be conducted when soil is frozen.

This RAA addresses the presence of the electrical duct bank however, utility company review and approval the excavation procedure would be anticipated.

As noted above, there is a set of direct buried electric cables at an average depth of 5 feet below existing grades; these cables pose public safety concerns and have excavation restrictions on them. Excavation near the direct bury electric cables not feasible due to safety concerns.

Additionally, these utilities cause an issue if the area is to be capped. Should the utility company need to access these utilities for repair or replacement, the cap would be compromised requiring a new and repair design, specifications, and implementation to restore the cap. It is unclear at

September 8, 2017

this point if the utility company would agree to the excavation, cap and AUL of which they would be a signatory party to. The timing on tis approval is at the stage when the RAA are identified and confirmed, but prior to regulatory agency involvement and public comment. In planning of utility work, a soils management plan and health & safety plan would be required, the work would need to have the oversight of an LSP and the approval from USEPA and possibly MassDEP. This work is less intrusive than the restoration work that would be needed if the entire right of way were capped.

Cost

The cost of this remedial action is moderate of all reasonable RAAs. The costs include engineering design, plan development and interactions with USEPA until a plan is approved. Public involvement may be significant and time consuming. The cost of additional material import and construction would be limited to materials needed for the cap near the electrical duct bank.

Experience has shown that there is typically over excavation, and possibly additional excavation needed after the initial excavation due to a discovered impacted area not seen in the preexcavation sampling data. The volume of soil to be excavated is estimated at approximately 520 tons of soil. Since the excavation areas will achieve a reduction in PCB concentrations to 1 mg/kg, with minimal remobilization costs. Excavation is complicated by decontamination protocols required for TSCA work, especially given the limited space available to work. This another reason costs could escalate. Fugitive dust monitoring has the potential to slow the excavation due to dust excursions.

Remediation near the underground utilities is a significant cost if those utilities are required to be removed and relocated. Additionally, the cost would be significant to design repairs to the engineered cap if the cap is compromised by utility access for repairs.

The estimated cost of this RAA is: \$213,900

State Agency Acceptance

USEPA or the MassDEP are expected to approve this RAA with comments and likely with conditions. TSCA and MCP compliance is complete with this RAA but would require agency approved notice of activity and use limitation (AUL) for the cap area.

Community Acceptance

The public may raise concerns regarding the remaining presence of PCBs in the soil at concentrations above 1 mg/kg beneath or adjacent to the buried utility conveyances but should recognize the safety issues associated with excavating near the electric services. The City municipal officers that are currently involved must be comfortable with the alternative as being protective of human health and the environment and be ready to fulfil the obligations of the AUL. The public may question why the implementation of this RAA is protective if the RAA does not

September 8, 2017

completely remove the PCBs. Such questions would require support from the regulatory agencies to answer.

3.1.5 RAA#5 No Action Alternative

Overall Protection to Human Health and the Environment

This alternative is considered to be less than effective in protecting the public from direct contact and would require continued isolation of the subject area and would require maintaining the condition of Immediate Response Actions (IRA) under the Massachusetts Contingency Plan. There IRA conditions are not allowed by the State to continue indefinitely and therefore require timely action. A no action alternative is contrary to those regulations.

Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)

Applicable regulations include the Toxic Substance Control Act 40 CFR 761, and the Massachusetts Contingency Plan (MCP). Compliance with TSCA and the MCP would be determined by the regulatory agencies of USEPA and the Massachusetts Department of Environmental Protection (MassDEP) who would provide a determination of the completeness of compliance to the respective regulations. For this RAA, it is assumed that each agency would have significant comments regarding the adequacy of no action and possibly determine that such an alternative if implemented could be a violation.

Long Term Effectiveness and Performance

The long-term effectiveness of this alternative is dependent on inspections and repairs needed, undertaken and the frequency of occurrence to isolate the area. Major storm events, sea level rise and other natural changes could stress the unpaved area into failure requiring soil disturbance and soil management to repair weather related damage. Failures would, in most scenarios, not be catastrophic but would rather require soil replacement.

Short Term Effectiveness

This remedial action alternative has no short-term benefits in that the work would be limited to maintenance of the isolation barrier already in place.

Implementability

This remedial action is highly implementable involving limited effort and no disturbance of soil.

Cost

September 8, 2017

The cost of this remedial action is lowest of all technically feasible RAAs. The material and maintenance costs would be minimally and at the most require annual maintenance provided there were no vandalism issues.

The estimated cost of this RAA is near zero dollars.

State Agency Acceptance

Neither the USEPA or the MassDEP are expected to approve this RAA without some soil excavation, limited to removal of "hot spots" of equal to or greater than 50 mg/kg PCBs in soil, or removal of soil impacted with greater than 1 mg/kg of PCBs. TSCA and MCP compliance is not considered complete with the implementation this RAA – as is.

Community Acceptance

The public may raise concerns regarding the presence of PCBs in soil at elevated concentrations being left beneath a public recreation trail. The City municipal officers that are currently involved would likely not be comfortable with this alternative as being protective of human health and the environment. The public may question why the implementation of remedial actions is not being undertaken especially when this no action alternative is not meet the requirements of TSCA and the MCP. Such questions would require support from the regulatory agencies to answer, however that support may not be given for this particular remedy.

September 8, 2017

4.0 SELECTED REMEDIAL ACTION ALTERNATIVE

The above excavation and capping alternatives provide a direct comparison of the engineering accessibility and remedial action costs to remediate PCB contaminated soil. Each RAA has its unique set of challenges and compliance issues all of which affect implementability and costs. Based on the above review of the feasible RAA options, the RAA #4: Target Excavation of Soils, Cap Utility Conveyance Areas is selected for this site. This RAA demonstrates the complexity of installing a protective cap over the utility conveyances can be designed into the plan. The excavation of soil in accessible unrestricted areas will be completed to a cleanup goal of 1 mg/kg of PCBs in soil and is considered to be protective to human health and the environment. The Design of the RAA will meet the intent of the applicable regulations and achieve compliance with those regulations. The RAA plan will require agency approval. An AUL will be required for only the capped areas.

4.1 GREEN REMEDIATION

As a general rule, the implementation of remedial action for this site will be consistent with continuing efforts to practice: "green" principals and best management practices of the parties involved in implementing the remedial actions. The specifications for the work will encourage contractors to utilize best management practices and to power their equipment with green fuel to the extent possible and economically feasible. As a side note, the author of most of the plans to-date, (Stantec Environmental Services Inc.) is an ISO certified firm and has a position of verifier with the Greenhouse Gas Registry. Stantec's architectural practice has many staff working on sustainable design green buildings, and who are who are LEED certified, to include the Stantec project manager for the landscape architectural design of this project who is a LEED Accredited Professional, U.S. Green Building Council.

Land Use

Future use and redevelopment of the property as a rail trail has certain physical design and boundaries of the trail layout that helps guide the type of sampling and remediation required; ensure that sampling and remedial actions are the most efficient and sustainable methods available. As an example, the last round of sampling was conducted via hand boring instead of mechanical. Moving forward, there will be additional hand borings where reasonably practical, as well as mechanical. Additionally, the design of the rail trail has eliminated most infrastructure features eventually making the trail easy to maintain. The remediation selected for this site is equally simplified to ease in future maintenance.

Reporting and Communication

 All interim and final documents have been and will continue to be submitted in digital rather than hardcopy format, with the exception of a hard copy and electronic comply (CD) as required by EPA. All internal copies have been distributed for comment electronically, using the Microsoft Word feature of red-line, strike out for editing. All modifications and draft will continue to be distributed electronically.

September 8, 2017

GENERAL ON-SITE OPERATIONS

No on-site structures exist and no construction trailers will be used during the remedial action implementation. Space within the nearby City of Newburyport Wastewater Treatment Plan may be utilized to hold project meetings. To this point, meetings being held in a MassDOT field office in Newburyport.

There will be few opportunities to minimize non-renewable energy consumption. However, vehicle fueling will be accomplished on site from an outside vendor who will be encouraged to:

- Use energy efficient equipment;
- Purchase renewable energy supply through local utility programs;
- Purchase Renewable Energy Credits/Certificates (RECs or Green Tags);
- Research potential for Green Pricing Programs and Power Purchase agreements; and
- new or well-maintained equipment.

Use environmentally preferable products

Surfacing design will call for the use of natural or recycled materials for various surfaces of the finished trail. Vegetation will be naturally enhanced with seeding and clearing of dead vegetation to promote new growth.

Encourage sustainable and environmentally responsible practices

Minimize waste

- Reuse or recycling of solid waste will be conducted to the extent feasible given that the work involves contact with contaminated waste. However, recycling receptacles in the clean zone will allow collection of recyclable materials not in contact with the contaminants;
- Protection of surface water will be accomplished by installing and maintaining erosion control systems prior to and during the implementation of the remedial actions. Water conservation will be encouraged as the Contractor uses minimal water mist for dust suppression;
- The remediation contractor will be encouraged to use alternative fuel vehicles such as ultra-low sulfur diesel;
- The remediation contractor is encouraged to have staff carpool to the site;
- The schedule of activities will be established to efficiently minimize travel to and from the site at the hours of least traffic on the roads, as practical; and
- Ecological revitalization will be incorporated with restoration of the site following remediation. This is accomplished by enhancing indigenous vegetation growth, no introduction of evasive species of plants, and grounds maintenance to keep the locations accessible and attractive for the rail trail uses who enjoy the natural setting.

FIELD INVESTIGATIONS/REMEDIATION plans will encourage the following implementation elements Mobilization

- Encourage use of fuel-efficient / alternative fuel vehicles and equipment;
- Minimize mobilizations;
- Use existing roadways where available;
- Provide for erosion and sediment control to minimize runoff into environmentally sensitive areas;
- Avoid environmentally sensitive areas and cutting native trees/vegetation when excavating or constructing the remedy; and

September 8, 2017

• The contractors will be encouraged to use of diesel engines that meet the most stringent EPA on-road emissions standards available upon time of project's implementation or utilize EPA or CARB verified emission control technology to reduce particulate matter (PM) emissions by a minimum of 85% when technologically feasible on all on-road diesel engines

Field Screening

- Use The implementation of activities for this site will continue to use non-invasive technologies, where feasible, for subsurface characterization to minimize wastes Ground Penetrating Radar, GPS surveys and photoionization Detector (PID) equipment; and
- incorporate systematic planning, dynamic work strategies, and real-time measurements into work plans (TRIAD) to promote efficiency in investigations. As with previous sampling events, samples were collected and archived to be analyzed only if certain samples in a shallower depth interval identified elected concentrations requiring a deeper interval be analyzed. This saves costs and reduced the number of mobilizations and laboratory effort.

Drilling/Excavating

Contractors are encouraged to:

- Have idle reduction policy and idle reduction devices installed on machinery;
- Use ultra-low sulfur diesel and/or fuel-grade biodiesel as fuel on machinery;
- Maximize use of machinery equipped with advanced emission controls;
- Use diesel engines that meet the most stringent EPA on-road emissions standards available upon time of project's implementation or utilize EPA or CARB verified emission control technology to reduce PM emissions by a minimum of 85% when technologically feasible on all on-road diesel engines; and
- Regular engine maintenance on machinery to improve efficiency

Transport and Disposal of Soils and Backfill

Contractor will be encouraged to maximize efficiency in transport/disposal of soils and backfill, utilizing practices such as backloading and live loading.

ABCA Submittal CCRT, Newburyport

Sept 1, 2017

FIGURES

ABCA Submittal CCRT Newburyport

September 1, 2017

APPENDICES

ABCA Submittal CCRT Newburyport

September 1, 2017

APPENDIX A – Phase I ESA

ABCA Submittal CCRT Newburyport

September 1, 2017

APPENDIX B - 2006 RAO

UA

CLASS B-1 RESPONSE ACTION OUTCOME STATEMENT

FORMER BOSTON & MAINE RAILROAD LINE

RTN 3-26210

SCANNED

Prepared for: Merrimack Valley Planning Commission 160 Main Street Haverhall, Massachusetts 01830

und

City of Newburyport, Office of Planning and Development Newburyport City Hall 60 Pleasant Street Newburyport, Massachusetts 01950

Prepared by:

TRC Environmental Corporation 116 John Street Boott Mills South Lowell, Massachusetts 01852

RECEIVED

DEC 0 4 2006

NORTHEAST REGIONAL OFFICE TRC Project Number: 42039-0010-00009/52037-0010-00000

December 2006

	TRC Boott Mills South - 116 John Street Lowell, MA 01852 (978) 970-5600 (978) 453-1995- FAX	LETTER OF 1	FRANSMITTAL
то:	Massachusetts DEP	Date: December 4, 2006	Project: 52037
	Bureau of Waste Site Cleanup	From: Frank Calandra	
	205B Lowell Street	FAX: (978) 453-1995	
	Wilmington, MA 01887	Phone: (978) 970-5600	

FAX:

PHONE: 978-694-3200

Hand Delivered

WE ARE SENDING YOU:

Attached or	Under separate cover viat	he following items	:	
Press Release	Correspondence			
Posters				
Reports				

ITEMS ATTACHED:

COPIES	DATE	NO.	DESCRIPTION
1	December 2006		Class B-1 Response Action Outcome Statement, Former Boston & Maine Railroad Line, RTN 3-26210

THESE ARE TRANSMITTE	D AS CHECKED BELOW:	· · · ·
For your Approval	Approved as submitted	Resubmit copies for approval
🔲 For your use	Approved as noted	Submit copies for distribution
As requested	Returned for corrections	D Publication
For review and comment	For your signature	Payment
REMARKS:	RECEIVED	
	DEC - 4 2006	

DEP NORTHEAST REGIONAL OFFICE	
COPY TO:Geordie Vining, City of Newburyport	- Juan Caland

SIGNED: Frank Calandra

If enclosures are not as noted, kindly notify us at once.

DEP BWSC RAO LEVEL 1 AUDIT FORM

<u>Disclaimer</u>: This checklist is for use by DEP in reviewing *Response Action Outcome (RAO)* Statements, and may not be relied upon for any other purpose. This checklist is not a comprehensive list of *RAO* requirements, which are fully set forth in MGL c. 21E and 310 CMR 40.0000. Completion of this checklist by DEP does not constitute a final agency decision, and does not create any legal rights or relieve any party of obligations that exist pursuant to applicable laws.

Lead RTN: 3-26 210					
SUBMITTAL TYPE	OHM description: (Source, Type of OHM, Media Affected) EPN, metals, vinglehleriels				li li
Class: A B C 1 2 3 4	Date Scree	ened .	21	12	107
Partial Revised AUL					
Other:	Site Use: Former RR line				
Related RTNs:					i i
Town: Newbury part	Site Name: Former B+M	PR	line		
Address: Between Newburypon	+ Tok + Wata CaLSP Name/#: Mark Care	, 53	319		
PRP/OP:	Tokr Wata StSP Name/#: Mark Case. Consulting Firm:	(•		
		1			
	ditions at time of RAO submittal				
I. SITE CONDITIONS		Yes	No	?	Page
A. Air	d @ residence/school with no soil gas/indoor air sampling		No II		Page
2. B Site contaminants impacting indoor			ľ		
B. Drinking Water/Groundwater		Yes	No	?	Page
1. B More than 0.5" NAPL observed in an	ny monitoring well			<u> </u>	1 490
2. Site within potential drinking water sour			 দি		<u> </u>
3. Site located within IWPA/mapped Zone			Q		
	e. TNC, NTNC) located within 500 feet of site				<u>├</u>
5. Municipal well(s) located within 1000 fe					
	t of site, still in use (no filter, no public water, etc.)				
7.3 Public water supply contaminated as	a result of site, no filters or other mitigation.				
C Contaminated Soil At a School or Re	sidence	Yes	No	?	Page
1. EPC in S-1 soil exceeds Method 1 Star	ndard		Ľ		
	Pb, PCBs, etc.) detected less than 1 foot deep			ভ	0-3
3. IH compounds (arsenic, cadmium, chro	ome VI, cyanide) detected less than 1 foot deep			<u>u</u>	0'-3'
D. Environmental Concerns		Yes	No	?	Page
1. Site within 500 feet of surface water an		Ø			
2. Endangered species habitat, ACEC an			T d		
	ater, sediments and/or wetlands with site contaminants				Dana
E. Site & Area Use - Check All That Ap		Yes		?	Page
1. Industrial use or public Right of Way (n					
2. Commercial (limited presence of childre					
3. School/Institution (pre-K through high s					
F. Released OHM (Primary Contaminar	at Tuno[c])	Yes	No	?	Page
2. Petroleum fuel oils (e.g. #2, #4, #6, JP-					
2. Gasoline, waste oils, Aviation Fuel (AV					<u> </u>
3. Metals, coal tar, PCBs, pesticides/herb		9			
4. Chlorinated solvents, perchlorate, or ot				Ľ	chord i
G. Site Complexity		Yes	No	?	Page
	sources, one or more releases co-mingled)				
2. Bedrock contamination			U		
If lo conditions currently exist, see sup	ervisor to discuss.				

,

DEP BWSC RAO LEVEL 1 AUDIT FORM <u>Disclaimer</u>: This checklist is for use by DEP in reviewing Response Action Outcome (RAO) Statements, and may not be relied upon for any other purpose. This checklist is not a comprehensive list of RAO requirements, which are fully set forth in MGL c. 21E and 310 CMR 40.0000. Completion of this checklist by DEP does not constitute a final agency decision, and does not create any legal rights or relieve any party of obligations that exist pursuant to applicable laws.

II. TECHNICAL ADEQUACY	Citation(s)					
A. Remedial Response Actions:		Yes	No	2	NA P	Page
1. Documentation (BOL, HWM, etc.) of removal/treatment of contaminated soil was provided	40.0030				þ	
2. Remediation waste properly managed (Air [95%], GW [permit], SW [NPDES])	40.0031-40.0049				9	
B. Source/Extent Investigations:		Yes	No	2 V	NA P	Page
1. History of OHM use/storage/disposal at the site included	40.0405(1), 40.0835(4)(c)	þ				
2. Potential source(s) identified, characterized, or abated (septic leach field, floor drain, AST, etc.)	40.0923(2), 40.1003(5)	Ъ				
3. All migration pathways evaluated (soil, groundwater, surface water, air, sediment, food)	40.0904(2)(c)	Ъ				
4. Extent of contamination defined in all media (including downgradient)	40.0904(2)(a),40.1003(5)					
5. Potential or actual OHM analyzed for and/or evaluated (metals, VPH, VOCs, etc.)	40.0904(3)(a), 40.0926(1)	Ъ				
6. Proper sample collection technique/preservation//holding times/surrogate recovery, etc.	40.0017(2-3), 40.1056(1)()					
C. Risk Characterization:		Yes	No	\$	NA P	Page
1. Correct risk characterization method used (relative to indoor air, surface water, sediment, etc.)	40.0941, 40.0942	2				
2. Background identified or characterized	40.0904(2)(b), 40.1020	7				
3. All receptors accounted for (human, environmental) or AUL applied	40.0920-40.0922		۵			
4. Site activities and uses identified (current, future, any limitations that were assumed)	40.0923	þ				
5. Exposure points identified (GW & soil for all RC Methods, other media for Methods 2 & 3)	40.0924	2				
6. All exposure pathways identified and evaluated (inhalation, ingestion, dermal, etc.)	40.0925			2		ملعمان
7. Hot Spot(s) addressed, identified (as Hot Spot) and not added in to other EPCs	40.0924(4), 40.0926(5)	·				
8. EPC calculation(s)/equations provided (including spatial and/or temporal, Hot Spots, etc.)	40.0926				P	
9. EPC properly calculated (maximum concentration, 75%/10x, upper confidence limit)	40.0926(3)(a),(b),(c)				P	
10. Soil/groundwater categories properly identified	40.0930			Þ		ROCONCS
11. Applicable soil and/or GW standards not exceeded (Method 1 or 2) or AUL applied	40.0973(7), 40.0988(2)	3				
12. Characterization of Risk to Safety is included (all methods)	40.0960	7				
13. Method 3 Public Weifare Risk Characterization is included	40.0994	53	[]	[]	2	
14. Method 3 Environmental Risk Characterization - Stage 1 or 2 was completed, if applicable	40,0995				7	
15. Method 3 Human Health: Non-Cancer Risks < HI of 1. ELCR < than 1x10 ⁻⁶	40.0993(6),(7)	C			7	

Rege 2.

RTN _____

Area / RAO 08/16/06

Ver. MCP 04/06

DEP BWSC RAO LEVEL 1 AUDIT FORM Disclaimate This checklist is for use by DEP in reviewing Response Action Outcome (RAO) Statements, and may not be relied upon for any other purpose. This checklist is not a comprehensive list of RAO requirements, which are fully set forth in wGL c. 21E and 310 CMR 40.0000. Completion of this checklist by DEP does not constitute a final agency decision, and does not create any legal rights or relieve any party of obligations that exist pursuant to applicable laws.

III. Response Action Outcome Statement (RAO):		Yeƴ	No	<i>.</i> م	AN	Page
1. Correct RAO Class was selected	40.1030 - 40.1050					たった
2. RAO boundaries delineated and referenced to permanent landmarks or surveyed boundaries	40.1003(4), 40.1056(2)(a)	R				, DD
3. Relationship of this RAO to other RAOs for the property has been defined	40.1056(1)(d)		L.			Cire Le
4. Data Usability Assessment (scien. valid & defensible, precise, accurate, complete) is included	40.1056(1)(j), 40.1056(2)(k)	Ę				
5. Data Representativeness Evaluation (adequate spatial and temporal data) is included	40.1056(2)(k)	द्य्				
A. CLASS A – Permanent Solutions:		Yes	No	~>	NA	Page
1. A background feasibility evaluation is included	40.1020(3)					
2. A Permanent Solution has been achieved	40.1035(1)					
3. All sources have been eliminated or controlled	40.1035 (2)(b)					ł
4. Phase IV, Phase V, or Post-RAO O&M, where required, were completed	40.1036(6)					
A-1. CLASS A-1:		Yes	No	~>	Å	Page
1. The level of OHM at the site has been reduced to background	40.1036(1)(a)					
2. Threats of Release Only: all TORs were eliminated, and a release of OHM has not occurred	40.1036(1)(b)		C			
A-2. CLASS A-2:		Yes	No	?	NA	Page
1. An AUL is not required to maintain a condition of No Significant Risk	40.1036(2)(c)		D			
A-3. CLASS A-3:		Yes	No	~>	NA	Page
1. An AUL has been implemented to maintain a condition of No Significant Risk	40.1036(3)(c)					
2. Groundwater or Soil OHM concentrations do not exceed UCLs	40.1036(3)(d)					
A-4. CLASS A-4:		Yes	No	.~>	AN	Page
1. An AUL has been implemented to maintain a condition of No Significant Risk	40.1036(4)(c)					
2. OHM in soil that exceeds UCLs is beneath engineered barrier or >15 feet below ground surface	40,1036(4)(d)					
3. UCL Feasibility Evaluation conducted and shows that achieving UCLs is not feasible	40.1036(4)(e), 40.1056(2)(f)					

•

DEP BWSC RAO LEVEL 1 AUDIT FORM <u>Disclaimer</u>: This checklist is for use by DEP in reviewing Response Action Outcome (RAO) Statements, and may not be relied upon for any other purpose. This checklist is not a comprehensive list of RAO requirements, which are fully set forth in MGL c. 21E and 310 CMR 40.0000. Completion of this checklist by DEP does not constitute a final agency decision, and does not create any legal rights or relieve any party of obligations that exist pursuant to applicable laws.

B. CLASS B - Permanent Solutions: Yes No. Page Yes No. Page A condition of No. Significant Risk exists 40.1045(2), 40.1046(5) Image	<u> </u>			0		D	40.1051(4)(b)	1. Site has a valid Tier I Permit, Permit Extension, or Tier 2 status
CLASS B - Permanent Solutions:YesNo?NoPageA condition of No Significant Risk exists40.1045(2), 40.1046(3) \Box_1 \Box_2 \Box_1 \Box_2 Remedial actions have not been conductedapplicable or analogous standard40.1045(2), 40.1046(3) \Box_2 \Box_1 \Box_2 Where GW-1 applies, groundwater does not exceed an applicable or analogous standard40.1045(2), 40.1046(3) \Box_2 \Box_1 \Box_2 1. CLASS B-2:An AUL has been implemented to maintain a condition of No Significant Risk40.1046(2)(a), 40.1066(2)(a) \Box_2 \Box_2 Δ_2 2. CLASS B-3:An AUL has been implemented to maintain a condition of No Significant Risk40.1046(2)(a), 40.1066(2)(b) \Box_2 \Box_2 Δ_2 3. CLASS B-3:An AUL has been implemented to maintain a condition of No Significant Risk40.1046(3)(a), 40.1056(2)(b) \Box_2 \Box_2 Δ_2 3. CLASS C-Temporary Solutions:An AUL has been implemented to maintain a condition of No Significant Risk40.1046(3)(a), 40.1056(2)(b) \Box_2 \Box_2 \Box_2 a OHM is located >15 feet below ground surface. AND40.1046(3)(a), 40.1056(2)(b) \Box_2 \Box_2 \Box_2 \Box_2 \Box_2 b. UCL Feasibility Evaluation shows that achieving UCLs is not feasible40.1050(1)(a), 40.1050(1)(a) \Box_2 \Box_2 \Box_2 \Box_2 \Box_2 b. UCL Feasibility Groundwater concentrations exceed applicable or analogous standards or UCLs40.1050(1)(a), 40.1051(1, 2) \Box_1 \Box_2 \Box_2 \Box_2 b. b. charactization elimination, and control or mitigation of OH	·	Page	NA	·~>	No	Yes		
CLASS B - Permanent Solutions:YesNo?NAPageA condition of No Significant Risk exists40.1045(2), 40.1046(3) a^2 <th></th> <td></td> <td></td> <td></td> <td>D</td> <td></td> <td>40.1051(1)</td> <td>1. Valid feasibility evaluation - Permanent Solution currently cannot be achieved.</td>					D		40.1051(1)	1. Valid feasibility evaluation - Permanent Solution currently cannot be achieved.
CLASS B - Permanent Solutions:YesNo?NAPageA condition of No Significant Risk exists40.1045(1)IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		Page	NA	<u>ب</u>	No	Yes		
CLASS B - Permanent Solutions:vesNo?NAPageA condition of No Significant Risk exists40.1045(1) \exists \exists \exists \vdots i <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>40.1051(3)(a), 40.1051(4)(a)</td> <td>1</td>							40.1051(3)(a), 40.1051(4)(a)	1
CLASS B - Permanent Solutions: Yes No ? No Page Page Page Page Page Page Page Page	<u></u>						40.1050(3), 40.1050(4)(a)	
CLASS B - Permanent Solutions:YesNo?NoPageA condition of No Significant Risk exists40.1045(1)							40.1050(2)(a, b)	[
CLASS B - Permanent Solutions:YesNo?NoPageA condition of No Significant Risk exists40.1045(1)GGGGGGRemedial actions have not been conducted40.1045(2), 40.1046(6)GGGGGGWhere GW 1 applies, groundwater does not exceed an applicable or analogous standard40.1045(2), 40.1046(5)(6)GGGGGOne or more AULs are not necessary to maintain a level of no significant riskC40.1046(2)(a), 40.1056(2)(g)GGGQPageOne or more AULs are not necessary to maintain a level of no Significant Risk40.1046(2)(a), 40.1056(2)(g)GGQNAPageOHM in groundwater or soil does not exceed UCLsVesNo?NAPageAn AUL has been implemented to maintain a condition of No Significant Risk40.1046(3)(a), 40.1056(2)(g), GGGQNAPageNALhas been implemented to maintain a condition of No Significant Risk40.1046(3)(a), 40.1056(2)(g), GCNAPageAn AUL has been implemented to maintain a condition of No Significant Risk40.1046(3)(a), 40.1056(2)(g), GCNAPageAn AUL has been implemented to maintain a condition of No Significant Risk40.1046(3)(a), 40.1056(2)(g), GCNAPageAn AUL has been implemented to maintain a condition of No Significant Risk40.1046(3)(a), 40.1056(2)(g), GCCNAPageA CHM is located >15 feet below ground surface, ANDCCG <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>40.1050(1)(b), 40.1056(2)(d)</td> <td>1D, charactization, elimination, and control or mitigation of OHM release has been demonstration</td>							40.1050(1)(b), 40.1056(2)(d)	1D, charactization, elimination, and control or mitigation of OHM release has been demonstration
CLASS B - Permanent Solutions: Yes No ? NA Page A condition of No Significant Risk exists 40.1045(1) II II III IIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			' 🗖				40.1050(1)(a), 40.1051(1, 2)	1. A condition of No Substantial Hazard exists
CLASS B - Permanent Solutions:YesNo?NAPageA condition of No Significant Risk exists40.1045(1) \Box <th></th> <td>Page</td> <td>NA</td> <td>?</td> <td>No</td> <td>Yes</td> <td></td> <td>1</td>		Page	NA	?	No	Yes		1
CLASS B - Permanent Solutions: Yes No ? NA Page A condition of No Significant Risk exists 40.1045(1) II II III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	· •		[]				40.1046(3)(c)	b. UCL Feasibility Evaluation shows that achieving UCLs is not feasible
CLASS B - Permanent Solutions:YesNo?NAPageA condition of No Significant Risk exists40.1045(1)IIIIIIIIIIIRemedial actions have <i>not</i> been conducted40.1045(2), 40.1046(6)II	·						40.1046(3)(b)	a. OHM is located >15 feet below ground surface, AND
CLASS B - Permanent Solutions:YesNo?NAPageA condition of No Significant Risk exists40.1045(1)II <th></th> <td></td> <td></td> <td></td> <td>1</td> <td>I</td> <td></td> <td></td>					1	I		
CLASS B - Permanent Solutions: Yes No ? NA Page A condition of No Significant Risk exists 40.1045(1) II II II III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII							40.1046(3)(a), 40.1056(2)(g,h)	1. An AUL has been implemented to maintain a condition of No Significant Risk
CLASS B - Permanent Solutions: Yes No ? NA Page A condition of No Significant Risk exists 40.1045(1) I		Page	NA	~>	No	Yes		B-3. CLASS B-3:
CLASS B - Permanent Solutions:YesNo?NAPageA condition of No Significant Risk exists $40.1045(1)$ 9 0 $0.1045(1)$ 9 0 $0.1045(1)$ 10 $0.1045(1)$ 10 $0.1045(1)$ 10 $0.1045(1)$ 10 $0.1045(1)$ 10 $0.1045(1)$ 10 $0.1045(2)$ $0.1046(5)$ 10 $0.1046(2)$ $0.1046(5)$ 10 $0.1046(2)$ $0.1046(5)$ 10 $0.1046(5)$ $0.1046(5)$ $0.1046(5)$ $0.1046(5)$ $0.1046(5)$ $0.1046(5)$ $0.1046(5)$ $0.1046(2)$ $0.1046($						٥	40.1046(2)(b)	
CLASS B - Permanent Solutions: Yes No ? NA Page A condition of No Significant Risk exists 40.1045(1) II II III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			D			D	40.1046(2)(a), 40.1056(2)(g)	1. An AUL has been implemented to maintain a condition of No Significant Risk
CLASS B - Permanent Solutions: Yes No ? NA Page A condition of No Significant Risk exists 40.1045(1) II II III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		Page		·~?	No	Yes		
CLASS B - Permanent Solutions: Yes No ? NA Page A condition of No Significant Risk exists 40.1045(1) II II II II III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		For Jo		ą	٥		40.1046(1)	
CLASS B - Permanent Solutions: Yes No ? NA Page A condition of No Significant Risk exists 40.1045(1) I		Page	NA	2	No	Yes		
CLASS B - Permanent Solutions: Yes No ? NA Page A condition of No Significant Risk exists 40.1045(1) I			Ę				40.1046(5)(b)	
A condition of No Significant Risk exists Yes No ? NA Page A condition of No Significant Risk exists 40.1045(1) Image Image Image				D		ą	40.1045(2), 40.1046(6)	
CLASS B - Permanent Solutions: Yes No ? NA	c ¢	AT				Q	40.1045(1)	1
		Page	NA	Ŷ	No	Yes		

Ver. MCP 04/06

a an tha an the second s Page 4

and the second second and the second s

RAO 08/16/06

RTN

CLASS B-1 RESPONSE ACTION OUTCOME STATEMENT

FORMER BOSTON & MAINE RAILROAD LINE

RTN 3-26210

Prepared for: Merrimack Valley Planning Commission 160 Main Street Haverhill, Massachusetts 01830

and

City of Newburyport, Office of Planning and Development Newburyport City Hall 60 Pleasant Street Newburyport, Massachusetts 01950 ALCOLU IN ED

Prepared by: TRC Environmental Corporation 116 John Street Boott Mills South Lowell, Massachusetts 01852

TRC Project Number: 42039-0010-00009/52037-0010-00000

December 2006

TABLE OF CONTENTS

1.0	INTRODUCTION	L
2.0	BACKGROUND	L
3.0	SITE TOPOGRAPHY AND HYDROGEOLOGY	ļ
4.0	NATURE AND EXTENT OF CONTAMINATION	ŀ
4.1 4.2 4.3 4.4 4.5	EPH/PAHs in Soil	5
5.0	METHOD 1 RISK CHARACTERIZATION AND EXPOSURE ASSESSMENT	i
5.3 5.3 5.	Current and Reasonably Foreseeable Site Activity and Use 6 Applicable MCP Groundwater and Soil Categories 6 2.1 Applicable Groundwater Categories 6 2.2 Applicable Soil Categories 6 Exposure Point Concentrations and Comparison to MCP Method 1 Standards 7 3.1 Soil Exposure 8 3.2 Groundwater Exposure 6 3.3 Characterization of Risk to Safety 6	557789
6.0 EVAL	DATA USABILITY ASSESSMENT AND REPRESENTATIVENESS UATION)
6.1 6.2	Data Usability Assessment)
7.0	RESPONSE ACTION OUTCOME STATEMENT	•
8.0	REFERENCES	}
TABL Table 1 Table 2 FIGUI Figure	 Comparison of Soil Results to MCP Method 1 Standards Comparison of Groundwater Results to MCP Method 1 Standards RES 	

Figure 2: Site Plan

APPENDICES

- Appendix A: Bureau of Waste Site Cleanup Transmittal Forms
- Appendix B: Copies of the Public Notification Letters
- Appendix C: May 2006 Site Investigation Summary Report, Former Boston & Maine Railroad Line

1.0 INTRODUCTION

This Class B-1 Response Action Outcome (RAO) Statement Report was prepared by TRC Environmental Corporation (TRC) on behalf of the City of Newburyport, Massachusetts (the "City") for the Former Boston & Maine (B&M) Railroad Line located in Newbury and Newburyport, Massachusetts (the "Site"). This RAO Statement is based on the results of an investigation conducted in May 2006 by TRC along the alignment of the former railroad line.

TRC prepared this RAO Statement in accordance with the Massachusetts Contingency Plan (MCP), 310 CMR 40.1000. The purpose of this RAO Statement is to demonstrate that a level of No Significant Risk has been achieved. This RAO Statement does not rely upon the implementation of an Activity and Use Limitation to achieve a level of No Significant Risk.

A copy of Massachusetts Department of Environmental Protection (MADEP) RAO Form BWSC-104 is included in this report as Appendix A. Copies of the Public Notification letters are included in this report as Appendix B. The May 2006 Site Investigation report entitled, "Site Investigation Summary Report, Former Boston & Maine Railroad Line" is provided in Appendix C.

2.0 BACKGROUND

A Site Location Map is presented in Figure 1. The Site is an approximate 1.3-mile inactive rail corridor which extends from approximately Route 1 in Newbury to the waterfront area in Newburyport. The Site was used historically as a railroad corridor until its abandonment in 1972. The steel rail and wooden railroad ties were removed. The City purchased the Site on August 4, 2006 and plans to develop it as a rail trail for recreational use.

Prior to the purchase, TRC conducted a Phase I Environmental Site Assessment (ESA) to identify recognized environmental conditions associated with the Site. The Phase I ESA identified two potential environmental issues: (1) soil and groundwater contamination from former railroad use, and (2) soil and groundwater contamination from reported releases at nearby properties. TRC subsequently conducted a Site investigation to evaluate the potential environmental issues identified in the Phase I ESA. The Site investigation report, dated May 2006, is provided in Appendix C. The Site investigation consisted of a visual Site inspection and the installation of 10 soil borings (B-1 through B-10) and 5 monitoring wells (MW-1, MW-2, MW-4, MW-9, and MW-10).

Soil samples were collected and analyzed for extractable petroleum hydrocarbons (EPH), MCP metals, polychlorinated biphenyls (PCBs), and pesticides. One round of groundwater samples were collected from the five monitoring wells. Groundwater samples were analyzed for EPH and MCP Metals. Additionally, the groundwater sample collected from MW-10 was sampled for volatile organic compounds (VOCs) and cyanide based on the presence of a former metals plating facility (i.e. the former Circle Finishing Site, RTNs 3-0392, 3-10321, and 3-24164) to the north of this portion of the Site.

The Site investigation identified concentrations of lead and several polycyclic aromatic hydrocarbon (PAH) compounds, including benzo(a)anthracene, chrysene, benzo(a)pyrene, and dibenzo(a,h)anthracene, above applicable MCP RCS-1 Reportable Concentrations in soil between 0 and 3 feet at boring B-2. In addition, arsenic was detected slightly above the RCS-1 Reportable Concentration of 20 mg/kg in select borings. Exceedances of the RCS-1 reportable criteria triggered a 120-day notification requirement to DEP.

Because the City did not own the Site, results of the Site investigation were transmitted to B&M. Following purchase of the Site, the City prepared and submitted a Release Notification Form to MADEP on August 31, 2006. Release Tracking Number (RTN) 3-26210 was assigned to the Site.

Nickel and cyanide were detected in a groundwater sample collected from monitoring well MW-10 at concentrations of 777.1 ug/L and 167 ug/L, respectively. Although these concentrations exceed applicable MCP RCGW-2 criteria, the City did not include these data in the 120-day notification per the MCP, 310 CMR 40.0317(16), which states that exceedances of reportable concentrations at disposal sites where a response action is being undertaken do not require notification. Monitoring well MW-10 is located within the boundaries of the Circle Finishing disposal site (RTNs 3-0392, 3-10321, and 3-24164), thus, notification to DEP of these concentrations was not considered necessary.

3.0 SITE TOPOGRAPHY AND HYDROGEOLOGY

In general, surface and shallow subsurface soils consist of medium to coarse sand throughout the Site. In residential areas where portions of the Site have been seeded with grass and maintained by adjacent residents, a layer of topsoil is present. Silts and clays were identified in several borings at and below 5 feet.

Given the proximity of the Merrimack River and the Atlantic Ocean, groundwater flow direction is likely tidally influenced in the northern portion of the rail corridor. Based on topography, groundwater flow across northerly portions of the former rail line is expected to be in a northerly direction towards the Merrimack River (TRC, 2005). Between Parker Street and High Street, groundwater is expected to flow southeasterly from the hill where the water tower is located. At the southern portion of this section of rail corridor, groundwater flow measured at the Circle Finishing Site is estimated to flow in a southeasterly direction (LFR, 2003).

4.0 NATURE AND EXTENT OF CONTAMINATION

Summaries of soil and groundwater analytical data are presented in Tables 1 and 2, respectively. To help convey the extent of contamination at the Site, soil sample results are compared to MCP Method 1 S-1 standards, and groundwater sample results are compared to MCP Method 1 GW-3 standards. An evaluation of Site risks is presented in Section 5.0.

4.1 EPH/PAHs in Soil

EPH and associated PAHs were detected at three of the ten soil boring locations advanced by TRC. At two locations, B-2 and B-10, PAH concentrations exceeded MCP Method 1 S-1 standards. Benzo(a)anthracene, chrysene, benzo(a)pyrene, and dibenzo(a,h)anthracene were detected above MCP Method 1 standards at B-2(0-3'), and C11-C22 Aromatics, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene were detected above MCP Method 1 standards at location B-10(0-3').

Likely sources of the elevated EPH fractions and PAHs in the vicinity of B-10 include runoff from Route 1 asphalt pavement. Also, B-10 is located within the boundaries of the Circle Finishing disposal site (RTNs 3-0392, 3-10321, and 3-24164).

4.2 Metals in Soil

Arsenic was detected consistently throughout the former rail line in concentrations ranging from 9.1 to 27 mg/kg. Concentrations of arsenic at B-3 (23 mg/kg), B-5 (21 mg/kg), and B-9 (27 mg/kg) were slightly above the MCP Method 1 S-1 standard of 20 mg/kg. Given the consistent concentrations of arsenic detected along the former rail corridor (e.g. standard deviation of approximately 6 mg/kg among arsenic samples), these concentrations likely represent background conditions.

Lead was detected at all soil boring locations advanced by TRC. At location B-2(0-3'), which is located at the northern-most portion of the Site, lead was detected at a concentration of 430 mg/kg (320 mg/kg in a field duplicate sample), which is above the MCP Method 1 S-1 standard of 300 mg/kg. Concentrations of lead at the other nine locations were below MCP Method 1 S-1 standards. Although there is no apparent source of the elevated lead detected in B-2, the source is likely related to historical Site use or imported fill which may have been used to grade the walkway.

Nickel and chromium were detected at all soil boring locations advanced by TRC. The highest concentrations of chromium and nickel were detected at location B-10(0-3'), which is located within the Circle Finishing disposal site. Chromium and nickel were detected in B-10(0-3') at concentrations of 54 mg/kg and 71 mg/kg, respectively. These concentrations exceed the MCP Method 1 S-1 standards. Concentrations of chromium and nickel at the other nine locations were below MCP Method 1 S-1 standards. The likely source of the elevated chromium and nickel at location B-10 is the Circle Finishing disposal site, as both compounds are commonly used in metal finishing processes.

4.3 Pesticides in Soil

The pesticides 4,4'-DDE and 4,4'-DDT were detected at concentrations slightly above laboratory method detection limits at location B-3(0-3'). These detected concentrations are well below MCP Method 1 S-1 standards for these compounds.

4.4 PCBs in Soil

PCBs were analyzed in soil samples collected from boring B-5 because of its location in the vicinity of a former electric substation structure. PCBs were not detected.

4.5 Groundwater

No chemicals were detected in groundwater at the Site at concentrations above MCP Method 1 GW-3 groundwater standards. The groundwater sample from monitoring well MW-10, which is located within the boundaries of the Circle Finishing disposal site, exceeded applicable MCP Method 1 GW-3 standards for nickel and total cyanide. Nickel was detected at a concentration of 777.1 ug/L, which exceeds the MCP Method 1 GW-3 standard of 200 ug/L, and total cyanide was detected at a concentration of 167 ug/L, which exceeds the MCP Method 1 GW-3 standard of 30 ug/L.

Nickel and cyanide are consistent with the chemicals released at the Circle Finishing site and are not considered to be associated with former railroad line use. Monitoring wells located to the north of MW-10 on the Circle Finishing property contained similar or higher concentrations of nickel in groundwater. In monitoring well B-16A, which is located along the southeast edge of the Circle Finishing property, nickel was detected at a concentration of 760 ug/L. Similarly, in monitoring well 17A, located within the former railroad line to the northeast of MW-10, nickel was detected at a concentration of 1,930 ug/L [LFR, 2004]. Cyanide is a common chemical used in the metal finishing industry and the DEP files for the Circle Finishing Site document that a release of cyanide to the environment occurred as a result of the 1993 fire at this facility. No other potential source of cyanide contamination in groundwater was identified within the rail corridor. Based on this information, well MW-10 is considered part of the Circle Finishing Site and is not included as part of the former rail corridor Site.

5.0 METHOD 1 RISK CHARACTERIZATION AND EXPOSURE ASSESSMENT

TRC completed a Method 1 risk characterization for the subject Site to evaluate whether the concentrations of oil and hazardous materials in soil and groundwater pose a significant risk to health, safety, public welfare or the environment.

5.1 Current and Reasonably Foreseeable Site Activity and Use

The Site is a former rail line corridor. The northern portion of the Site between Water Street and the Merrimack River waterfront in Newburyport, Massachusetts is currently used by the general public as a pedestrian and vehicle pathway to access the waterfront area. Some portions of the Site are overgrown with vegetation and are not accessible. The Site is mostly unpaved except in locations where it crosses roadways.

The City plans to develop the Site as a rail trail for recreational use. The entire length of the former rail line, from Route 1 to the Merrimack River, is expected to be paved. No buildings or structures are planned. Foreseeable recreational activities at the Site which are typical for rail trails include walking, jogging, and bicycling.

5.2 Applicable MCP Groundwater and Soil Categories

This section presents a discussion of the MCP groundwater and soil categories that are applicable to the Site

5.2.1 Applicable Groundwater Categories

Groundwater is categorized based upon its current and/or potential future use as a drinking water (GW-1), its potential to act as a source of volatile material to indoor air (GW-2), and the potential to discharge material to surface water (GW-3). The MCP describes six criteria used for determining if Site groundwater is categorized as GW-1. These criteria include the following.

- The groundwater is within a Zone II.
- The groundwater is within an Interim Wellhead Protection Area.
- The groundwater is within a Potentially Productive Aquifer.
- The groundwater is within Zone A of a Class A Surface Water Body.
- The groundwater is located 500 feet or more from a public water system distribution pipeline.
- The groundwater is located within 500 feet of a private water supply well that was in use at the time of notification pursuant to 310 CMR 40.0300 and was installed in conformance with an applicable laws, by-laws, or regulations.

No Current Drinking Water Sources were identified within the former rail line. However, the Massachusetts Geographical Information System (GIS) identifies a medium yield aquifer located

beneath the middle portion of the former rail line between High Street and Parker Street. The medium yield aquifer is considered a Potentially Productive Aquifer per the MCP, thereby, categorizing the groundwater beneath the Site as GW-1 in this location. No monitoring wells were installed within the aquifer footprint during this investigation because the Phase I ESA did not identify any potential sources of impacts to groundwater in this area.

The MCP indicates that groundwater is categorized as GW-2 when it is located within thirty feet of an occupied building or structure and the average annual depth to groundwater in the area is fifteen feet or less. There are no occupied structures currently present on the Site. The City plans to redevelop the Site for future use as a recreational rail trail, and no onsite building are planned as part of this future redevelopment. Based on this information, groundwater at the Site is also not categorized as GW-2.

The MCP indicates that all groundwater in Massachusetts is classified as GW-3. Therefore, groundwater at the Site is classified as GW-3.

5.2.2 Applicable Soil Categories

The entire section of rail corridor under investigation is currently unpaved and access to the rail corridor is un-restricted (however, some sections are overgrown and access to these sections is limited). The northern portion of the Site between Water Street and the Merrimack River in Newburyport is used by the general public as a pedestrian and vehicle pathway to access the waterfront area. Pursuant to 310 CMR 40.0933, this corresponds to high frequency/low intensity use for children and adults. Accordingly, the applicable MCP soil categories for the current activities and uses in this portion of the Site are S-1/GW-3 for surface soil (i.e., 0-3 feet below ground surface), and S-2/GW-3 for subsurface soil (i.e., soil greater than 3 feet but less than 15 feet below ground surface).

Based on the presence of the potentially productive aquifer between High and Parker Streets, the applicable MCP soil categories for current activities and uses in this portion of the Site are S-1/GW-1 for surface soil and S-2/GW-1 for subsurface soil.

Assuming future use of the property as a paved recreational pathway, the future activities and uses for both children and adults are assumed to remain as high frequency/low intensity. Based on this information, the applicable MCP soil category for the anticipated future site activities and uses is S-2/GW-3 for both surface and subsurface soil for areas outside the potentially productive aquifer located between High and Parker Streets. The applicable MCP soil category for future Site activities and uses in the portion of the Site between High and Parker Streets is S-2/GW-1 for both surface soil and subsurface soil.

5.3 Exposure Point Concentrations and Comparison to MCP Method 1 Standards

This section describes the calculation of Exposure Point Concentrations (EPCs) and compares the EPCs to applicable Method 1 Soil and Groundwater Standards.

5.3.1 Soil Exposure

Based on the relative uniformity of contaminant concentrations detected in soil across the Site, site-wide EPCs were developed for the detected concentrations of compounds in soil. Separate EPCs were developed for surface soil (i.e., 0-3 feet below ground surface), and subsurface soil (i.e., soil > 3 feet below ground surface) for each exposure area. Soil EPCs are calculated using data from locations B-1 through B-9. Data from B-10 are not included because B-10 is located within the boundaries of the Circle Finishing disposal site and is not considered part of the subject disposal site.

The EPCs were calculated as the arithmetic mean concentrations of detected constituents. The EPC calculations for soil are provided in Table 1. As shown in Table 1, all of the detected concentrations for each compound of interest were less than 10 times their respective MCP Method 1 S-1/GW-1 and/or S-1/GW-3 soil standards. In addition, at least 75% of samples had detected concentrations below the MCP Method 1 S-1 soil standards for all compounds of interest except arsenic, in which 67% of the samples (6 out of 9 samples) had concentrations below the MCP Method 1 S-1 standards. Thus, use of an arithmetic mean as the EPC was considered appropriate and not likely to underestimate the true EPC for all compounds of interest except for arsenic. For arsenic, the rationale for using the arithmetic mean is as follows.

The detected concentrations of arsenic in soil across the Site were relatively uniform and ranged from 9.1 mg/kg to 27 mg/kg. The arithmetic mean arsenic concentration in soil at the Site is 18.7 mg/kg, with a standard deviation of 5.8 mg/kg. Given the historic use of the Site as a railroad corridor, the presence of arsenic in soil at these concentrations is likely associated with background conditions. Note that the detected concentration of 20 mg/kg for arsenic in soil, and three of the samples from the investigation area had arsenic concentrations that only slightly exceed this DEP-published background concentration. All of the detected arsenic concentrations are within the range of arsenic background concentrations observed during the DEP 1995 background study and the Central Artery/Third Harbor Tunnel project (DEP, 2002).

The only potential source of arsenic release to soil based on the historic use of the property is from possible application of pesticides along the rail corridor, which was common practice for historic railroad lines. Given this potential source of release, higher concentrations of arsenic would be expected in the surface soil. As shown in Table 1, TRC's soil samples for arsenic were obtained from the 0-3' depth interval, therefore, the concentrations used in the EPC calculation for arsenic likely represent reasonably worst case arsenic levels. In addition, based on the Site's current and foreseeable future use as a recreational rail trail, exposure is not likely to be greater in any individual portion of the rail trail. Based on this rationale, use of the arithmetic mean concentration for arsenic in soil as the EPC is appropriate and is not likely to underestimate the true EPC at this Site.

Tables 1 compares site-wide EPCs to their applicable MCP Method 1 soil standards for current and future use of the Site. As shown in Table 1, the EPCs for all compounds in soil are below their respective MCP Method 1 soil standards which are applicable to current and future Site uses.

5.3.2 Groundwater Exposure

Per the MCP at 310 CMR 40.0924 (2), the groundwater exposure areas at the Site are considered the groundwater resource itself and the groundwater exposure point concentrations are the concentrations detected at each individual monitoring well at the Site. These data are provided in Table 2. All on-site monitoring wells were constructed in the GW-3 portion of the Site. Therefore, groundwater data is compared to MCP Method 1 GW-3 standards. No groundwater concentrations exceed MCP Method 1 GW-3 standards.

As shown in Table 2, nickel and total cyanide were detected in monitoring well MW-10 exceeding their applicable MCP Method 1 GW-3 standards of 200 ug/L and 30 ug/L, respectively. However, because MW-10 is located within the boundaries of the Circle Finishing disposal site, it is not considered part of the subject disposal site. The presence of nickel and cyanide in groundwater are consistent with the documented release at the Former Circle Finishing Site.

5.3.3 Characterization of Risk to Safety

Characterization of the risk of harm to safety was performed by evaluating Site conditions relative to conditions that could pose a threat of physical harm or bodily injury. Conditions that could pose a risk to harm to safety include the following:

- Presence of rusted or corroded drums, containers, open pits, or lagoons;
- Threat of fire or explosion or presence of explosive vapors; and,
- Uncontained materials exhibiting characteristics of corrosivity, reactivity, or flammability.

Based on information presented in reports upon which this risk characterization is based, none of these conditions was reported or is anticipated to exist at the Site in relation to the release, now or in the future. Therefore, the Site is judged to pose no significant risk of harm to safety.

6.0 DATA USABILITY ASSESSMENT AND REPRESENTATIVENESS EVALUATION

6.1 Data Usability Assessment

A data usability assessment was performed on laboratory data associated with the soil and groundwater data collected for the Site. The assessment concluded that the data are usable for MCP decisions based on the Compendium of Analytical Methods (CAM) requirements for acceptable accuracy, precision, and sensitivity. The detailed data assessment evaluation is provided in Appendix C of the Site Investigation Report (found in Appendix C of this report).

6.2 Representativeness Evaluation

To perform a representativeness evaluation, The Conceptual Site Model (CSM) for the Site must be understood. The CSM for the Site is described as follows:

The Site is former railroad line which was constructed in 1846. The Site was used as an active railroad line until its abandonment in January 1972. Historic railroad operations typically involved the use of chemicals that may have resulted in presence contamination. The most commonly reported contamination along rail lines includes metals, pesticides, and constituents of oil or fuel (petroleum products). These chemicals have been associated with normal railroad operations and are likely to be found in surface soil anywhere along the line. Lubricating oil and diesel that dripped from the trains are likely sources of the petroleum product found along the lines. Other sources of contaminants associated with historic railroad operation may include coal ash from engines, creosote from ties, and PAHs from the diesel exhaust.

A review of federal, state, and municipal records identified two DEP disposal sites located adjacent to the subject Site.

- Circle Finishing Site. The Circle Finishing site, which is located to the north of the westernmost portion of the Site, is a former metal plating facility (i.e. the former Circle Finishing site, RTNs 3-0392, 3-10321, and 3-24164). On December 20, 1993, a fire occurred at the Circle Finishing site that resulted in the release of various metal plating solutions containing oil and hazardous materials. Immediate Response Action (IRA) activities were conducted at the time to address the release. The site was classified as Tier 1B in December 1995. Although several Tier 1 permit extensions were granted, based on DEP records, no substantial remedial actions to address soil and groundwater contamination have been conducted.
- 2) Wastewater Treatment Plant. The City of Newburyport Wastewater Treatment Plant (WWTP), located at 157 Water Street, borders the Site at its easternmost portion. Two separate releases at this site were identified during a review of DEP files. The first release occurred in February 1999 when approximately 500 gallons of ferric chloride was released for an aboveground storage tank. The release was completely contained within a containment basin, and a Class A-1 RAO was submitted for the release. The second release occurred in May 2004 when oily soil was identified during excavation for a new

underground storage tank. Lead, total petroleum hydrocarbons, and PAHs were identified is soil above MCP Reportable Concentrations. Approximately 40 tons of contaminated soil was excavated and disposed off site. Consequently, a Class A-2 RAO was submitted for the release. Both WWTP releases appear to have been limited to areas within the treatment plant property and are unlikely to impact the former railroad line.

Following the records review, TRC conducted a Site investigation to assess potential impacts from known releases at the adjacent Circle Finishing and wastewater treatment plant sites described above and other releases that were identified at nearby properties. TRC installed soil borings and monitoring wells in locations where impacts from the identified release sites were deemed likely. Additionally, locations of soil borings and wells were selected to achieve adequate spatial coverage over the entire Site to evaluate impacts from former railroad operations. The Site investigation report is provided in Appendix C.

Soil samples were analyzed for EPH, metals, pesticides, and PCBs. Given that the most likely releases at the Site occurred to surface soil, TRC collected the majority of soil samples from the 0-3 feet depth interval. TRC conducted one round of groundwater sampling from the five newly-installed monitoring wells. Groundwater samples were analyzed for EPH and metals. Additionally, the groundwater sample collected from MW-10 was sampled for VOCs and cyanide based on the adjacent location of the Circle Finishing Site.

Soil sample results indicate detected concentrations of PAHs and metals in soil generally at relatively uniform concentrations across Site consistent with former use as RR line. Boring B-10 contained slightly higher concentration of petroleum hydrocarbons. However, the likely cause is auto traffic on Route 1. Slightly elevated concentrations of lead were detected at location B-2 located next to WWTP. These elevated lead concentrations could be associated with incidental releases at the WWTP.

Groundwater concentrations detected in Site monitoring wells were below MCP Method 1 GW-3 standards. Concentrations of nickel and cyanide in monitoring well MW-10 were detected above GW-3. However, MW-10 is considered part of Circle Finishing site. As discussed in Section 4.5, concentrations of nickel and cyanide are consistent with those detected in Circle Finishing site monitoring wells.

Based on the CSM described above, the adequacy of spatial and temporal data sets was evaluated, and the data was deemed suitable by TRC to support this RAO Statement. Although soil sample locations were spaced relatively far apart, sample locations were selected in areas where highest contamination levels were anticipated based on Site history and locations of known releases at nearby sites. Thus, concentrations of detected Site contaminants are likely biased high. Visual inspection did not reveal areas that appeared worse than others. Also, exposure is not likely to be greater in any individual portion of the recreational rail trail. Temporally, the data collected is sufficient to address the nature and extent of contamination identified at the Site. The release was identified due to exceedances of applicable Reportable Concentrations under the MCP. No specific release that would migrate or worsen over time was identified.

7.0 RESPONSE ACTION OUTCOME STATEMENT

It is TRC's opinion that a condition of No Significant Risk exists under current Site condition at the Former B&M Rail Line Site (RTN 3-26210) in Newbury and Newburyport, Massachusetts and that the criteria presented in 310 CMR 40.1046(1) have been met. Therefore, this Class B-1 RAO Statement is being submitted. This Class B-1 RAO is supported by a Method 1 Risk Characterization, which demonstrates that the Site poses No Significant Risk of harm to health, safety, public welfare, or the environment. This RAO Statement does not rely upon the implementation of an Activity and Use Limitation to achieve a level of No Significant Risk. A copy of the Response Action Outcome Statement (BWSC-104) is provided in Appendix A.

In addition, in accordance with the public involvement requirements of the MCP (310 CMR 40.1403) notification of the availability of this RAO Statement have been sent to the Mayor and Board of Health for the City of Newburyport. Copies of these notification letters are provided in Appendix B.

TRC recommends using the best management practice guidance when planning the future rail trail and designing the trail to discourage potential off-path activities on the portion of trail adjacent to Circle Finishing Site to minimize exposure to detected Site contaminants. TRC also recommends that the City evaluate the status of current and planned MCP Response Actions at the Circle Finishing site for the purpose of coordinating design and construction of the future rail trail with any remediation that may be performed.

8.0 **REFERENCES**

LFR, 2003. Phase II Addendum – Response to Phase II Comments by DEP, Circle Finishing, Inc., US Route 1/Traffic Circle, Newburyport, Massachusetts, Levine-Fricke, November 18, 2003.

LFR, 2004. Phase IV Remedy Implementation Plan, Circle Finishing, Inc., US Route 1/Traffic Circle, Newburyport, Massachusetts, RTN 3-0392 and 3-10321, Levine-Fricke, November 1, 2004.

Massachusetts DEP, 2006. *The Massachusetts Contingency Plan, 310 CMR 40.000*, Massachusetts DEP, Effective 4/3/2006.

TRC, 2005. Phase I Environmental Site Assessment, Former Boston & Maine Railroad Line, Newbury and Newburyport, Massachusetts, December 2005.

TRC, 2006. Site Investigation Summary Report, Former Boston & Maine Railroad Line, Newbury and Newburyport, Massachusetts, May 2006.

DEP, 2002. Technical Update - Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil, May 2002

TABLES

l

														ŀ						4	EPC	EPC
		Samp	Sample Location:		B-1		B-2		B-3	B			B-5	į	¢-9		é ć		3.10	2.7		~~~~
Analysis	Analyte		Depth:		3-10'	-	0-3'	3-10	0-3'	0-3*	3-10'	0-3'	0-3	3-10	0-3' 4/1/0/006	12 C-0	4/3/2006	4/1/2006	4/1/2006	4/4/2006	3	R
		S-I/GW-1	Date sampled: S-1/GW-3	4/3/2006	4/3/2006	4/3/2006	Field Dup	4/2/2006	00021614	0007/0/4	000001014	_	Field Dup									
EBC	Co / 18 Alinhasian		1000	1 26 2	775	15.0	⊢	83.8	7.41 U	7.33 U	7.17 U		NA	6.94 U	7.02 U	7.02 U	7.17 U	7.25 U	7.02 U	7.94 U	an no	19.648
(me/kg)	C19 - C36 Aliphatics	000 000	3000	68.5	7.75	U 15.0 U	10.5	25.6	9.28	7.33 U	7.17 U	7.02 U	NA	6.94 U		7.02 U	7.17 U			1.62	78.645	14.048
à	C11 - C22 Aromatics	200	800	102		U 139	80.0	55.8		7.33 U	7.17 U		AN N	0 945 0	1. 1200	1 122.0	0 358 0	0.362 []		0.397 U	0.342	0.250
	Naphthalene	4	200	0.362 U			1.10		0.370 U	0.366 U	U 845.0	0 100.0		0.347 U	0.351 U	U 1351 U	0.358 U		0.351 U		DN	DN
	2-Methylmaphthalene	4	200	0.362 U	0.388	0.449 0		1 5850		0.366 U	0.358 U	0.351 U	NA	0.347 U		0.351 U	0.358 U		0.351 U	0.397 U	0.213	ΟN
	Acenaphthylcoe	3 8	<u>8</u>	0 20C 0	882.0	0.749 1	0.503			0.366 U	0.358 U	0.351 U	NA	0.347 U		0.351 U	0.358 U	0.362 U		0.682	0.208	dv dv
	Асспарникос Емогеле	Q	0001	0.362 U	0.388	0.908	0.594			0.366 U	0.358 U	_	NA	0.347 U	_	0.351 U	0.358 U	0.362 U	0.351 U	0.570	C47.0	UN UN
	Phenanthrene	<u>8</u>	001		0.388	U 10.9	6.98	1.51		0.366 U	0.358 U		NA	0.347 U	0.351 U	0.351 U	U 855.0	0 200.0	0 1000	2.9.2	0.405	GN
	Anthracene	1000	1000	0.362 U	0.388	U 2.80	191	0.383 U	0.370 U		0.358 U	0.351 U	V Z	0.347 U	U 165.0	U 145.0	0 800.0		11 132.0	19.6	1.716	0.564
	Fluoranthene	1000	1000	0-616	_		9.68	2.10	0.914		0.358 U	0.351 U	AN N	0.34/ U	U 166.0	11 120.0	0 900.0	0 202.0		152	1.428	0.476
	Pyrene	1000	1000	0.644			7.73	1.66	0.875	0.366 U	0.358 U	0.351 U	AN 1	U /4/ U	0 1000	0 100.0	0 358 0	0.362 U		11.8	0.868	0.33
•	Bcnzo(a)apthracene	7	2	0.398	0.388 U	1.26	4.35	0.933	0.392	0.366.0	U 355 U	11 135.0	AN AN	0 142 0	U 125.0	U 135.0	0.358 U	0.362 U	0.351 U	14.4	0.873	0.319
	Chrysene	7	r 1	0.474			4.23	0.0/1	2020	11 395.0	1 1 252 0	-	AN AN	0.347 U	0.351 U	U 1351 U	0.358 U	0.362 U	0.351 U	10.1	0.817	0.288
	Benzo(b)fhorenthence	- 20		0.415			145	0.785	0.501		0.358 U	0.351 U	AN N	0.347 U	0.351 U	0.351 U	0.358 U	0.362 U	0.351 U	6.47	0.744	0.301
	Benzo(k)thuoranthene	2,	\$,	0.450	1 305.0	1 0.02	915	0.889	0.584	0.366 U	U 82E.0	0.351 U	NA	0.347 U	0.351 U	0.351 U	0.358 U	0.362 U		9.26	0.888	0.322
_	Benzo(a)pyrene Indano(1,2,2,0)Broom	4 1	4 1-		0.288		2.57	0.575	0.473	0.366 U	0.358 U	0.351 U	NA NA	0.347 U	0.351 U	0.351 U	0.358 U	0.362 U		4.72	0.612	QN of c
	Dibenzo(a,h)anthracene	0.7	0.7	0.362 U	0.388		0.569	0.383 U	0.370 U	0.366 U	0.358 U	0.351 U	NA NA	0.347 U	0.351 U	0.351 U	0.358 U	0.362 U	0.351 U	4.24	0.52/	0.244
	Benzo(ghi)perylene	1000	0001	0.362 U	0.388 1	1 4.44	2.07	0.500		0.366 U	5	5	Ŧ	1 D /66-0	0 1000		A PLC-D	A AV		NA N	GN	QN
PCBs	Aroclor 1016	2	2	NA	NA	NA	AN N	NA	NA	VN);	0.0355 U 1 4	0.0347 U	A N	4 A	A N	A N	AN AN	V V	Q	QN
(mg/kg)	Arockor 1221	2	ĉ	NA :	NA NA	2;	AN AN	AN N	NA	< A 2		0 10000		0.0347 U	Y Z	NA	NA	NA	NA	NA	ΩN	ΩN
	Aroclor 1232	~ ~	~ ~	A N	A N	4 X		A N	NA			,	0.0355 U	0.0347 U	NA	NA	NA	NA	NA	NA N	ΟN	ND
	Aroclor 1242		2	AN NA	K N	A N	AN A	NA	AN	٩Z		5	Þ	0.0347 U	NA	٧N	NA	NA	NA	AN	Q.	QN
	Arocior 1254 Arocior 1254	· ~	* 61	ŽŽ	VN VN	NA	NA	NA	VN	۸A	NA	5	D	0.0347 U	NA NA	NA NA	NA	NA NA	NA	AN NN	2 9	QN QN
	Aroclar 1260	2	2	NA	٧N	NA		NA	NA	VN	\dagger	5;	╗	5		Dmast 11	0.00358 11	0.00362 11	NA.	0.0397 U	QN	NA
Pesticides	Delta-BHC	SN	SN	0.0362 U		0.0187 U	0.0189 U	AN A	0.0185 0	0.0185 0.0	A N	0 0/10/10	AN AN	AN N	0.00281 U	0.00281 U	0.00287 U		NA	0.0317 U	ΩN	NA
(0%/kg)	Lindane	0:003 N c	C.0	0.0200	Z Z	0.0187		NA NA	0.0185 U	0.0183 U		U 2710.0	NA		0.00351 U	0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	QN	W
	Alpta-BHC Refer BHC	2 X	ŝ	0.0362 U	N N	0.0187 U	0.0189	NA	0.0185 U	0.0183 U		0.0175 U	NA		0.00351 U	0.00351 U	U 82E00.0	0.00362 U	NA ::	0.0397 U	dv dv	W
	Heptachlor	0.2	0.2	0.0362 U	NA	0.0187 U	0.0189	NA	0.0185 U	0.0183 U		0.0175 U	NA	NA	0.00351 U	0.00351 U	0.00358 U	0 20500.0		0 7950.0	2	MA
	Aldrin	0.04	0.04		NN		0.0189	NA	0.0185 U	0.0183 U	YZ :	0.0175 U	2 2	NA	11 12000		0 00358 11	0.00362 U	AN N		QN	NA
	Heptachlor epoxide	0 .09	0.09	-			0.0189	AN NA	0.0185 U	0.0183 U		U C/100	NA NA		0.00351 U	0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	<i>CIN</i>	NA
	Endrin	80	6 0	0.0362 U	•		0.0189 0		0 00100	0 0183 11		0 0175 U	NA		0.00351 U	0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	DN	NA
	Endrin ketone	SN SO	SN SO	0 7950.0		0.0187 11	001200	AN AN	0.0185. U	0.0183 U	VN	U 2710.0	NA		0.00351 U	0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	DN CN	NA
	A 4"-DDF	- 				_	0.0189	NA	0.0226	-0.0183 U	_	0.0175 U	NA		0.00351 U	0 0035! U	0.00358 U	0.00362 U	NA	0.0397 U	0.008	NA NA
	4,4'-DDD	4	4	-			0.0189	NA	0.0185 U	0.0183 11		0.0175 U	VN ·		0.00351 U	0.00351 U	0.00358 U	0.00362 U	AN NA	0.0397 U	1100	NA
	4,4'-DDT	ŝ	3		NA		0.0189	VZ.		0.0183 U		U 6/100	NA	ΨN N	1 11 150000	11 150010	0.00358 U	U 200362 U	NA	0.0397 U	aN	NA
	Endosuitan I	0.5"	<u>8</u>	0.0362 U			_	AN N				11 52100	AN AN		0.00351 U	U 120000	0.00358 U	0.00362 U	NA	0.0397 U	DN	NA
	Endosulfaci II	0.5 ¹¹⁷	nic Nic	0.0362		0.0187 0	0.0189	AN AN	0.0185 U	0.0183 U		U 2710.0	NA	_	0.00351 U	0.00351 U	0.00358 U	0.00362 U	NA		DN	W
	Endosuran surate Methoxychlor	28	2 02	0.145 U	AN NA		0.0758	NA	0.0741 U	0.0733 U		0.0702 U	NA		0.0140 U	0.0140 U	0.0143 U	0.0145 U	NA		Q A	N.
	Technical Chlordane	0.7	0.7	0.145 U			0.0758	NA	0.0741 U	0.0733 U		0.0702 U	AN S	AN 1	0.0140	0.0140 U	1 2410.0	0.0145 0.00	e z	0 16510	a a	WA
	Toxaphene	SN	NS	0.145 U	AN S	0.0749 U	0.0758 U	NA NA	0.0741 U	0.0733 U	A N	0.0175 U	A N		0.00351 U	0.00351 U	0.00358 U		NA	0.0397 U	DD	NA
	Hexachlorobenzene	7.0	6		∔		╈	NA	2.2 U	2.2 U	NA	2.1 U	VN.	┢	2.1 U	2.1 U	2.1 U	2.2 U	NA	2.4 U	1.26	NA
(me/kg)	Antenio, Total Arsenic, Total	3 8	20		NA	2		NA	5	9.1	NA		VN	NA	61	6:	15	5	NA NA	<u>4</u>	17.29	NA NA
19-19-11-1	Barium, Total	0001	1000	43	NA		8	NA	40		NA		AN .	AN 1		13		17	AN N	40 0.24 U		NA N
	Beryllium. Total	0.7	0.7	0.22 U	NA	0.22 U		NA	0.22 U	0.22 U	NA	0.12.0	4 7	A N	0.42 11	0.42 10	0.42 U		NA.		C N	NA
	Cadrixiun, Total	3 5	2			0 47 C	0.45	A N			e e	14	NA	NA			12	16	ž	5	15.44	W
	(Linomum, 1002) Lead. Toral	2 2	R 8	2 8	Y AN	111	320	NA	280	8	NA	18	NA	NA	5.6	6.0	5.4	6.6	NA S	82	88.88 20.88	N
	Nickel, Total	\$	20	12	NA		12	AN			NA.		AN N	Y Z	14	11			VV VV	24 U	ND ON	NA NA
	Selenium, Total	ĝ ;	ĝ		NA	2.2 U	1 2.3 U	A N	0.44 U	0.44 U	NA N	0.42 U	Y N	NA	0.42 U		0.42 U	0.43 U	NA	0.54	0.21	W
	Thallium, Total	နို ဖ	<u>3</u> ••	22 U			23	NA			NA		VN.	NA		2.1 U		22 U	AN AN	2.4 U	ND 75 CT	NA
	Vanadium, Total	89 89	009	16	AN NA	91	51 9 2	V Z Z	26	14	z z	8.6	e v	NA	11	1 2	ریر 15	25	NA	61	59.67	NA
Solide (Total) (&)	Zmc, 1 0tal		NUC7	3 5	1		2 8	. 18	8	16	2	95	94	96	36	ж	93	92;	95	2	N/A	NA
I onund		U		:	\$, ,																

• . .

Table 1 Comparison of Soll Results to MCP Method 1 Standards Former B & M Railroad Newburyport, Massachusetts

Notes: All units in maying unless otherwise specified. anging - auflignance per kitogenan (dery weight) or purts per malifion (ppm), (1) - MCP Machod 1 standbards for cacherelina uned. MA - Sampte sus austyacal for the listed analyte. NM - Not detected. ND - Not detected. ND - Not detected. NU- Compound was und detected quantified quantified quantified quantified to the field quantified of the field of the field quantified to the field quantified of the quantified of the quantified to the compound. With the stronget of the field quantified quantified of the quantified of the quantified field of the quantified by the number of samples. PCC - Exposure Polar Concentration, is the sam of half of the quantified in first for non-detected proversing B-10.

Page 1 of 1

52037_Former B and M Ruitoad_Newburyport MA

Table 2 Comparison of Groundwater Results to MCP Method 1 Standards Former B & M Railroad Newburyport, Massachusetts

Analysis	Analyte	Method 1	Sample Location:	MW-I	MW-2	MW-4	MW-9	MW-10
		GW-3	Date sampled:	4/12/2006	4/12/2006	4/12/2006	4/12/2006	4/12/200
/OCs	Methylene chloride	50000		NA	NA	NA	NA	5.0
ug/L)	1,1-Dichloroethane	20000		NA	NA	NA	NA	4.6
	Chloroform	10000		NA	NA	NA	NA	0.88
	Carbon tetrachloride	5000		NA	NA	. NA	NA	0.50
	1,2-Dichloropropane	50000		NA	NA	NA	· NA	1.8
	Dibromochloromethane	50000		NA	NA	NA	NA	0.50
	1,1,2-Trichloroethane	50000		NA	NA	NA	NA	0.75
	Tetrachloroethene	30000		NA	NA	NA	NA	0.73 0.50
	Chlorobenzene	1000		NA	NA	NA	NA	2.5
	Trichlorofluoromethane	NS		NA	NA	NA NA	NA NA	0.50
	1,2-Dichloroethane	20000		NA	NA	NA	NA	3.8
	1,1,1-Trichloroethane	20000		NA	NA NA	NA	NA	0.50
	Bromodichloromethane	50000		NA NA	NA	NA	NA	0.50
	trans-1.3-Dichloropropene	2000(2)		NA	NA	NA	NA	0.50
	cis-1,3-Dichloropropene	2000/2		NA	NA	NA	NA	2.5
	1,1-Dichloropropene	NS		NA	NA	NA	NA	2.0
	Bromoform	50000 50000		NA	NA	NA	NA	0.50
	1,1,2,2-Tetrachloroethane	10000		NA	NA	NA	NA	13
	Benzene	4000		NA	NA	NA	NA	1.6
	Toluene Ethylbenzene	4000		NA	NA	NA	NA	9.6
	Chloromethane	A000 NS		NA	NA	NA	NA	2.5
	Bromomethane	50000		NA	NA	NA	NA	1.0
	Vinyl chloride	50000		NA	NA	NA	NA	7.8
	Chloroethane	NS		NA	NA	NA	NA	1.0
	1.1-Dichloroethene	30000		NA	NA	NA	NA	0 50
	trans-1,2-Dichloroethene	50000		NA	NA	NA	NA	0.75
	Trichloroethene	5000		NA	' NA	NA	NA	17
	1,2-Dichlorobenzene	2000		NA	NA	NA	NA	2.5
	1,3-Dichlorobenzene	50000		NA	NA	NA	NA	2.5
	1.4-Dichlorobenzene	8000		NA	NA	NA	NA	2.5
	Methyl tert butyl ether	50000		NA	NA	NA	. NA	1.0
	p/m-Xylene	500		NA	NA	NÁ	NA	4.8
•	o-Xylene	500		NA	ŇA	NA	NA	1.2
	cis-1,2-Dichloroethene	50000		NA	NA	NA	NA	14
	Dibromomethane	NS		NA	NA	NA	NA	5.0
•	1,2,3-Trichloropropane	NS		NA	NA	NA	NA	5.0
	Styrene	6000		NA	NA	NA	NA	1.0
	Dichlorodifluoromethane	NS		NA	NA	NA	NA	5.0
•	Acetone	50000		NA	NA	NA	NA	5.0
	Carbon disulfide	NS		NA	NA	NA .	NA	5.0
	2-Butanone	50000		NA	NA	NA	NA	5.0
	4-Methyl-2-pentanone	50000		NA	NA	NA	NA	5.0
	2-Hexanone	NS		NA	NA	NA	NA	5.0
	Bromochloromethane	NS		NA	NA	NA	NA	2.5
	Tetrahydrofuran	NS		NA	NA	NA	NA	10
	2,2-Dichloropropane	NS		NA	NA	NA	NA	2.5
	I,2-Dibromoethane	50000		NA	NA	NA	NA NA	2.0
	1,3-Dichloropropane	NS		NA	NA	NA	NA	2.5
	1.1,1,2-Tetrachloroethane	50000		NA	NA	NA	NA	0.50 2.5
	Bromobenzene	NS 4000(!)		NA NA	NA NA	NA NA	NA NA	2.5 5.5
	n-Butylbenzene	4000 ⁽¹⁾ 4000 ⁽¹⁾		NA NA	NA NA	NA NA	NA NA	1.8
	sec-Butylbenzene tert-Butylbenzene	4000 ⁽¹⁾		NA NA	NA	NA	NA	2.5
	o-Chlorotoluene	4000 ··· NS		NA	NA	NA	NA	2.5
	p-Chlorotoluene	NS		NA	NA	NA	NA	2.5
	1,2-Dibromo-3-chloropropane	NS		NA	NA	NA	NA	2.5
	Hexachlorobutadiene	3000		NA	NA	NA	NA	0.60
	Isopropylbenzene	4000 ⁽¹⁾		NA	NA	NA	NA	3.2
	p-lsopropyltoluene	40000		NA	NA	NA	NA	1.8
	Naphthalene	20000		NA	NA	NA	NA	9.3
	n-Propylbenzene	4000 ⁽¹⁾		NA	NA	NA	NA	8.8
	1,2,3-Trichlorobenzene	NS		NA	NA	NA	NA	2.5
	1.2,4-Trichlorobenzene	50000		NA	NA	NA	NA	2.5
	1,3,5-Trimethylbenzene	4000(1)		NA	NA	NA	NA	4.0
	1,2,4-Trimethylbenzene	4000(1)		NA	NA	NA	NA	23
	Ethyl ether	NS		NA	NA	NA	NA	2.5
	Isopropyl Ether	NS		NA	NA	NA	NA	2.0
	Ethyl-Tert-Butyl-Ether	NS		NA	NA	NA	NA	2.0
	Tertiary-Amyl Methyl Ether	NS		NA	NA	NA	NA	2.0
	1,4-Dioxane	NS		NA	NA	NA	NA	250

Table 2 Comparison of Groundwater Results to MCP Method 1 Standards Former B & M Railroad Newburyport, Massachusetts

Analysis	Analyte	Method 1	Sample Location:	MW-1	MW-2	MW-4	MW-9	MW-10
		GW-3	Date sampled:	4/12/2006	4/12/2006	4/12/2006	4/12/2006	4/12/2006
EPH	C9 - C18 Aliphatics	20000		100 U				
(ug/L)	C19 - C36 Aliphatics	50000		100 U				
	C11 - C22 Aromatics	30000		100 U				
	Naphshalene	20000		10.0 U	10.0 U	10.0 U	10.0 U	J0.0 U
	2-Methylnaphthalene	3000		10.0 U				
	Acenaphthylene	3000		10.0 U				
	Acenaphthene	5000		10.0 U				
	Fluorene	3000		10.0 U				
1	Phenanthrene	50		10.0 U				
	Anthracene	3000		10.0 U				
	Fluoranthene	200		10.0 U				
	Pyrene	20		10.0 U				
	Benzo(a)anthracene	1000		10.0 U				
	Chrysene	3000		10.0 U				
	Benzo(b)fluoranthene	400		10.0 U				
	Benzo(k)fluoranthene	100		10.0 U				
	Benzo(a)pyrene	500		10.0 U	U 0.01	10.0 U	10.0 U	10.0 U
	Indeno(1,2,3-cd)Pyrene	100		10.0 U				
	Dibenzo(a,h)anthracene	40		10.0 U				
	Benzo(ghi)perylene	3000		10.0 U	10.0 U	10.0 U	10.0 U	. 10.0 U
Metals	Antimony, Total	8000		0.8	0.5 U	0.5 U	0.5 U	0.5 U
(ug/L)	Arsenic, Total	900		3.7	29.4	1.5	16.3	6.8
	Barium, Total	50000		77.3	56.8	18.2	39.5	840
	Beryllium, Total	50		0.5 U				
	Cadmium, Total	4		0.5 U	0.5 U	0.5 U	0.5 U	0.7
	Chromium, Total	300		1.9	0.5	0.9	14.2	3.4
	Lead, Total	10		1.2	0.5 U	0.5 U	6-1	2.0
	Nickel, Total	200		6.3	7.4 .	9.5	21_2	777.1
	Selenium, Total	100		6.0	1.0 U	2.0	1.0 U	1.0 U
	Silver, Total	7		0.5 U				
	Thallium, Total	3000		0.5 U				
	Vanadium, Total	4000		1.2	0.5 U	0.5 U	10.2	0.5 U
	Zinc, Total	900		138.6	52.4	5.0 U	20.9	35.5
Cyanide (T	otal) (ug/L)	30		NA	NA	NA	NA	167

Notes:

All units in og/L unless otherwise specified,

ng/L - micrograms per liter.

NS - No standard available for this compound.

(1) - Per the MCP VOC Analytics? Method requirements, the results for these compounds

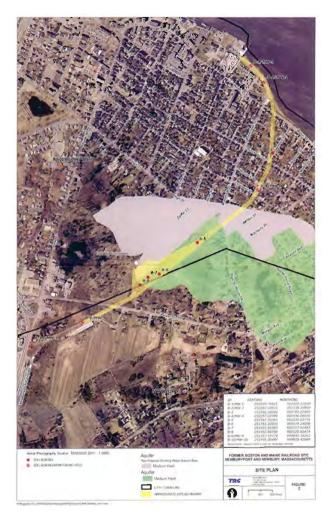
are compared to the MCP Method 1 GW-3 standard for C9-C10 aromatic hydrocarbons.

(2) - MCP Method 1 GW-3 standard for 1,3-Dichloropropene used.

U - Compound was not detected at specified quantitation timit.

NA - Sample not easilyzed for the listed analyte.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type equal or exceed MCP Method 1 GW-3 standard.


VOCs - Volatile Organic Compounds.

EPH - Extractable Petroleum Hydrocarbous.

MCP - Massachusetts Coalingency Plan. ,

FIGURES

APPENDIX A

BUREAU OF WASTE SITE CLEANUP TRANSMITTAL FORMS

, uhu

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup
RESPONSE ACTION OUTCOME (RAO) STATEMENT
Pursuant to 310 CMR 40.1000 (Subpart J) For sites with multiple RTNs, enter the Primary RTN above.
A. SITE LOCATION:
1. Site Name/Location Aid:Former Boston & Maine Railroad Line
2. Street Address:
3. City/Town: Newburyport 4. ZIP Code: 01950-0000 P C
a. Tier IA b. Tier IB c. Tier IC d. Tier II BC A. Tier II
a. Tier IA b. Tier IB c. Tier IC d. Tier II D H 6. If a Tier I Permit has been issued, provide Permit Number: D D H D D 6. If a Tier I Permit has been issued, provide Permit Number: D<
B. THIS FORM IS BEING USED TO: (check all that apply)
1 List Submittal Date of BAO Statement (if previously submitted):
X 2. Submit a Response Action Outcome (RAO) Statement
a. Check here if this RAO Statement covers additional Release Tracking Numbers (RTNs). RTNs that have been previously linked to a Tier Classified Primary RTN do not need to be listed here.
b. Provide additional Release Tracking Number(s)
3. Submit a Revised Response Action Outcome Statement
 a. Check here if this Revised RAO Statement covers additional Release Tracking Numbers (RTNs), not listed on the RAO Statement or previously submitted Revised RAO Statements. RTNs that have been previously linked to a Tier Classified Primary RTN do not need to be listed here.
b. Provide additional Release Tracking Number(s)
4. Submit a Response Action Outcome Partial (RAO-P) Statement
Check above box, if any Response Actions remain to be taken to address conditions associated with this disposal site having the Primary RTN listed in the header section of this transmittal form. This RAO Statement will record only an RAO-Partial Statement for that RTN. A final RAO Statement will need to be submitted that references all RAO-Partial Statements and, if applicable, covers any remaining conditions not covered by the RAO-Partial Statements.
Also, specify if you are an Eligible Person or Tenant pursuant to M.G.L. c. 21E s.2, and have no further obligation of the disposal site:
a. Eligible Person b. Eligible Tenant
5. Submit an optional Phase I Completion Statement supporting an RAO Statement DEC 0 4 2006
6. Submit a Periodic Review OpInion evaluating the status of a Temporary Solution for a Class C-1 RAO Statement, as specified in 310 CMR 40.1051 (Section F is optional)
7. Submit a Retraction of a previously submitted Response Action Outcome Statement (Sections E & F are not required)
(All sections of this transmittal form must be filled out unless otherwise noted above)

Massachusetts Department of Bureau of Waste Site Cleanup		BWSC104
RESPONSE ACTION OUTCO	ME (RAO) STATEMENT	Release Tracking Number
Pursuant to 310 CMR 40.1000 (Subpar	t J)	
C. DESCRIPTION OF RESPONSE ACTIONS: (check all the	at apply; for volumes, list cumulative a	amounts)
X 1. Assessment and/or Monitoring Only	2. Temporary Cover	-
3. Deployment of Absorbent or Containment Materials	_	
5. Structure Venting System	6. Engineered Barri	
7. Product or NAPL Recovery	8. Fencing and Sigr	-
 9. Groundwater Treatment Systems 11. Bioremediation 	12. Air Sparging	
13. Monitored Natural Attenuation	14. In-situ Chemical	Oxidation
15. Removal of Contaminated Soils	Estimated volume in outlie verde	
a. Re-use, Recycling or Treatment i. On Site	Estimated volume in cubic yards	<u> </u>
, ii. Off Site	Estimated volume in cubic yards	
iia. Facility Name:	Town:	State:
iib. Facility Name:	Town:	State:
iii. Describe:		· · · · · · · · · · · · · · · · · · ·
b. Landfill	*	· · ·
i. Cover Estimated volume in cubic yards		1
Facility Name:	Town:	State:
ii. Disposal Estimated volume in cubic yards		
Facility Name:	Town:	State:
16. Removal of Drums, Tanks or Containers:		
a. Describe Quantity and Amount:		
· · · · · · · · · · · · · · · · · · ·		
b. Facility Name:	Town:	State:
c. Facility Name:	Town :	State:
17. Removal of Other Contaminated Media:		
a. Specify Type and Volume:		
b. Facility Name:	Town:	State:
c. Facility Name:	Town:	State:

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup BWSC104	
RESPONSE ACTION OUTCOME (RAO) STATEMENT	nber
Pursuant to 310 CMR 40.1000 (Subpart J)	
C. DESCRIPTION OF RESPONSE ACTIONS (cont.): (check all that apply; for volumes, list cumulative amounts)	
18. Other Response Actions:	
Describe:	
19. Use of Innovative Technologies:	
Describe:	
D. SITE USE:	
1. Are the response actions that are the subject of this submittal associated with the redevelopment, reuse or the major expansion of the current use of property(ies) impacted by the presence of oil and/or hazardous materials?	
a. Yes X b. No C. Don't know	i
2. Is the property a vacant or under-utilized commercial or industrial property ("a brownfield property")?	
X a. Yes b. No c. Don't know	
3. Will funds from a state or federal brownfield incentive program be used on one or more of the property(ies) within the disp site?	osal '
X a. Yes b. No c. Don't know If Yes, identify program(s):	
4. Has a Covenant Not to Sue been obtained or sought?	
a. Yes b. No X c. Don't know	
5. Check all applicable categories that apply to the person making this submittal:	ority
b. Community Development Corporation C. Economic Development and Industrial Corporation	
d. Private Developer e. Fiduciary f. Secured Lender X g. Municipality	
h. Potential Buyer (non-owner)	
This data will be used by MassDEP for information purposes only, and does not represent or create any legal commitme obligation or liability on the part of the party or person providing this data to MassDEP.	ent,
E. RESPONSE ACTION OUTCOME CLASS:	
Specify the Class of Response Action Outcome that applies to the disposal site, or site of the Threat of Release. Select ONLY one Class.	
1. Class A-1 RAO: Specify one of the following:	
a. Contamination has been reduced to background levels. b. A Threat of Release has been eliminated.	
2. Class A-2 RAO: You MUST provide justification that reducing contamination to or approaching background levels is infeasible.	
3. Class A-3 RAO: You MUST provide an implemented Activity and Use Limitation (AUL) and justification that reducing contamination to or approaching background levels is infeasible.	
 4. Class A-4 RAO: You MUST provide an implemented AUL, justification that reducing contamination to or approaching background levels is infeasible, and justification that reducing contamination to less than Upper Concentration Limits (UCLs) 15 feet below ground surface or below an Engineered Barrier is infeasible. If the Permanent Solution relies upon Engineered Barrier, you must provide or have previously provided a Phase III Remedial Action Plan that justifies the select of the Engineered Barrier. 	nan

Massachusetts Department of Environmental Protection BWSC104 Bureau of Waste Site Cleanup BWSC104			
RESPONSE ACTION OUTCOME (RAO) STATEMENT Release Tracking Number [3] [26210]			
Pursuant to 310 CMR 40.1000 (Subpart J)			
E. RESPONSE ACTION OUTCOME CLASS (cont.):			
5. Class B-1 RAO: Specify one of the following:			
a. Contamination is consistent with background levels b. Contamination is NOT consistent with background levels.			
6. Class B-2 RAO: You MUST provide an implemented AUL.			
7. Class B-3 RAO: You MUST provide an implemented AUL and justification that reducing contamination to less than Upper Concentration Limits (UCLs) 15 feet below ground surface is infeasible.			
8. Class C-1 RAO: You must submit a plan as specified at 310 CMR 40.0861(2)(h). Indicate type of ongoing response actions.			
a. Active Remedial System b. Active Remedial Monitoring Program c. None			
d. Other Specify:			
9. Class C-2 RAO: You must hold a valid Tier I Permit or Tier II Classification to continue response actions toward a Permanent Solution.			
F. RESPONSE ACTION OUTCOME INFORMATION:			
1. Specify the Risk Characterization Method(s) used to achieve the RAO described above:			
X a. Method 1 b. Method 2 c. Method 3			
d. Method Not Applicable-Contamination reduced to or consistent with background, or Threat of Release abated			
2. Specify all Soil Category(ies) applicable. More than one Soil Category may apply at a Site. Be sure to check off all APPLICABLE categories:			
a. S-1/GW-1 X d. S-2/GW-1 g. S-3/GW-1			
b. S-1/GW-2 e. S-2/GW-2 h. S-3/GW-2			
□ c. S-1/GW-3			
3. Specify all Groundwater Category(ies) impacted. A site may impact more than one Groundwater Category. Be sure to check off all IMPACTED categories:			
a. GW-1 b. GW-2 c. GW-3 X d. No Groundwater Impacted			
4. Specify remediation conducted:			
a. Check here if soil remediation was conducted.			
b. Check here if groundwater remediation was conducted.			
5. Specify whether the analytical data used to support the Response Action Outcome was generated pursuant to the Department's Compendium of Analytical Methods (CAM) and 310 CMR 40.1056:			
X a. CAM used to support all analytical data.			
c. CAM not used.			
6. Check here to certify that the Class A, B or C Response Action Outcome includes a Data Usability Assessment and Data Representativeness Evaluation pursuant to 310 CMR 40.1056.			
7. Estimate the number of acres this RAO Statement applies to: <u>17.5</u>			

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC104

RESPONSE ACTION OUTCOME (RAO) STATEMENT

Release	Tracking Number
3	26210

Pursuant to 310 CMR 40.1000 (Subpart J)

G. LSP SIGNATURE AND STAMP:

5240

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form. including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

> if Section B indicates that either an RAO Statement, Phase I Completion Statement and/or Periodic Review Opinion is being provided, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP #:	•
2. First Name: Mark	3. Last Name: <u>Casey</u>
4. Telephone: <u>978-656-3609</u> 5. Ext.:	6. FAX: <u>978-453-1995</u>
7. Signature:	
8. Date: 12-1-2006 mm/dd/yyyy	9. LSP Stamp:
	D. CASEY No. 5319 No. 5319
H. PERSON MAKING SUBMITTAL:	
1. Check all that apply: 🔲 a. change in contact name	b. change of address C. change in the person undertaking response actions
2. Name of Organization:City of Newburyport	
3. Contact First Name: Geordie	4. Last Name:
5. Street: 60 Pleasant Street	6. Title: Senior Project Manager
7. City/Town:	
10. Telephone:978-465-4400 11. Ext.:	12. FAX: 978-465-4452

	_
Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup BWSC104	
RESPONSE ACTION OUTCOME (RAO) STATEMENT	r
Pursuant to 310 CMR 40.1000 (Subpart J)	
1. RELATIONSHIP TO RELEASE OR THREAT OF RELEASE OF PERSON MAKING SUBMITTAL:	
X 1. RP or PRP X a. Owner b. Operator c. Generator d. Transporter	
e. Other RP or PRP Specify:	
2. Fiduciary, Secured Lender or Municipality with Exempt Status (as defined by M.G.L. c. 21E, s. 2)	
3. Agency or Public Utility on a Right of Way (as defined by M.G.L. c. 21E, s. 5(j))	
4. Any Other Person Making Submittal Specify Relationship:	
	_
J. REQUIRED ATTACHMENT AND SUBMITTALS:	
 Check here if the Response Action(s) on which this opinion is based, if any, are (were) subject to any order(s), permit(s) and/or approval(s) issued by DEP or EPA. If the box is checked, you MUST attach a statement identifying the applicable provisions thereof.)
2. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the submittal of an RAO Statement that relies on the public way/rail right-of-way exemption from the requirements of an AUL.	
3. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the submittal of a RAO Statement with instructions on how to obtain a full copy of the report.	à :
 4. Check here to certify that documentation is attached specifying the location of the Site, or the location and boundaries of the Disposal Site subject to this RAO Statement. If submitting an RAO Statement for a PORTION of a Disposal Site, you must document the location and boundaries for both the portion subject to this submittal and, to the extent defined, the entire Disposal Site. 	9
 5. Check here to certify that, pursuant to 310 CMR 40.1406, notice was provided to the owner(s) of each property within the disposal site boundaries, or notice was not required because the disposal site boundaries are limited to property owned by the party conducting response actions. (check all that apply) 	,
a. Notice was provided prior to, or concurrent with the submittal of a Phase II Completion Statement to the Department.	1
b. Notice was provided prior to, or concurrent with the submittal of this RAO Statement to the Department.	
X c. Notice not required. d. Total number of property owners notified, if applicable:	
6. Check here if required to submit one or more AULs. You must submit an AUL Transmittal Form (BWSC113) and a copy of each implemented AUL related to this RAO Statement. Specify the type of AUL(s) below: (required for Class A-3, A-4, B-2, B-3 RAO Statements)	
a. Notice of Activity and Use Limitation b. Number of Notices submitted:	
c. Grant of Environmental Restriction d. Number of Grants submitted:	
7. If an RAO Compliance Fee is required for any of the RTNs listed on this transmittal form, check here to certify that an RAO Compliance Fee was submitted to DEP, P. O. Box 4062, Boston, MA 02211.	
8. Check here if any non-updatable information provided on this form is incorrect, e.g. Site Address/Location Aid. Send corrections to the DEP Regional Office.	
9. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.	

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC104

Release Tracking Number

-	26210
---	-------

3

Pursuant to 310 CMR 40.1000 (Subpart J)

K. CERTIFICATION OF PERSON MAKING SUBMITTAL:

1. I, <u>Geordie Vining</u>, attest under the pains and penalties of perjury (i) that I have personally examined and am familiar with the information contained in this submittal, including any and all documents accompanying this transmittal form, (ii) that, based on my inquiry of those individuals immediately responsible for obtaining the information, the material information contained in this submittal is, to the best of my knowledge and belief, true, accurate and complete, and (iii) that I am fully authorized to make this attestation on behalf of the entity legally responsible for this submittal. I/the person or entity on whose behalf this submittal is made am/is aware that there are significant penalties, including, but not limited to, possible fines and imprisogment, for willfully submitting false, inaccurate, or incomplete information.

2. By:	3. Title: Senior Project Manager
4. For: City of Newburyport (Name of person or entity recorded in Section H	5. Date: 11/28/2006 mm/dd/yyyy
6. Check here if the address of the person providing certifi	cation is different from address recorded in Section H.
7. Street:	
1. Telephone: 12. Ext	13. FAX
BILLABLE YEAR FOR THIS DISPOSAL SITE SECTIONS OF THIS FORM OR DEP MAY RE	LIANCE ASSURANCE FEE OF UP TO \$10,000 PER YOU MUST LEGIBLY COMPLETE ALL RELEVANT TURN THE DOCUMENT AS INCOMPLETE. IF YOU PENALIZED FOR MISSING A REQUIRED DEADLINE.
Date Stamp (DEP USE ONLY:)	
RECEIVED	
DEC - 4 2006	
DEP NORTHEAST REGIONAL OFFICE	

APPENDIX B

COPIES OF PUBLIC NOTIFICATION LETTERS

December 4, 2006

Mr. John Morris Director of Public Health 60 Pleasant Street Newburyport, Massachusetts 01950

Re: Response Action Outcome Statement (RAO) Submittal Former B&M Rail Line Newburyport, Massachusetts RTN 3-26210

Dear Mr. Morris:

TRC Environmental Corporation (TRC), on behalf of the City of Newburyport (the "City"), is notifying your office of a submittal of a Class B-1 Response Action Outcome (RAO) Statement prepared for the Former B&M Rail Line in Newbury and Newburyport, Massachusetts (the "Site"). A figure showing the location of the Site is enclosed. This notification is being made in fulfillment of the public notice requirements of the Massachusetts Contingency Plan ("MCP"), 310 CMR 40.1403(3)(f). A Class B-1 RAO Statement indicates that no remedial actions have been conducted because a level of No Significant Risk exists.

A copy of the RAO has been submitted to Mr. Geordie Vining of the City's Office of Planning and Development. The original report was submitted and can be viewed by the public at the Massachusetts Department of Environmental Protection (MADEP) Northeast Regional Office file review office located at 205B Lowell Street in Wilmington, Massachusetts. The public may review the MADEP Northeast Region's files Tuesday through Thursday from 9:00am to 12:00pm (except state holidays). To set up an appointment for a file review, call 978-694-3320.

If you have any questions, please contact Mr. Geordie Vining of the City of Newburyport Office of Planning and Development, at (978) 465-4400.

Sincerely,

TRC ENVIRONMENTAL CORPORATION


Caland

Frank Calandra Project Manager

Enclosure

cc: Bureau of Waste Site Cleanup, DEP Northeast Regional Office

116 John Street, Boott Mills South • Lowell, Massachusetts 01852 Main: 978-970-5600 • Fax: 978-453-1995 www.trcsolutions.com

December 4, 2006

Mr. John F. Moak, Mayor Newburyport City Hall 60 Pleasant Street Newburyport, Massachusetts 01950

Re: Response Action Outcome Statement (RAO) Submittal Former B&M Rail Line Newburyport, Massachusetts RTN 3-26210

Dear Mayor Moak:

TRC Environmental Corporation (TRC), on behalf of the City of Newburyport (the "City"), is notifying your office of a submittal of a Class B-1 Response Action Outcome (RAO) Statement prepared for the Former B&M Rail Line in Newbury and Newburyport, Massachusetts (the "Site"). A figure showing the location of the Site is enclosed. This notification is being made in fulfillment of the public notice requirements of the Massachusetts Contingency Plan ("MCP"), 310 CMR 40.1403(3)(f). A Class B-1 RAO Statement indicates that no remedial actions have been conducted because a level of No Significant Risk exists.

A copy of the RAO has been submitted to Mr. Geordie Vining of the City's Office of Planning and Development. The original report was submitted and can be viewed by the public at the Massachusetts Department of Environmental Protection (MADEP) Northeast Regional Office file review office located at 205B Lowell Street in Wilmington, Massachusetts. The public may review the MADEP Northeast Region's files Tuesday through Thursday from 9:00am to 12:00pm (except state holidays). To set up an appointment for a file review, call 978-694-3320.

If you have any questions, please contact Mr. Geordie Vining of the City of Newburyport Office of Planning and Development, at (978) 465-4400.

Sincerely,

TRC ENVIRONMENTAL CORPORATION

"ulal

Frank Calandra Project Manager

Enclosure

cc: Bureau of Waste Site Cleanup, DEP Northeast Regional Office

æ

R/Projects/GIS_2005/42030 newto.ryport@U20/Figure2-BM-Staflap_nev2.mad

APPENDIX C

MAY 2006 SITE INVESTIGATION SUMMARY REPORT, FORMER BOSTON & MAINE RAILROAD LINE

SITE INVESTIGATION SUMMARY REPORT

FORMER BOSTON & MAINE RAILROAD LINE

Prepared for: Merrimack Valley Planning Commission 160 Main Street Haverhill, Massachusetts 01830

and

City of Newburyport, Office of Planning and Development Newburyport City Hall 60 Pleasant Street Newburyport, Massachusetts 01950

Prepared by: TRC Environmental Corporation 116 John Street Boott Mills South Lowell, Massachusetts 01852

TRC Project Number: 42039-0010-00009/52037-0010-00000

May 2006

L2006-222

TABLE OF CONTENTS

1.0	INTRODUCTION1-1
-	Objective 1-1 Background 1-1 .2.1 Potential Soil and Groundwater Contamination from Former Railroad Use 1-1 .2.2 Potential Soil and Groundwater Contamination from Reported Releases at Nearby Properties 1-2
2.0	SITE INVESTIGATION2-1
2.1 2.2 2.3 2.4	Visual Site Inspection2-1Soil Boring and Monitoring Well Installation2-1Soil Sampling2-1Groundwater Sampling2-2
3.0	RESULTS OF INVESTIGATION
3	Hydrogeological Characteristics3-1Results of Soil and Groundwater Testing3-1.2.1North of Water Street.2.2Residential Area between Water Street and High Street.2.3Area between High Street and Parker Street.2.4Area between Parker Street and Route 1
4.0	DISCUSSION OF FINDINGS
4.1 4.2	Lead, PAHs, and Arsenic above Reportable Concentrations
5.0	CONCLUSIONS AND RECOMMENDATIONS
6.0	REFERENCES

TABLES

Table 1:	Site Investigation Objectives Former B&M Railroad Line
Table 2:	Summary of Analytical Results for Soil Samples
Table 3:	Summary of Analytical Results for Groundwater Samples
Table 4:	Comparison of Soil Results to MCP Method 1 Standards
Table 5:	Comparison of Groundwater Results to MCP Method 1 Standards

FIGURES

Figure	1:	Site L	ocation	Map
·				

Figure 2: Site Plan

APPENDICES

Appendix A:	Site Photos
Appendix B:	Soil Boring Logs and Monitoring Well Construction Diagrams
Appendix C:	Soil and Groundwater Analytical Laboratory Reports

1.0 INTRODUCTION

TRC Environmental Corporation (TRC) prepared this Site Investigation Summary Report for the former Boston & Maine (B&M) Railroad Line in Newbury and Newburyport, Massachusetts (the "Site"). A Site location map is shown in Figure 1. This Site investigation was performed on behalf of the City of Newburyport and the Merrimack Valley Planning Commission (MVPC), as part of the MVPC's Brownfields Program funded by a grant from the United States Environmental Protection Agency (EPA).

This Site investigation was conducted in accordance with the scope of work set forth in the EPAapproved Quality Assurance Project Plan (QAPP) Addendum C dated March 2006 (TRC, 2006).

1.1 Objective

The purpose of this Site investigation was to conduct field investigations to evaluate Recognized Environmental Conditions (RECs) identified in the Phase I Environmental Site Assessment (ESA) (TRC, 2005) for the Site. The Phase I Environmental Site Assessment identified the following two RECs:

- 1. Potential soil and groundwater contamination from former railroad use, and
- 2. Potential soil and groundwater contamination from reported releases at nearby properties.

A summary of the Site investigation objectives and actions performed to address the above RECs is presented in Table 1.

1.2 Background

The Site is an approximate 1.3-mile inactive rail corridor which extends from Route 1 in Newbury to the waterfront area in Newburyport. The Site was used historically as a railroad corridor until its abandonment in 1972. It is our understanding that the City of Newburyport plans to purchase this land and develop it as a rail trail for recreational use.

1.2.1 Potential Soil and Groundwater Contamination from Former Railroad Use

Environmental impacts typically associated with historic railroad operations include soil and groundwater contamination from releases stemming from the presence of coal, creosote, heavy metals, pesticides, and petroleum. The DEP's *Best Management Practices for Controlling Exposure to Soil during the Development of Rail Trails* guidance document states:

"Some historic railroad operations involved the use of chemicals that may have resulted in presence today of contamination. The most commonly reported contamination along rail lines includes metals, pesticides, (such as lead arsenate), and constituents of oil or fuel (petroleum products). These chemicals have been associated with normal railroad operations and are likely to be found anywhere along the line. For example, it would not be uncommon to find arsenic (up to ten times natural background levels) present in the soil along a right-of-way from old railroad ties dipped in an arsenic solution, arsenic weed-control sprays, and arsenic-laced slag used as railroad bed fill. Lubricating oil and diesel that dripped from the trains are likely sources of the petroleum product found along the lines. Other sources of contaminants associated with historic railroad operation may include coal ash from engines, creosote from ties, and polynuclear aromatic hydrocarbons ("PAHs") from the diesel exhaust."

1.2.2 Potential Soil and Groundwater Contamination from Reported Releases at Nearby Properties

The Phase I ESA identified four nearby releases that could potentially impact the Site.

- 157 Water Street, Newburyport Potential lead and petroleum contamination in soil and groundwater from oil and hazardous material releases.
- 115 Water Street, Newburyport Potential soil and groundwater contamination from releases of oil, waste oil and gasoline.
- 12 Parker Street, Newburyport Potential soil and groundwater contamination from petroleum releases.
- 44 High Street, Newburyport Potential soil and groundwater contamination from releases of diesel fuel and oil.

In addition to the above sites, TRC evaluated potential impacts to soil and groundwater from the Circle Finishing site located adjacent to the southern terminus of the former rail line at Route 1.

2.0 SITE INVESTIGATION

2.1 Visual Site Inspection

On April 19, 2006, TRC conducted a visual inspection of former railroad line from the northernmost point near the American Yacht Club to the southern terminus at Route 1. The visual inspection is documented by photographs which are included in Appendix A. Narrow portions of the former rail line between Harrison Street and Water Street were obstructed by trees and brush that prevented access (Photo 3).

The northern portion of the former rail line along the abutting 157 Water Street property was inspected, and no apparent impacts from historic releases at 157 Water Street were identified (Photos 1 and 2). TRC also conducted visual inspection of southern terminus of the Site abutting Circle Finishing site (Photos 10, 11, and 12). TRC observed several piles of soil and debris present on the Circle Finishing site. In addition, an existing monitoring well, likely installed to assess groundwater impacts from the Circle Finishing site, was identified.

2.2 Soil Boring and Monitoring Well Installation

Under the supervision of TRC, Geosearch, Inc. of Fitchburg, Massachusetts advanced ten soil borings (B-1 through B-10) along the length of the Site using a direct push GeoProbe[™] drill rig. Five of the soil borings (B-1, B-2, B-4, B-9, and B-10) were converted to groundwater monitoring wells. Soil boring and monitoring well locations are shown in Figure 2.

The monitoring wells are constructed of 2-inch diameter flush threaded 0.010-inch slot Schedule 40 PVC well screen, solid PVC riser, and a well cap. Graded washed sand was used to fill the annulus around the well screen to one foot above the top of the well screen. A minimum of a 1-foot bentonite seal was placed above the sand. Monitoring wells are finished with protective flush-mounted road-boxes. Boring logs and monitoring well construction diagrams are included in Appendix B.

Locations of soil borings and monitoring wells were recorded with a Trimble GeoExplorer CE Series (GeoXT) global positioning system (GPS) device. Accuracy of the GPS device is within one meter. Northing and Easting coordinates, referenced in NAD83 State Plane coordinates, are presented in Figure 2.

2.3 Soil Sampling

Prior to sample collection, soil samples were screened in the field with a photoionization detector during boring installation for the presence of volatile compounds using a jar headspace technique. Screening results are indicated on the boring logs in Appendix B.

At each boring location (B-1 through B-10), soil samples were collected from approximately 0 to 3 feet and analyzed for extractable petroleum hydrocarbons (EPH), Massachusetts Contingency Plan (MCP) metals, and pesticides. Soil samples were also collected from approximately 3 to 10 feet at locations B-1, B-2, B-4, B-5, and B-9 and analyzed for EPH. Soil samples collected at

2-1

boring B-5 were also analyzed for polychlorinated biphenyls (PCBs) based on the proximate location of a former electric substation structure.

2.4 Groundwater Sampling

TRC conducted one round of groundwater sampling from the five newly-installed monitoring wells MW-1, MW-2, MW-4, MW-9, and MW-10 to evaluate RECs related to groundwater quality. Groundwater samples were analyzed for EPH and MCP Metals. Additionally, the groundwater sample collected from MW-10 was sampled for volatile organic compounds (VOCs) and cyanide based on the presence of a former metals plating facility to the north of the Site.

3.0 **RESULTS OF INVESTIGATION**

3.1 Hydrogeological Characteristics

In general, surface and shallow subsurface soils consist of medium to coarse sand throughout the Site. In residential areas where portions of the Site have been seeded with grass and maintained, a layer of topsoil is present. Silts and clays were identified in several borings at and below 5 feet.

Given the proximity of Merrimack River and the Atlantic Ocean, groundwater flow direction is likely tidally influenced. Based on topography, groundwater flow across northerly portions of the former rail line is expected to be in a northerly direction towards the Merrimack River (TRC, 2005). Between Parker Street and High Street, Site groundwater is expected to flow southeasterly from the hill where the water tower is located. At the southern portion of the Site, groundwater flow was measured at the abutting Circle Finishing site and is estimated to flow in a southeasterly direction (LFR, 2003).

No Current Drinking Water Sources were identified within the former rail line. However, the Massachusetts Geographical Information System (GIS) identifies a medium yield aquifer located beneath the portion of the former rail line between High Street and Parker Street. In a separate effort unrelated to this assessment, the City of Newburyport is investigating the feasibility of installing public drinking water supply wells within this aquifer. No monitoring wells were installed within the aquifer footprint during this investigation because the Phase I ESA did not identify any potential impacts to groundwater in this area.

3.2 Results of Soil and Groundwater Testing

For the purpose of this evaluation, the Site is divided into four representative portions based on geographical and functional features. Soil and groundwater analytical results for each portion of the Site are discussed separately in the following subsections. Copies of the analytical laboratory reports and a data usability assessment prepared by TRC are included in Appendix C.

A summary of soil analytical results is presented in Table 2. The Massachusetts Contingency Plan (MCP) requires that reporting category RCS-1 be applied to soil samples obtained at or within 500 feet of a residential dwelling, residentially-zoned property, school, playground, recreational area or park. All soil boring locations except B-10 are located within 500 feet of residentially-zoned properties. Accordingly, soil analytical results for soil borings B-1 through B-9 are compared to MCP RCS-1 criteria, and soil analytical results for soil borings B-10 are compared to MCP RCS-2 criteria.

A summary of groundwater analytical results is presented in Table 3. Groundwater analytical results are compared to MCP reporting category RCGW-2 as the monitoring wells are not located within in a Current Drinking Water Source Area or within a Potential Drinking Water Source Area. No monitoring wells were installed within the aquifer footprint during this investigation because the Phase I ESA did not identify any potential impacts to groundwater in this area.

3.2.1 North of Water Street

Two soil borings/monitoring wells, B-1/MW-1 and B-2/MW-2, were advanced in the area north of Water Street.

- EPH in Soil: Aliphatic and aromatic fractions and several target polycyclic aromatic hydrocarbons (PAHs) were detected in soil samples. Several PAHs, benzo(a)anthracene, chrysene, benzo(a)pyrene, and dibenzo(a,h)anthracene, were detected in B-2 (0-3') at concentrations exceeding applicable RCS-1 reporting criteria.
- Pesticides in Soil: Pesticides were not detected at either B-1 or B-2.
- Metals in Soil: Several metals were detected in soil samples from locations B-1 and B-2. Lead was detected in sample B-2 (0-3') at a concentration of 430 milligrams per kilogram (mg/kg) (and 320 mg/kg in a duplicate sample) which exceeds the MCP RCS-1 criterion of 300 mg/kg.
- **Groundwater:** Several metals were detected in groundwater samples from monitoring wells MW-1 and MW-2, but concentrations were below applicable MCP RCGW-2 criteria. EPH was not detected in either MW-1 or MW-2.

3.2.2 Residential Area between Water Street and High Street

Two soil borings, B-3 and B-4, were advanced in the vicinity of the residential developments between Water Street and High Street.

- EPH in Soil: Aliphatic and aromatic fractions and several target PAHs were detected in soil sample B-3 (0-3'). None were detected above applicable MCP RCS-1 reporting criteria.
- **Pesticides in Soil:** The pesticides 4,4'-DDE and 4,4'-DDT were detected in soil sample B-3 (0-3') at concentrations well below their applicable MCP RCS-1 reporting criteria.
- Metals in Soil: Several metals were detected in soil samples from locations B-3 and B-4. Arsenic was detected in sample B-3 (0-3') at a concentration of 23 mg/kg which slightly exceeds the MCP RCS-1 reporting criterion of 20 mg/kg.
- **Groundwater:** Several metals were detected in the groundwater sample from monitoring well MW-4, but concentrations were below applicable MCP RCGW-2 criteria. EPH was not detected in MW-4.

3.2.3 Area between High Street and Parker Street

Four soil borings, B-5 through B-8, were advanced in the area between High Street and Parker Street.

- EPH in Soil: EPH was not detected in any of the samples from locations B-5 through B-8.
- **Pesticides in Soil:** Pesticides were not detected in any of the samples from locations B-5 through B-8.

- Metals in Soil: Several metals were detected in each of the soil samples. Arsenic was detected in sample B-5 (0-3') at a concentration of 21 mg/kg which slightly exceeds the MCP RCS-1 reporting criterion of 20 mg/kg.
- **PCBs in Soil:** PCBs were not detected in soil sample B-5 (0-3') which was collected in the area of the former electric substation.
- **Groundwater:** No groundwater testing was conducted in this area because the Phase I Environmental Site Assessment (TRC, 2005) did not identify any potential sources of groundwater contamination in this area.

3.2.4 Area between Parker Street and Route 1

Two soil borings/monitoring wells, B-9/MW-9 and B-10/MW-10, were advanced in the area between Parker Street and Route 1.

- EPH in Soil: Aliphatic and aromatic fractions and several target PAHs were detected in soil sample B-10 (0-3'). Chrysene and benzo(a)pyrene were detected in B-10 (0-3') at concentrations exceeding applicable MCP RCS-2 reporting criteria. EPH was not detected in samples from boring B-9.
- **Pesticides in Soil:** Pesticides were not detected at either B-9 or B-10.
- Metals in Soil: Several metals were detected in soil samples from locations B-9 and B-10. Arsenic was detected in sample B-9 (0-3') at a concentration of 27 mg/kg which exceeds the MCP RCS-1 criterion of 20 mg/kg.
- Groundwater: Several metals were detected in groundwater samples from monitoring wells MW-9 and MW-10. Nickel was detected in monitoring well MW-10 at a concentration of 777.1 micrograms per liter (μg/L), which exceeds the MCP RCGW-2 criterion of 200 μg/L. Several VOCs including trichloroethene (TCE), tetrachloroethene (PCE), vinyl chloride, and benzene were detected in monitoring well MW-10. Vinyl chloride was detected in monitoring well MW-10 at a concentration of 7.8 μg/L, which exceeds the MCP RCGW-2 criterion of 2 μg/L. In addition, cyanide was detected in monitoring well MW-10 at a concentration of 167 μg/L, which exceeds the MCP RCGW-2 criterion of 30 μg/L. EPH was not detected in either MW-9 or MW-10.

3-3

4.0 DISCUSSION OF FINDINGS

Considering the results described in Section 3, TRC has identified two potential issues which are discussed below.

4.1 Lead, PAHs, and Arsenic above Reportable Concentrations

Concentrations of lead and several PAH compounds, including benzo(a)anthracene, chrysene, benzo(a)pyrene, and dibenzo(a,h)anthracene, were detected above applicable RCS-1 reportable concentrations in soil between 0 and 3 feet at boring B-2. In addition, arsenic was detected consistently throughout the former rail line in concentrations ranging from 9.1 to 27 mg/kg. Concentrations of arsenic at B-3 (23 mg/kg), B-5 (21 mg/kg), and B-9 (27 mg/kg) were slightly above the RCS-1 reportable concentration of 20 mg/kg. These detected concentrations are likely attributed to either (i) background soil conditions, or (ii) residuals from historic railroad operations such as railroad ties dipped in arsenic solution or arsenic weed control sprays.

These exceedances of MCP RCS-1 reporting criteria represent a release that requires notification by the Site owner to DEP within 120 days of obtaining knowledge per the MCP 310 CMR 40.0315(1). If the City purchases the Site, the City, as the new Site owner, would be required to fulfill the notification obligation within 120 days after the purchase.

Potential costs associated with reporting the release to DEP and conducting response actions is estimated to be on the order of \$5,000 to \$10,000. The likely outcome would be a Class B Response Action Outcome supported by a Method 1 risk assessment. TRC expects that the detected soil and groundwater contaminant concentrations do not pose a Significant Risk as potential exposure point concentrations are less than MCP Method 1 soil cleanup standards. TRC calculated average soil concentrations for the purpose of estimating potential exposure point concentrations, which conservatively include data from boring B-10, meet MCP Method 1 S-1/GW-3 soil standards. Also, groundwater samples from MW-1, MW-2, MW-4, and MW-9 are below applicable MCP Method 1 GW-3 standards. Groundwater analytical data are compared to MCP Method 1 GW-3 standards in Table 5.

4.2 Impacts from Circle Finishing Site

The location of soil boring/monitoring well B-10/MW-10 was selected primarily to evaluate potential impacts to soil and groundwater from the adjacent Circle Finishing site. The Circle Finishing property, located on the edge of the Route 1 traffic circle, was previously home to many businesses including a gas station and an automobile repair shop. In December 1993, a fire destroyed the Circle Finishing building and various metal plating solutions containing chromium, nickel, copper, zinc, and cyanide were released.

In a soil sample from boring B-10, concentrations of two PAHs, chrysene and benzo(a)pyrene, were detected above applicable RCS-2 reportable concentrations in soil sample B-10 (0-3'). Likely sources of these elevated PAHs include runoff from Route 1 asphalt pavement and ash deposition from the fire that destroyed the adjacent Circle Finishing site. In groundwater, vinyl

4-1

chloride, nickel, and cyanide were detected at concentrations exceeding applicable MCP RCGW-2 reporting criteria. These compounds are consistent with the chemicals released at the Circle Finishing site.

TRC reviewed the Circle Finishing site Phase II Addendum dated November 18, 2003 (LFR, 2003) to evaluate whether the southern portion of the site is part of the Circle Finishing disposal site. Although a disposal site boundary was not defined in the site plan, monitoring wells were installed on the former rail line, indicating that it is part of the disposal site. Because the portion of the former rail line adjacent to the Circle Finishing site appears to be included in the disposal site boundary, exceedances of reportable concentrations do not require notification to DEP under MCP 310 CMR 40.0317(16)(a), which states notification is not required for releases at a disposal site where a response action is being undertaken in compliance with the provisions of the MCP.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on Site observations and data collected for the Site during this investigation, TRC's conclusions and recommendations are as follows:

• Detections of lead, arsenic, and PAHs in soil above applicable MCP RCS-1 reportable concentrations require notification to the DEP by the current Site owner within 120 day of obtaining knowledge of the release. If the City purchases the Site, they would be required to notify the DEP of the release within 120 days of the date of purchase. Pursuant to 310 CMR 40.0017(6) and 310 CMR 40.1403(10), the City should notify the current property owner of the results of this investigation. Such notification should be made by Friday, April 28, 2006.

- Detections of vinyl chloride, nickel, and cyanide exceeding applicable RCGW-2 reportable concentrations in groundwater in MW-10 do not appear to require notification to DEP because detected contamination is related to the Circle Finishing disposal site where MCP response actions are presently being undertaken. TRC recommends using the best management practice guidance when planning the future rail trail and designing the trail to discourage potential off-path activities on the portion of trail adjacent to Circle Finishing Site to minimize exposure to detected Site contaminants. TRC also recommends that the City evaluate the status of current and planned MCP Response Actions at the Circle Finishing site for the purpose of coordinating design and construction of the future rail trail with any remediation being performed.
- Although limited groundwater testing was performed to evaluate potential impacts from nearby releases, TRC did not evaluate groundwater for potential as a drinking water supply. It is important to note, however, that several VOCs, including TCE, PCE, vinyl chloride, and benzene, were detected in shallow groundwater in monitoring well MW-10 located within one half mile of the aquifer identified by MassGIS.

5-1

6.0 **REFERENCES**

LFR, 2003. Phase II Addendum – Response to Phase II Comments by DEP, Circle Finishing, Inc., US Route 1/Traffic Circle, Newburyport, Massachusetts, Levine-Fricke, November 18, 2003.

Massachusetts DEP. Best Management Practices for Controlling Exposure to Soil During the Development of Rail Trails, Massachusetts Department of Environmental Protection (DEP), undated.

Massachusetts DEP, 2006. The Massachusetts Contingency Plan, 310 CMR 40.000, Massachusetts DEP, Effective 4/3/2006.

TRC, 2006. Quality Assurance Project Plan, Addendum C, Former Boston & Maine Railroad Line, Newbury and Newburyport, Massachusetts, March 2006.

TRC, 2005. Phase I Environmental Site Assessment, Former Boston & Maine Railroad Line, Newbury and Newburyport, Massachusetts, December 2005.

TABLES

.

Table 1
Site Investigation Objectives
Former B&M Railroad Line
Newbury and Newburyport, Massachusetts

Area of Concern	Issue	Action				
REC No. 1						
Entire 1.3-Mile Corridor	Soil contamination from historical use as railroad	Conducted visual inspection of entire railro line and sampled soil and groundwater at 10 locations along length of line.				
Electric Substation	PCB and oil contamination near former electric substation	Sampled soil at boring B-5 for PCBs and petroleum in vicinity of substation.				
REC No. 2						
Newburyport Wastewater Treatment Plant,157 Water Street (RTN 3-24483) Former C&D Oil Company, 115 Water Street	Potential lead and petroleum contamination in soil and groundwater from recent release. Potential groundwater contamination from historic releases of oil.	Conducted visual inspection of Site abutting 157 Water Street, sampled surface soil, subsurface soil, and groundwater at locations B-1/MW-1 and B-2/MW-2. Conducted groundwater testing in monitoring wells MW-1 and MW-2.				
(RTN 3-2947)	Teleases of on.					
Amcare, 12 Parker Street (RTN 3-2417)	Potential groundwater contamination from historic releases of diesel fuel and waste oil. Site ranking is Tier ID.	Conducted groundwater testing in monitoring wells MW-9 and MW-10.				
Auto Parts Site, 44 High Street	Potential petroleum contamination in groundwater from buried car parts.	Conducted groundwater testing in monitoring well MW-4.				
Circle Finishing*	Potential soil and groundwater contamination from recent releases.	Conducted visual inspection of Site abutting Circle Finishing and sampled surface soil, subsurface soil, and groundwater.				

Notes:

,

* Not included in Phase I Site Assessment Report PCBs = Polychlorinated biphenyls

Table 2 Summary of Analytical Results for Soil Samples Former B & M Railroad Newburyport, Massachusetts

.

				Sample Location:	В	1		B-2		B-3
Analysis	Analyte	MCP Re		Depth:	0-3'	3-10'	0-3'	0-3'	3-10'	0-3'
		Concent	rations	Date sampled:	4/3/2006	4/3/2006	4/3/2006	4/3/2006	4/3/2006	4/3/2006
		RC S-1	RC S-2	_				Field Dup		
EPH	C9 - C18 Aliphatics	1000	2500		7.25 U	7.75 U	15.0 U	7.58 U	83.8	7.41 U
(mg/kg)	C19 - C36 Aliphatics	3000	5000		68.5	7.75 U	15.0 U	10.5	25.6	9.28
	C11 - C22 Aromatics	200	2000		102	7.75 U	139	80.0	55.8	24.9
	Naphthalene	4	40		0.362 U	0.388 U	2.18	1.10	0.527	0_370 U
	2-Methylnaphthalene	4	1000		0.362 U	0.388 U	0.749 U	0.379 U	0.383 U	0.370 U
	Acenaphthylene	100	1000		0.362 U	0.388 U	0.769 0.749 U	0.379 U 0.503	0.383 U 0.383 U	0.370 U 0.370 U
	Acenaphthene Fluorene	20 400	2500 2000		0.362 U 0.362 U	0.388 U 0.388 U	0.749 0	0.503	0.383 U	0.370 U
	Phenanthrene	400	100		0.362 U	0.388 U	10.9	6.98	1.51	0.456
	Anthracene	1000	2500		0.362 U	0.388 U	2.80	1.61	0.383 U	0.370 U
	Fluoranthene	1000	3000		0.616	0.388 U	16.0	9.68	2.10	0.914
	Рутепе	1000	3000		0.644	0.388 U	12.8	7.73	1.66	0.875
	Benzo(a)authracene	7	40		0.398	0.388 U	7.56	4.35	0.933	0.392
	Chrysene	7	10		0.474	0.388 U	7.37	4.23	0.871	0.513
	Benzo(b)fluoranthene	7	40		0.415	0.388 U	6.57	3.91	0.718	0.626
	Benzo(k)fluoranthene	70	400		0.400	0.388 U	6.02	3.43	0.785	0.503
	Вепго(а)рутепе	2	4		0.459	0.388 U	7.59	4.16	0.889	0.584
	Indeno(1,2,3-cd)Pyrene	7	40		0.362 U	0.388 U	5.00	2.57	0.575	0.473
	Dibenzo(a,h)anthracene	0.7	4		0.362 U	0.388 U	1.02	0.569	0.383 U	0_370 U
	Benzo(ghi)perylene	1000	2500		0.362 U	0.388 U	4.44	2.07	0.500	0.370 U
PCBs	Arochor 1016	2	2		NA	NA NA	NA NA	NA NA	NA NA	NA NA
(mg/kg)	Aroclor 1221	2 2	2		NA NA	NA NA	NA	NA NA	NA	- NA NA
	Aroclor 1232 Aroclor 1242	2	2		NA	NA	NA	NA	NA	NA
	Aroclor 1248	2	2		NA	NA	NA	NA	NA	NA
	Aroclor 1254	2	2		NA	NA	NA	NA	NA	NA
	Aroclor 1260	2	2		NA	NA	NA	NA	NA	NA
Pesticides	Delta-BHC	10	100		0.0362 U	NA	0.0187 U	0.0189 U	NA	0.0185 U
(mg/kg)	Lindane	0.003	0.5		0.0290 U	NA	0.0150 U	0.0152 U	NA	0.0148 U
	Alpha-BHC	50	500		0.0362 U	NA	0.0187 U	0.0189 U	NA	0.0185 U
	Beta-BHC	10	100		0.0362 U	NA	0.0187 U	0.0189 U	NA	0.0185 U
	Heptachlor	0.2	2		0.0362 U	NA	0.0187 U	0.0189 U	NA	0.0185 U
	Aldrin	0.04	0.4		0.0362 U	NA	0.0187 U	0.0189 U	NA	0.0185 U
	Heptachlor epoxide	0.09	0.7		0.0362 U	NA	0.0187 U	0.0189 U	NA	0.0185 U
	Endrin	8	10		0.0362 U	NA	0.0187 U	0.0189 U	NA	0.0185 U
	Endrin ketone	NS	NS		0.0362 U	NA	0.0187 U	0.0189 U 0.0189 U	NA	0.0185 U 0.0185 U
	Dieldrin	0.05	0.4 20		0.0362 U 0.0362 U	NA NA	0.0187 U 0.0187 U	0.0189 U 0.0189 U	NA NA	0.0185 0
	4,4'-DDE 4,4'-DDD	3	20 30		0.0362 U 0.0362 U	NA	0.0187 U	0.0189 U	NA	0.0185 U
	4,4-DDT	3	20		0.0362 U	NA	0.0187 U	0.0189 U	NA	0.0463
	Endosulfan I	0.05	0.05		0.0362 U	NA	0.0187 U	0.0189 U	NA	0.0185 U
	Endosulfan li	0.05	0.05		0.0362 U	NA	0.0187 U	0.0189 U	NA	0.0185 U
	Endosulfan sulfate	0.05	0.05		0.0362 U	NA	0.0187 U	0.0189 U	NA	0.0185 U
	Methoxychlor	30	30		0.145 U	NA	0.0749 U	0.0758 U	NA	0.0741 U
	Technical Chlordane	0.7	30		0.145 U	NA	0.0749 U	0.0758 U	NA	0.0741 U
	Toxaphene	10	100		0.145 U	NA	0.0749 U	0.0758 U	NA	0.0741 U
	Hexachlorobenzene	0.7	5		0.0362 U	NA	0.0187 U	0.0189 U	NA	0.0185 U
Metals	Antimony, Total	20	30		2.2 U	NA	2.2 U	4.3	NA	2.2 U
(mg/kg)	Arsenic, Total	20	20		12	NA	12	13	NA	2.3
	Barium, Total	1000	3000		43	NA	100	83	NA	40
	Beryllium, Total	0.7	0.8		0.22 U	NA	0.22 U	0.23 U	NA	0.22 U
	Cadmium, Total	2	30		0.43 U	NA	0.44 U	0.45 U	NA NA	0.44 U
	Chromium, Total Lead, Total	30 300	200 300		15 80	NA NA	15 430	13 320	NA NA	21 280
	Nickel, Total	20	700		12	NA	12	12	NA	17
	Selenium, Total	400	800		2.2 U	NA	2.2 U	2.3 U	NA	2.2 U
	Silver, Total	100	200		0.43 U	NA	0.44 U	0.45 U	NA	0.44 U
	Thallium, Total	8	60		2.2 U	NA	2.2 U	2.3 U	NA	2.2 U
	Vanadium, Total	600	1000		16	NA	16	13	NA	16
	Zinc, Total	2500	3000		120	NA	130	130	NA	57
Solids (Tota	al) (%)	NS	NS		92	86	89	88	87	90

Notes

All units in mg/kg unless otherwise specified.

ng/kg - milligrams per bilogram (dry weight) or parts per million (ppm). • - MCP RC S-2 criteria were used to compare with the results at this location only.

NS - No criterion available for this compound.

U - Compound was not detected at specified quantitation firmit.

NA - Sample not analyzed for the listed analyte.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type equal or exceed the compared NICP RC criterion.

EPH - Extractable Petroleum Hydrocarbons.

PCBs - Polychlorinated Biphenyls

MCP - Massachusetts Contingency Plan.

- sce punto

Table 2 Summary of Analytical Results for Soil Samples Former B & M Railroad Newburyport, Massachusetts

		MCP Re		Sample Location:	В	_4		B-5		B-6
Analysis	Analyte	Concent		Depth:	0-3'	3-10'	0-3'	0-3'	3-10	0-3'
		Concent		Date sampled:	4/3/2006	4/3/2006	4/3/2006	4/3/2006	4/3/2006	4/3/2006
		RC S-1	RCS-2					Field Dup		
EPH	C9 - C18 Aliphatics	1000 *	2500		7.33 U	7.17 U	7.02 U	NA	6.94 U	7.02 U
(mg/kg)	C19 - C36 Aliphatics	3000	5000		7.33 U	7.17 U	7.02 U	NA	6.94 U 6.94 U	7.02 U 7.02 U
	C11 - C22 Aromatics	200	2000 40		7.33 U 0.366 U	7.17 U 0.358 U	7.02 U 0.351 U	NA NA	0.347 U	0.351 U
	Naphthalene 2-Methylnaphthalene	4	1000		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351 U
	Acenaphthylene	100	1000		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351 U
	Acenaphthene	20	2500		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351 U
	Fluorene	400	2000		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351 U
	Phenanthrene	100	100		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351 U
	Anthracene	1000	2500		0.366 U	0.358 U	0.351 U	NA	0.347 U 0.347 U	0.351 U 0.351 U
	Fluoranthene	1000	3000 3000		0.366 U 0.366 U	0.358 U 0.358 U	0.351 U 0.351 · U	NA NA	0.347 U	0.351 0
	Pyrene Benzo(a)anthracene	7	40		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351 U
	Chrysene	7	10		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351 U
,	Benzo(b)fluoranthene	7	40		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351 U
	Benzo(k)fluoranthene	70	400		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351 U
	Benzo(a)pyrene	2	4	1	0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351 U
	Indeno(1,2,3-cd)Pyrene	7	40		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351 U
	Dibenzo(a,h)anthracene	0.7	4		0.366 U 0.366 U	0.358 U 0.358 U	0.351 U 0.351 U	NA NA	0.347 U 0.347 U	0.351 U 0.351 U
DOD	Benzo(ghi)perylene	1000			0.300 U NA	0.338 U NA	0.0351 U	0.0355 U	0.0347 U	NA
PCBs	Aroclor 1016 Aroclor 1221	2 2	2		NA	NA	0.0351 U	0.0355 U	0.0347 U	NA
(mg/kg)	Aroclor 1221 Aroclor 1232	2	2		NA	NA	0.0351 U	0.0355 U	0.0347 U	NA
	Aroclor 1242	2	2		NA	NA	0.0351 U	0.0355 U	0.0347 U	NA
	Aroclor 1248	2	2	1	NÁ	NA	0.0351 U	0.0355 U	0.0347 U	NA
	Aroclor 1254	2	2		NA	NA	0.0351 U	0.0355 U	0.0347 U	NA
	Aroclor 1260	2	2		NA	NA	0.0351 U	0.0355 U	0.0347 U	NA
Pesticides	Deha-BHC	10	100		0.0183 U	NA	0.0175 U	NA	NA	0.00351 U
(mg/kg)	Lindane	0.003	0.5		0.0146 U 0.0183 U	NA NA	0.0140 U 0.0175 U	NA NA	NA NA	0.00281 U
	Alpha-BHC Beta-BHC	50 10	500 100		0.0183 U	NA	0.0175 U	NA	NA	0.00351 U
	Heptachlor	0.2	2		0.0183 U	NA	0.0175 U	NA	NA	0.00351 U
	Aldrin	0.04	0.4		0.0183 U	NA	0.0175 U	NA	NA	0.00351 U
	Heptachlor epoxide	0.09	0,7		0.0183 U	NA	0.0175 U	NA	NA	0.00351 U
	Endrin	8	10		0.0183 U	NA	0.0175 U	NA	NA	0.00351 U
	Endrin ketone	NS	NS		0.0183 U	NA	0.0175 U	NA	NA	0.00351 U
	Dieldrin	0.05	0.4		0.0183 U 0.0183 U	NA NA	0.0175 U	NA NA	NA NA	0.00351 U 0.00351 U
	4,4'-DDE 4,4'-DDD	3	20 30		0.0183 U	NA	0.0175 U	NA	NA	0.00351 U
	4,4'-DDT	3	20	}	0.0183 U	NA	0.0175 U	NA	NA	0.00351 U
	Endosulfan l	0.05	0.05		0.0183 U	NA	0.0175 U	NA	NA	0.00351 U
	Endosulfan II	0.05	0.05		0.0183 U	NA	0.0175 U	NA	NA	0.00351 U
	Endosulfan sulfate	0.05	0.05		0.0183 U	NA	0.0175 U	NA	NA	0.00351 U
	Methoxychlor	30	30		0.0733 U	NA	0.0702 U 0.0702 U	NA	NA NA	0.0140 U 0.0140 U
	Technical Chlordane	0.7 10	30 100		0.0733 U 0.0733 U	NA NA	0.0702 U 0.0702 U	NA NA	NA NA	0.0140 U
	Toxaphene Hexachlorobenzene	0.7	5		0.0733 U	NA	0.0702 U	NA	NA	0.00351 L
Metals	Antimony, Total	20	30		2.2 U	NA	2.1 U	NA	NA	2.1 U
(mg/kg)	Arsenic, Total	20	20		9.1	NA	21	NA	NA	19
(Barium, Total	1000	3000		37	NA	15	NA	NA	16
	Beryllium, Total	0.7	0.8		0.22 U	NA	0.21 U	NA	NA	0.21 1
	Cadmium, Total	2	30		0.44 U	NA	0.42 U	NA	NA	0.42 L
	Chromum, Total	30	200		19	NA	14	NA	NA	16
	Lead, Total	300	300		20 18	NA NA	18	NA NA	NA NA	5.6
	Nickel, Total	20	700 800		2.2 U	NA NA	13 2.1 U	NA NA	NA NA	2.1 U
	Selenium, Total Silver, Total	400	200		0.44 U	NA	0.42 U	NA	NA	0.42
	Thallium, Total	8	60		2.2 U	NA	2.1 U	NA	NA	2.1 1
	Vanadium, Total	600	1000		14	NA	9.8	NA	NA -	11
	Zinc, Total	2500	3000		28	NA	130	NA	NA	17
Solids (Tota		NS	NS		91	93	95	94	96	95

Notes

All units in rog/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm). * - MCP RC S-2 criteria were used to compare with the results at this location only.

NS - No criterion available for this compound.

U · Compound was not detected at specified quantitation limit.

NA - Sample not analyzed for the listed analyte. Values in Bold indicate the compound was detected. Nulses shown in Bold and shared type educi or exceed the compared MCP RC criterion.

EPH - Extractable Petroleum Hydrocarbons.

PCBs - Polychlorinated Bipheryls. MCP - Massachusetts Contingency Plan.

Table 2 Summary of Analytical Results for Soil Samples Former B & M Rallroad Newburyport, Massachusetts

		MCD.D.	n a sta b la	Sample Location:	B-7	B-8	B-	9	B-10
Analysis	Analyte	MCP Re Concent	·	Depth:	0-3'	0-3'	0-3'	3-10'	0-3'
	_	Concen	liadolis	Date sampled:	4/3/2006	4/3/2006	4/7/2006	4/7/2006	4/4/2006
		RC S-1	RC S-2						•
EPH	C9 - C18 Aliphatics	1000	2500		7.02 U	7.17 U	7.25 U	7.02 U	7.94 U
(mg/kg)	C19 - C36 Aliphatics	3000	5000		7.02 U	7.17 U	7.25 U	7.02 U	26.0
	C11 - C22 Aromatics	200	2000		7.02 U	7.17 U	7.25 U	7.02 U	202
	Naphthalene	4	40		0.351 U	0.358 U	0.362 U	0.351 U	0.397 U
	2-Methylnaphthalene	4	1000		0.351 U	0.358 U	0.362 U	0.351 U	0.397 U
	Acenaphthylene	100	1000	1	0.351 U	0.358 U	0.362 U	0.351 U	0.397 U
	Acenaphthene	20	2500		0.351 U	0.358 U	0.362 U	0.351 U	0.682
	Fluorene	400	2000		· 0.351 U	0.358 U	0.362 U	0.351 U	0.570
	Phenanthrene	100	100		0.351 U 0.351 U	0.358 U 0.358 U	0.362 U 0.362 U	0.351 U 0.351 U	9.63 2.92
	Anthracene Fluoranthene	1000 1000	2500 3000		0.351 U	0.358 U	0.362 U	0.351 U	19.6
	Pyrene	1000	3000		0.351 U	0.358 U	0.362 U	0.351 U	16.3
	Benzo(a)anthracene	7	40		0.351 U	0.358 U	0.362 U	0.351 U	11.8
	Chrysene	7	10		0.351 U	0.358 U	0.362 U	0.351 U	14.4
	Benzo(b)fluoranthene	7	40		0.351 U	0.358 U	0.362 U	0.351 U	10.1
	Benzo(k)fluoranthene	70	400		0.351 U	0.358 U	0.362 U	0.351 U	6.47
	Benzo(a)pyrene	2	4		0.351 U	0.358 U	0.362 U	0.351 U	9.26
	Indeno(1,2,3-cd)Pyrene	7	40		0.351 U	0.358 U	0.362 U	0.351 U	4.72
	Dibenzo(a,h)anthracene	0.7	4		0.351 U	0.358 U	0.362 U	0.351 U	1.19
	Benzo(ghi)perylene	1000	2500		0.351 U	0.358 U	0.362 U	0.351 U	4.24
PCBs	Aroclor 1016	2	2		NA	NA	NA	NA	NA
(mg/kg)	Aroclor 1221	2	2		NA	NA	NA	NA	NA
	Aroclor 1232	2	2		NA	NA	NA	NA	NA
	Aroclor 1242	2	2		NA	NA	NA	NA	NA
	Aroclor 1248	2	2		NA	NA	NA	NA	NA
	Aroclor 1254	2	2		NA	NA	NA	NA	NA
	Aroclor 1260	2	2	i	NA	NA	NA	NA	NA NA
Pesticides	Delta-BHC	10	100	, i	0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U
(mg/kg)	Lindane	0.003	0.5 500		0.00281 U 0.00351 U	0.00287 U 0.00358 U	0.00290 U 0.00362 U	NA NA	0.0317 U 0.0397 U
	Alpha-BHC Beta-BHC	50 10	100		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U
	Heptachlor	0.2	2		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U
	Aldrin	0.04	0.4		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U
	Heptachlor epoxide	0.09	0.7		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U
	Endrin	8	10		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U
	Endrin ketone	NS	NS		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U
	Dieldrin	0.05	0.4		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U
	4,4'-DDE	3	20		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U
	4,4'-DDD	4	30		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U
	4,4'-DDT	3	20		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U
	Endosulfan J	0.05	0.05		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U
	Endosulfan II	0.05	0.05		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U 0.0397 U
	Endosulfan sulfate	0.05	0.05		0.00351 U 0.0140 U	0.00358 U 0.0143 U	0.00362 U 0.0145 U	NA NA	0.0397 U
	Methoxychlor Technical Chlordane	30 0.7	30		0.0140 U 0.0140 U	0.0143 U	0.0145 U	NA	0.159 U
	Toxaphene	10	100		0.0140 U	0.0143 U	0.0145 U	NA	0.159 U
	Hexachlorobenzene	0.7	5		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U
Metals	Antimony, Total	20	30		2.1 U	2.1 U	2.2 U	NA	2.4 U
(mg/kg)	Antimony, Total	20	20		17	15	27	NA	14
(~~~B/~~B/	Barium, Total	1000	3000	•	13	13	17	NA	40
	Beryllium, Total	0.7	0.8		0.21 U	0.21 U	0.22 U	NA	0.24 U
	Cadmium, Total	2	30		0.42 U	0.42 U	0.43 U	NA	0.47 U
	Chromium, Total	30	200		12	12	16	NA	54
	Lead, Total	300	300		6.0	5.4	9.9	NA	28
	Nickel, Total	20	700		31	12	15	NA	71
	Selenium, Total	400	800		2.1 U	2.1 U	2.2 U	NA	2.4 U
	Silver, Total	100	200		0.42 U	0.42 U	0.43 U	NA	0.54
	Thallium, Total	8	60		2.1 U	2.I U	2.2 U	NA	2.4 U
	Vanadium, Total	600	1000		9.2	9.5	13	NA	20
	Zinc, Total	2500	3000		15	15	. 25	NA	61
Solids (Tota	d) (%)	NS	NS		95	93	92	95	84

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).
 MCP RC S-2 criteris were used to compare with the results at this location only.

NS - No criterion available for this compound.

U - Compound was not detected at specified quantitation limit.

NA - Sample not analyzed for the firited analyte.

Values in Bold indicate the compound was detected. Values shown in Bold and studed type equal or exceed the compared MCP RC criterion

EPH - Extractable Petroleum Hydrocarbons.

PCBs - Polychkerinsted Biphenyls.

.

MCP - Massachusetta Contingency Plan

Table 3 Summary of Analytical Results for Groundwater Samples Former B & M Railroad Newburyport, Massachusetts

Analysis	Analyte	MCP RC	Sample Location:	MW-1	. MW-2	MW-4	MW-9	MW-10
		GW-2	Date sampled:		4/12/2006	4/12/2006	4/12/2006	4/12/2006
VOCs	Methylene chloride	10000		NA	NA	NA	NA	5.0 U
(ug/L)	1,1-Dichloroethane	1000 400		NA NA	NA NA	NA NA	NA NA	4.6
	Chloroform Carbon tetrachloride	400		NA	NA	NA	NA	0.50 L
	1,2-Dichloropropane	3		NA	NA	NA	NA	1.8 L
	Dibromochloromethane	20		NA	NA	NA	NA	0.50 U
	1,1,2-Trichloroethane	900		NA	NA	NA	NA	0.75 U
	Tetrachloroethene	50		NA	NA	NA	NA	0.73
	Chlorobenzene	200		NA	NA	NA	NA	0.50 U
	Trichlorofluoromethane	100000		NA	NA	NA	NA	2.5 L
	1,2-Dichloroethane	5		NA	NA	NA	NA	0.50 L
	1,1,1.Trichloroethane	4000		NA	NA	NA	NA	3.8
	Bromodichloromethane	6 5 ⁽⁴⁾		NA	NA	NA NA	NA NA	0.50 U 0.50 U
	trans-1,3-Dichloropropene	5(9)		NA NA	NA NA	NA	NA	0.50 U
	cis-1,3-Dichloropropene	5 ¹⁰		NA	NA	NA	NA	2.5 U
	1,1-Dichloropropene Bromoform	700		NA	NA	NA	NA	2.0 U
	1,1,2,2-Tetrachioroethane	9		NA	NA	NA	NA	0.50 U
	Benzene	2000		NA	NA	NA	NA	13
	Tohuene	4000		NA .	NA	NA	NA	1.6
	Ethylbenzene	4000		NA	NA	NA	NA	9.6
	Chloromethane	10000		NA	NA	NA	· NA	2.5 U
	Bromomethane	2		NA	NA	NA	NA	1.0 C
	Vinyl chloride	2		NA	NA	NA	NA	7.8
	Chloroethane	10000		NA	NA	NA	NA	1.0 l
	1,1-Dichloroethene	80		NA	NA	NA	NA	0.50 U
	trans-1,2-Dichloroethene	90		NA	NA	NA	NA	0.75 L
	Trichloroethene	30		NA	NA	NA	NA	17 2.5 t
	1,2-Dichlorobenzene	2000		NA	NA	NA NA	NA · NA	2.5
	1,3-Dichlorobenzene	2000		NA NA	NA NA	NA	NA	2.5 0
	1,4-Dichlorobenzene	200 50000		NA	NA	NA	NA	1.0 1
	Methyl tert butyl ether p/m-Xylene	5000		NA	NA	NA	NA	4.8
	o-Xylene	500		NA	NA	NA	NA	1.2
	cis-1,2-Dichloroethene	100		NA	NA	NA	NA	14
	Dibromomethane	50000		NA	NA	NA	NA	5.0 1
	1,2,3.Trichloropropane	10000		NA	NA	NA	NA	5.0 L
	Styrene	100		NA	NA	NA	NA	1.0
	Dichlorodifluoromethane	100000		NA	NA	NA	NA	5.0 1
	Acetone	50000		NA	NA	NA	NA	5.0 1
	Carbon disulfide	10000		NA	NA	NA	NA	5.0
	2-Butanone	50000		NA	NA	NA	NA	5.0
	4-Methyl-2-pentanone	50000		NA	NA	NA	NA NA	5.0
	2-Hexanone	10000		NA NA	NA NA	NA NA	NA	2.5
	Bromochloromethane	NS 50000		NA	NA	NA	NA	10 1
	Tetrahydrofuran	90000 900		NA	NA	NA	NA	2.5
	2,2-Dichloropropane 1,2-Dibromoethane	2		NA	NA	NA	NA	2.0
	1,3-Dichloropropane	50000		NA	NA	NA	NA	2,5
	1.1.1.2-Tetrachloroethane	10		NA	NA	NA	NA	0.50
	Bromobenzene	10000		NA	NA	NA	NA	2.5 1
	n-Butylbenzene	4000 ^m		NA	NA	NÀ	NA	5.5
	sec-Butylbenzene	4000 ⁿ		NA	NA	NA	NA	1.8
	tert-Butylbenzene	4000°°		NA	NA	NA	NA	2.5
	o-Chlorotoluene	10000		NA	NA	NA	NA	2.5
	p-Chiorotoluene	NŚ		NA	NA	NA	NA	2.5
	1,2-Dibromo-3-chloropropane	1000		NA	· NA	NA	NA	2.5
	Hexachlorobutadiene	1		NA	NA	NA	NA	0.60
	lsopropylbenzene	4000 ⁽³⁾		NA	NA	NA	NA NA	3.2 1.8
	p-Isopropyltoluene	4000 ^m		NA	NA	NA	NA	9.3
	Naphthalene	1000 4000 ⁽¹⁾		NA	NA NA	NA NA	NA NA	8.8
	n-Propylbenzene 1,2,3-Trichlorobenzene			NA NA	NA NA	NA	NA	2.5
	1,2,4-Trichlorobenzene	NS 2000	Į	NA	NA	NA	NA	2.5
	1,2,4-1 richlorobenzene 1,3,5-Trimethylbenzene	40000	1	NA	NA	NA	NA	4.0
	1,2,4-Trimethylbenzene	4000%		NA	NA	NA	NA	23
	Ethyl ether	10000		NA	NA	NA	NA	2.5
	Isopropyl Ether	10000		NA	NA	NA	NA	2.0
	Ethyl-Tert-Butyl-Ether	NS		NA	NA	NA	NA	2.0
	Tertiary-Amyl Methyl Ether	NS		NA	NA	NA	NA	2.0
	1,4-Dioxane	NS		NA	NA	NA	NA	250

Table 3 Summary of Analytical Results for Groundwater Samples Former B & M Railroad Newburyport, Massachusetts

Analysis	Analyte	MCP RC	Sample Location:	MW-1	MW-2	MW-4	MW-9	MW-10
-		GW-2	Date sampled:	4/12/2006	4/12/2006	4/12/2006	4/12/2006	4/12/2006
EPH	C9 - C18 Aliphatics	1000		100 U	100 U	100 U	100 U	100 1
ug/L)	C19 - C36 Aliphatics	50000		100 U	100 U	100 U	100 U	100 1
	C11 - C22 Aromatics	30000		100 U	100 U	100 U	U 001	100
	Naphthalene	1000		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	2-Methylnaphthalene	3000		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	Acenaphthylene	3000		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	Acenaphthene	5000		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	Fluorene	3000		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	Phenanthrene	50		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	Anthracene	-3000		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	Fluoranthene	200		10.0 U	10.0 U	' 10.0 U	10.0 U	10.0
	Pyrene	20		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	Benzo(a)anthracene	1000		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	Chrysene	3000		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	Benzo(b)fluoranthene	400		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	Benzo(k)fluoranthene	100		10.0 U	10.0 U	10.0°U	10.0 U	10.0
	Benzo(a)pyrene	500		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	Indeno(1,2,3-cd)Pyrene	100		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	Dibenzo(a,h)anthracene	40		10.0 U	10.0 U	10.0 U	10.0 U	10.0
	Benzo(ghi)perylene	3000		10.0 U	10.0 U	10.0 U	10.0 U	10.0
Metals [Value]	Antimony, Total	8000		0.8	0.5 U	0.5 U	0.5 U	0.5
(ng/L)	Arsenic, Total	900		3.7	29.4	1.5	16.3	6.8
	Barium, Total	50000		77.3	56.8	18.2	39.5	840
	Beryllium, Total	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5
	Cadmium, Total	4		0.5 U	0.5 U	0.5 U	0.5 U	0.7
	Chromium, Total	300		1.9	0.5	0.9	14.2	3.4
	Lead, Total	10		1.2	0.5 U	0.5 U	6.1	2.0
	Nickel, Total	200		6.3	7.4	9.5	21.2	777.1
	Selenium, Total	100		6.0	1.0 U	2.0	1.0 U	1.0
	Silver, Total	7		0.5 U	0.5 U	0.5 U	0.5 U	0.5
	Thallium, Total	3000		0.5 U	0.5 U	0.5 U	0.5 U	0.5
	Vanadium, Total	4000		1.2	0.5 U	0.5 U	10.2	0.5
	Zinc, Total	900		138.6	52.4	5.0 U	20.9	35.5
Cyanide (I	otal) (ug/L)	30		NA	NA	NA	NA	167

Notes:

All units in ug/L unless otherwise specified.

ug/L - micrograms per liter.

NS - No criteriou available for this compound.

(1) - Per the MCP, VOC Analytical Method requirements, the results for these compounds

are compared to the RC GW-2 criterion for C9-C10 aromatic hydrocarbons.

(2) - RC GW-2 criterion for Dichloropropane used.

(3) - RC GW-2 criterion for Dichloropropene used.

(4) - RC GW-2 criterion for 1,3-Dichloropropene used.

U - Compound was not detected at specified quantitation limit.

NA - Sample not analyzed for the listed analyte.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type equal or exceed the MCP RC GW-2 criteria

VOCs - Volatile Organic Compounds.

EPH - Extractable Petroleum Hydrocarbons.

MCP RC - Massachusetts Contingency Plan Reportable Concentrations.

Table 4 Comparison of Soll Results to MCP Method 1 Standards Former B & M Railroad Newburyport, Massachusetts

Analysis Analyse Method I Depths Date sampled: 0-3' 3-10' 0-3' 3-10' 0-3' 3-10' 0.0' EPH C9 - C18 Aliphatics 1000 7.25 U 7.75 U 150 U 7.58 U 83.8 7. (reg/kg) C19 - C18 Aliphatics 3000 68.5 7.75 U 150 U 7.58 U 83.8 7. (reg/kg) C19 - C18 Aliphatics 3000 68.5 7.75 U 150 U 10.5 2.56 9. 9.0 9.0 9.55 8.4 2.0 1.61 0.333 U 0.749 U 0.330 U 0.333 U	59 U 70 U 70 U 70 U 70 U 70 U 70 U 70 U 70	
EPH C9 - C18 Aliphatics 1000 7.25 U 7.75 U 15.0 U 7.58 U 8.5 EPH C9 - C18 Aliphatics 3000 68.5 7.75 U 15.0 U 0.52 25.6 9. C11 - C22 Acornatics 800 102 7.75 U 15.0 U 0.52 25.6 9. Acenaphthysen 500 0.362 U 0.388 U 0.749 U 0.379 U 0.381 U 0.381 U 0.379 U 0.381 U 0.379 U 0.381 U 0.381 U 0.379 U 0.381 U 0.381 U 0.381 U 0.381 U <td< td=""><td>2006 41 U 18 19 10 U 10 U 10 U 10 U 10 U 14 15 12 14 15 12 14 15 16 10 U 14 15 16 10 U 14 15 16 10 U 16 16 16 16 16 16 16 16 16 16</td><td></td></td<>	2006 41 U 18 19 10 U 10 U 10 U 10 U 10 U 14 15 12 14 15 12 14 15 16 10 U 14 15 16 10 U 14 15 16 10 U 16 16 16 16 16 16 16 16 16 16	
S-1/GW-3 res Field Dup Field Dup EPH C9 - C18 Aliphatics 1000 7.25 U 7.75 U 15.0 U 7.58 U 83.8 7.75 U (mg/kg) C19 - C36 Aliphatics 3000 68.5 7.75 U 13.9 960.0 55.8 24 Naphthalenc 500 0.362 U 0.388 U 0.749 U 0.379 U 0.383 U 0.383 U 0.379 U 0.383 U 0.383 U 0.379 U 0.383 U 0.383 U 0.383 U 0.379 U 0.383 U 0.383 U 0.379 U 0.383 U 0.383 U 0.379 U 0.383 U 0.379 U 0.383 U 0.379 U 0.383 U 0.373 U 0.383 U 0.373 U 0.383 U 0.373 U 0.383 U	41 U 139 140 U 140 U 140 U 141 141 143 144 143 144 144 144	
EPH C9 - C18 Aliphatics 1000 7.25 U 7.75 U 150 U 7.36 U 83.8 7. (rrg/kg) C19 - C26 Aliphatics 3000 68.5 7.75 U 150 U 10.5 2.5.6 95. 2. Methylmaphthalene 500 0.362 U 0.388 U 2.18 1.10 0.527 0.33 U 0.379 U 0.383 U 0.383 U 0.379 U 0.383 U 0.383 U 0.379 U 0.383 U 0.383 U 0.379 U 0.383 U 0.379 U 0.383 U 0.383 U 0.379 U 0.383 U 0.383 U 0.379 U 0.383 U 0.371 0.333 0.333	28	
(mg/kg) CI9 - C36 Abphatics 3000 68.5 7.75 U 15.0 U 10.5 25.6 92. C11 - C22 Aromatics 800 0.362 U 0.388 U 2.18 1.10 0.527 0.338 U 0.749 U 0.379 U 0.383 U 0.749 U 0.379 U 0.383 U 0.376 0.383 </td <td>28</td> <td></td>	28	
C11 - C22 Aromatics 800 102 775 U 139 80.0 55.8 24 Naphthalene 500 0.362 U 0.388 U 2.18 1.10 0.527 0.33 U 0.338 U 0.379 U 0.383 U 0.338 U 0.33	59 U 70 U 70 U 70 U 70 U 70 U 70 U 70 U 70	
Naphthalene 500 0.362 U 0.388 U 2.18 1.10 0.527 0.33 2.Methyhaphthalene 500 0.362 U 0.388 U 0.749 U 0.379 U 0.383 U 0.373 U 0.	70 U 70 U 70 U 70 U 70 U 76 U 75 U 75 22 75 22 75 22 75 22 75 22 75 22 76 U 76 U 76 U 76 U 76 U 76 U 76 U 77 22	
2-Methylnaphhalene 500 0.362 U 0.383 U 0.749 U 0.379 U 0.381 U 0.379 U 0.383 U 0.379 U 0.383 U 0.371 U.50 0.383 U 0.333 U 0.333 U 0.33 U 0.335 U 3.37 4.433 0.871 0.575<	70 U 70 U 70 U 56 U 56 U 14 57 5 52 13 14 14 15 15 15 15 16 16 10 U 14 17 5 10 U 14 10 U 14 10 10 U 14 10 10 10 10 10 10 10 10 10 10 10 10 10	
Acenaphthylene 100 0.362 U 0.383 U 0.769 0.379 U 0.381 U 0.37 Acenaphthme 1000 0.362 U 0.388 U 0.749 U 0.503 0.383 U 0.333 U 0.334 U 0.338 U 1.61 0.338 U 0.334 U 0.337 U 0.338 U 1.51 0.435 0.826 U 0.338 U 7.55 4.16 0.358 U 7.55 4.16 0.856 0.55	70 U 70 U 56 70 U 14 75 75 75 75 75 75 75 75 75 75 75 75 75	
Fluorene 1000 0.362 U 0.388 U 0.908 0.594 0.383 U 0.33 Phemathbrene 1000 0.362 U 0.388 U 10.9 6.98 1.51 0.44 Antbraicne 1000 0.6616 0.388 U 16.0 9.68 2.10 0.99 Pyrene 10000 0.616 0.388 U 12.8 7.73 1.66 0.88 Berazo(a)anthracene 7 0.474 0.388 U 7.55 0.933 0.718 0.661 Berazo(b)fiboranthene 7 0.474 0.388 U 6.57 3.91 0.718 0.659 0.559 0.555 0.57 0.575 0.575 0.575 0.470 0.362 U 0.388 U 7.59 4.16 0.889 0.359 0.333 U 0.37 Berazo(b)fiboranthene 70 0.362 U 0.388 U 5.00 2.57 0.575 0.47 </td <td>70 U 56 U 70 U 14 75 13 14 13 14 13 14 13 14 13 14 13 14 14 15 16 17 17 18 19 19 19 19 19 19 19 19</td> <td></td>	70 U 56 U 70 U 14 75 13 14 13 14 13 14 13 14 13 14 13 14 14 15 16 17 17 18 19 19 19 19 19 19 19 19	
Phenanthrene 100 0.362 U 0.388 U 10.9 6.98 1.51 0.44 Anthracene 1000 0.362 U 0.388 U 2.50 1.61 0.383 U 0.3 Fluoranthene 1000 0.616 0.388 U 1.60 9.666 2.10 0.9 Pyrene 1000 0.644 0.388 U 7.73 1.66 0.87 Benzo(a)hihoranthene 7 0.474 0.388 U 7.55 4.35 0.931 0.37 Benzo(a)fihoranthene 7 0.474 0.388 U 6.57 3.91 0.718 0.62 Benzo(a)fihoranthene 70 0.469 0.388 U 6.57 3.91 0.785 0.50 Benzo(a)fihoranthene 0.7 0.362 U 0.388 U 7.59 4.10 0.899 0.559 0.533 U 0.37 Dibenzo(a)fihoranthene 0.7 0.362 U	566 70 U 14 775 75 13 13 13 13 13 13 13 14 14 17 3 10 10 10 10 10 10 10 10 10 10 10 10 10	
Authratene 1000 0.362 U 0.388 U 2.80 1.61 0.383 U 0.37 Fluoranthene 1000 0.616 0.388 U 16.0 9.68 2.10 0.9 Pyrene 1000 0.644 0.388 U 12.8 7.73 1.66 0.87 Benzo(ajanthracene 7 0.398 0.388 U 7.55 4.35 0.933 0.37 4.23 0.871 0.57 Benzo(ajanthracene 7 0.474 0.388 U 6.57 3.91 0.718 0.65 Benzo(ajpyrene 2 0.459 0.388 U 6.57 3.91 0.718 0.50 Benzo(ajpyrene 2 0.459 0.388 U 1.02 0.569 0.333 0.03 Benzo(ajpyrene 1000 0.362 U 0.388 U 1.02 0.509 0.333 0.03 0.332 0.37 0.435 0.444 2.07 0.500 <td>70 U 14 75 75 75 75 75 75 75 75 75 70 70 70 70 70 70 70 70 70 70 70 70 70</td> <td></td>	70 U 14 75 75 75 75 75 75 75 75 75 70 70 70 70 70 70 70 70 70 70 70 70 70	
Fluoramhene 1000 0.616 0.388 U 16.0 9.68 2.10 0.9 Pyrene 1000 0.644 0.388 U 7.55 4.35 0.933 0.37 Benzo(a)anthracene 7 0.474 0.388 U 7.55 4.35 0.933 0.37 Benzo(b)fluoranthene 7 0.474 0.388 U 6.57 3.91 0.718 0.62 Benzo(k)fluoranthene 7 0.415 0.388 U 6.57 3.91 0.718 0.62 Benzo(k)fluoranthene 7 0.459 0.388 U 6.57 3.91 0.718 0.62 Benzo(k)fluoranthene 7 0.362 U 0.388 U 5.00 2.57 0.575 0.47 Ditenzo(a,h)anthracene 0.7 0.362 U 0.388 U 4.44 2.07 0.500 0.33 PCBs Aroctor 1016 2 NA NA NA NA NA	14 75 13 13 14 15 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	
Pyrenc 1000 0.644 0.388 U 12.8 7.73 1.66 0.87 Benzo(a)anthracene 7 0.398 0.388 U 7.56 4.35 0.933 0.33 Chrysene 7 0.474 0.388 U 7.56 4.35 0.933 0.37 Benzo(k)fhuoranthene 7 0.474 0.388 U 6.57 3.91 0.718 0.65 Benzo(k)fhuoranthene 70 0.469 0.388 U 6.57 3.91 0.785 0.59 Benzo(a)pyrene 2 0.459 0.388 U 7.59 4.16 0.889 0.55 Indeno(1,2,3-cd)Pyrene 7 0.362 U 0.388 U 1.02 0.569 0.383 U 0.359 0.37 PCBs Aroctor 1016 2 NA	75 52 13 13 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	
Benzo(a)anthracene 7 0.398 0.388 0 7.56 4.35 0.933 0.33 Chrysene 7 0.474 0.388 0 7.37 4.23 0.871 0.57 Benzo(b)fluoranthene 70 0.415 0.388 0 6.57 3.91 0.718 0.62 Benzo(a)pyrene 2 0.459 0.388 0 6.57 3.91 0.785 0.55 Benzo(a)pyrene 2 0.459 0.388 0 5.00 2.57 0.575 0.41 Dibenzo(a,h)anthracene 0.7 0.362 0.388 0 0.269 0.383 0 0.350 0.37 Benzo(b)floprylene 1000 0.362 0 0.388 0 1.02 0.569 0.383 0 0.37 Benzo(b)floprylene 1000 0.362 1 0.22 0.569 0.383 0 0.37 PCBs Arockor 1221 2 NA NA NA NA	22 13 26 13 13 26 14 14 73 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 73	
Chrysene 7 0.474 0.388 U 7.37 4.23 0.871 0.50 Benzo(b)fluoranthene 7 0.415 0.388 U 6.57 3.91 0.716 0.66 Benzo(k)fluoranthene 70 0.415 0.388 U 6.02 3.43 0.785 0.59 Benzo(k)fluoranthene 7 0.362 U 0.388 U 5.00 2.57 0.575 0.475 Indeno(1,2,3-cd)Pyrene 7 0.362 U 0.388 U 5.00 2.57 0.575 0.475 Benzo(ghi)perylene 1000 0.362 U 0.388 U 1.02 0.569 0.333 U 0.375 PCBs Arockor 1016 2 NA	13 26 13 14 73 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 10 70 70 70 70 70 70	
Benzo(b)fluoranthene 7 0.415 0.388 0.657 3.91 0.718 0.60 Benzo(k)fluoranthene 70 0.400 0.388 0.388 0.785 0.53 Benzo(a)pyrene 2 0.459 0.388 0.388 0.785 0.57 Indeno(1,7,3-cd)Pyrene 7 0.362 0.388 0 5.00 2.57 0.575 0.44 Dibenzo(a,h)anthracene 0.7 0.362 0.388 0 1.02 0.569 0.383 0.037 PCBs Arockor 1016 2 NA <	26 13 14 73 70 U 70 U A	
Benzo(k)(Buoranthene 70 0.400 0.388 0.602 3.43 0.785 0.505 Benzo(a)pyrene 2 0.459 0.388 0.388 0.759 4.16 0.889 0.575 Indeno(1,2,3-cd)Pyrene 7 0.362 0 0.388 0 1.02 0.575 0.470 Dibenzo(a,h)anthracese 0.7 0.362 0 0.388 0 1.02 0.569 0.383 0.037 Benzo(ghi)perylene 1000 0.362 0 0.388 0 4.44 2.07 0.500 0.37 PCBs Aroctor 1016 2 NA	13 14 13 73 70 10 70 10 70 10	
Benzo(a)pyrene 2 0.459 0.388 0 7.59 4.16 0.889 0.53 Indeno(1, 2, 3-cd)Pyrene 7 0.362 0.388 0 0.388 0 0.500 2.57 0.575 0.47 Benzo(a)phanthracene 0.7 0.362 0 0.388 0 0.369 0.375 0.37 0.500 0.37 Benzo(b)perylene 1000 0.362 0 0.388 0 1.02 0.569 0.383 0 0.37 PCBs Arockor 1016 2 NA	14 73 70 U 70 U A	
Indeno(1,2,3-cd)Pyreac 7 0.362 U 0.388 U 5.00 2.57 0.575 0.47 Dikmxox(a,h)antracense 0.7 0.362 U 0.388 U 1.02 0.569 0.383 U 0.37 Benzo(gh)perylene 1000 0.362 U 0.388 U 1.02 0.569 0.383 U 0.37 PCBs Aroctor 1016 2 NA NA <td< td=""><td>73 70 U 70 U A</td><td></td></td<>	73 70 U 70 U A	
Dibernzo(a,h)anthracene 0.7 0.362 U 0.388 U 1.02 0.569 0.383 U 0.37 PCB3 Aroctor 1016 2 NA NA <t< td=""><td>70 U 70 U A</td><td></td></t<>	70 U 70 U A	
Benzo(ghi)perylence 1000 0.362 U 0.388 U 4.44 2.07 0.500 0.37 PCBs Aroclor 1016 2 NA N	70 U A	
PCBs (mg/kg) Aroctor 1016 2 NA NA </td <td>A</td> <td></td>	A	
(mg/kg) Arocior 1221 2 NA		
Aroclor 1232 2 NA	A	
Aroclor 1248 2 NA		
Aroclor 1254 Aroclor 1260 2 NA NA NA 0.018 U N	A	
Aroclor 1260 2 NA Ou189 U NA 0.0189 U	A	
Pesticides Defta-BHC NS 0.0362 U NA 0.0187 U 0.0189 U NA 0.0187 U 0.0182 U NA 0.0187 U 0.0189 U <		
Lindane 0.5 0.0290 U NA 0.0150 U 0.0152 U NA 0.014 Alpha-BHC NS 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Beta-BHC NS 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Heptachlor 0.2 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Aldrin 0.04 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Heptachlor epoxide 0.09 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Endrin ketone 0.09 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Endrin ketone NS 0.0362 U NA 0.0187 U 0.0189 U N		
Alpha-BHC NS 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Beta-BHC NS 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Heptachlor 0.2 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Aldrin 0.04 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Heptachlor epoxide 0.09 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Badrin 8 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Endrin 8 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Endrin 8 0.0362 U NA 0.0189 U NA 0.018 End		
Beta-BHC NS 0.0362 U NA 0.0187 U 0.0189 U NA 0.0187 Heptachlor 0.2 0.0362 U NA 0.0187 U 0.0189 U NA 0.0187 Aldrin 0.04 0.0362 U NA 0.0187 U 0.0189 U NA 0.0187 Heptachlor epoxide 0.09 0.0362 U NA 0.0187 U 0.0189 U NA 0.0185 Endrin 8 0.0362 U NA 0.0187 U 0.0189 U NA 0.0185 Endrin ketone NS 0.0362 U NA 0.0187 U 0.0189 U NA 0.0185		
Heptachlor 0.2 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Aldrin 0.04 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Heptachlor epoxide 0.09 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Endrin 8 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Endrin ketone NS 0.0362 U NA 0.0187 U 0.0189 U NA 0.018		
Aldrin 0.04 0.0362 U NA 0.0187 U 0.0189 U NA 0.0189 Heptachlor epoxide 0.09 0.0362 U NA 0.0187 U 0.0189 U NA 0.0189 Endrin 8 0.0362 U NA 0.0187 U 0.0189 U NA 0.0189 Endrin ketone NS 0.0362 U NA 0.0187 U 0.0189 U NA 0.0189		
Heptachlor epoxide 0.09 0.0362 U NA 0.0187 U 0.0189 U NA 0.0187 Endrin 8 0.0362 U NA 0.0187 U 0.0189 U NA 0.0187 Endrin 8 0.0362 U NA 0.0187 U 0.0189 U NA 0.0185 Endrin ketone NS 0.0362 U NA 0.0187 U 0.0189 U NA 0.0185		
Endmin 8 0.0362 U NA 0.0187 U 0.0189 U NA 0.018 Endmin ketone NS 0.0362 U NA 0.0187 U 0.0189 U NA 0.018		
Endrin ketone NS 0.0362 U NA 0.0187 U 0.0189 U NA 0.018		
Diekārān 0.05 0.0362 U NA 0.0187 U 0.0189 U NA 0.018		
4,4'DDE 3 0.0362 U NA 0.0187 U 0.0189 U NA 0.022		
44-DDD 4 0.0362 U NA 0.0187 U 0.0189 U NA 0.018	s U	
4,4'-DDT 3 0.0362 U NA 0.0187 U 0.0189 U NA 0.046		
Endosulfan I 1 ⁽¹⁾ 0.0362 U NA 0.0187 U 0.0189 U NA 0.018		
Endosulfan H 1 ⁽¹⁾ 0.0362 U NA 0.0187 U 0.0189 U NA 0.018		
Endosulfan sulfare NS 0.0362 U NA 0.0187 U 0.0189 U NA 0.018		
Methoxychlor 30 0.145 U NA 0.0749 U 0.0758 U NA 0.074		
Technical Chlordane 0.7 0.145 U NA 0.0749 U 0.0758 U NA 0.074 Toxaphene NS 0.145 U NA 0.0758 U NA 0.0748	r	
Toxaphene NS 0.145 NA 0.0749 U 0.0758 U NA 0.074 Hexachlorobenzene 0.7 0.0362 U NA 0.0187 U 0.0189 U NA 0.0188		
	2 11	
	3 6	_ <24
	0	- 56
Berylinn, Total 0.7 0.22 U NA 0.22 U 0.23 U NA 0.2		``
Cadmiun, Total 2 0.43 U NA 0.44 U 0.45 U NA 0.4		
	i	
Lead, Total 300 80 NA 430 320 NA 28		
	7	
Selemium, Total 400 2.2 U NA 2.2 U 2.3 U NA 2.		
Silver, Total 100 0.43 U NA 0.44 U 0.45 U NA 0.4	2 U	
Thallium, Total 8 2.2 U NA 2.2 U 2.3 U NA 2.2 U		
	4 U 2 U	
	4 U 2 U 6	
Solids (Total) (%) NS 92 86 89 88 87 9	4 U 2 U 6 7	

Notes:

All muss in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

(1) - MCP Method 1 S-1/GW-3 standard for endosulfan used.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Via - Sample not analyzed for the listed analyte. Values in Bold indicate the compound was detected. Values shown at Bold and skuled type cutral or exceed MCP 8-1 GW-3 standards

EPH - Extractable Petroleum Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

MCP · Massachusetts Contingency Plan.

Average value - Computed by the sum of the detected values and half of the quantitation

limits for the non-detects divided by the number of samples analyzed for the analyte; the higher value of the field duplicate pairs was used in the computation.

52037_Former B and M Rairoad_Newburyport MA

Table 4 Comparison of Soli Results to MCP Method 1 Standards Former B & M Railroad Newburyport, Massachusetts

			Sample Location:	В	-4		B-5		B-6
Analysis	Analyte	Method 1	Depth:	0-3'	3-10'	0-3'	0-3'	3-10"	0-3'
			Date sampled:	4/3/2006	4/3/2006	4/3/2006	4/3/2006	4/3/2006	4/3/2006
		S-1/GW-3					Field Dup		
ЕРН	C9 - C18 Aliphatics	1000		7.33 U	7.17 U	7.02 U	NA	6,94 U	7.02
(mg/kg)	C19 - C36 Aliphatics	3000 ·		7.33 U	7.17 U	7.02 U	NA	6.94 U	7.02
	C11 - C22 Aromatics	800		7.33 U	7.17 U	7.02 U	NA	6.94 U	7.02
	Naphthalene	500		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	2-Methylnaphthalene	500		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Acenaphthylene	100		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Acenaphthene	1000		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Fluorene	1000		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Phenaothrene	100		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Anthracene	1000		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Fluoranthene	1000		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Рутеле	1000		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Benzo(a)anthracene	7		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Chrysene	· 7		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Benzo(b)fluoranthene	7		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Benzo(k)fluoranthene	70		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Benzo(a)pyrene	2		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Indeno(1,2,3-cd)Pyrene	7		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Dibenzo(a,h)anthracene	0.7		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
	Benzo(ghi)perylene	1000		0.366 U	0.358 U	0.351 U	NA	0.347 U	0.351
PCBs	Aroclor 1016	2		NA	NA	0.0351 U	0.0355 U	0.0347 U	NA
(mg/kg)	Aroclor 1221	2		NA	NA	0.0351 U	0.0355 U	0.0347 U	NA
	Aroclor 1232	2		NA	NA	0.0351 U	0.0355 U.	0.0347 U	E NA
	Aroclor 1242	2		NA	. NA	0.0351 U	0.0355 U	0.0347 U	NA
	Aroclor 1248	2		NA	NA	0.0351 U	0.0355 U	0.0347 U	NA
	Aroclor 1254	2		NA	NA	0.0351 U	0.0355 U	0.0347 U	NA
	Aroclor 1260	2		NA	NA.	0.0351 U	0.0355 U	0.0347 U	NA
Pesticides	Deha-BHC	NS		0.0183 U	NA	0.0175 U	NA	NA	0.00351 1
(mg/kg)	Lindane	0.5		0.0146 U	NA	0.0140 U	NA	NA	0.00281 1
	Alpha-BHC	NS		00183 U	NA	0.0175 U	NA	NA	0.00351 1
	Beta-BHC	NS		0.0183 U	NA	0.0175 U	NA	NA	0.00351 1
	Heptachlor	0.2		0.0183 U	NA	0.0175 U	NA	NA	0.00351 1
	Aldrin	0.04		0.0183 U	NA	0.0175 U	NA	NA	0.00351 1
	Heptachlor epoxide	0.09		0.0183 U	NA	0.0175 U	NA	NA	0.00351 1
	Endrin	8		0.0183 U	NA	0.0175 U	NA	NA	0.00351
	Endrin ketone	NS		0.0183 U	NA	0.0175 U	NA	NA	0.00351 1
	Dieldrin	0.05		0.0183 U	NA	0.0175 U	NA	NA	0.00351
	4,4'-DDE	3		0.0183 U	NA	0.0175 U	NA	NA	0.00351 1
	4,4'-DDD	4		0.0183 U	NA	0.0175 U	NA	NA	0.00351 1
	4,4'-DDT	3		0.0183 U	NA	0.0175 U	NA	NA	0.00351 1
	Endosulfan l	լտ		0,0183 U	NA	0.0175 U	NA	NA	0.00351 T
	Endosulfan II	100		0.0183 U	NA	0.0175 U	NA	NA	0.00351 1
	Endosulfan sulfate	NS		0.0183 U	NA	0.0175 U	NA	NA	0.00351 1
	Methoxychlor	30		0.0733 U	NA	0.0702 U	NA	NA	0.0140 1
	Technical Chlordane	0.7		0.0733 U	NA	0.0702 U	NA	NA	0.0140
	Toxaphene	NS		0.0733 U	NA	0.0702 U	NA	NA	0.0140 1
	Hexachlorobenzene	0.7		0.0183 U	NA	0.0175 U	NA	NA	0.00351 1
Metals	Antimony, Total	20		2.2 U	NA	2.1 U	NA	NA	2.1
mg/kg)	Arsenic, Total	20		9.1	NA	21	NA	NA	19
*	Barium, Total	1000		37	NA	15	NA	NA	16
	Beryllium, Total	0.7		0.22 U	NA	0.21 U	NA	NA	0.21
	Cadmium, Total	2		0.44 U	NA	0.42 U	NA	NA	0.42 1
	Chromium, Total	30		19	NA	14	NA	NA	16
	Lead, Total	300		20	NA	18	NA	NA	5.6
	Nickel, Total	20		18	NA	13	NA	NA	14
	Selenium, Total	400		22 U	NA	2.1 U	NA	NA	2.1
	Silver, Total	100		0.44 U	NA	0.42 U	NA	NA	0.42
	Thallium, Total	8		2.2 U	NA	2.1 U	NA	NA	2.1
	Vanadium, Total	600		14	NA	9.8	NA	NA	11
	Zinc, Total	2500		28	NA	130	NA	NA	17
	l) (%)	NS		91	93	95		96	95

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

(1) - MCP Method 1 S-1/GW-3 standard for endosulfan used.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Composite our model and a specified quantitation initial
 NA - Sample our malyzed for the location and electrical.
 Values in Bold indicate the compound was detected.
 Values of onto in Hold and shaded type equal or exceed MCP S-F COO-2 standards

EPH - Extractable Petroleum Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

MCP - Massachusetts Contingency Plan.

Neurope volume - Computed by the sum of the detected volume and half of the quantilation Itmits for the non-detects divided by the number of samples analyted for the analyte:

the higher value of the field duplicate pairs was used in the computation.

,

Table 4 Comparison of Soil Results to MCP Method 1 Standards Former B & M Railroad Newburyport, Massachusetts

			Sample Location:	B-7	B-8	В-		B-10	Average
Analysis	Analyte	Method 1	Depth:	0-3	0-3'	0-3'	3-10	0-3'	Value
-			Date sampled:	4/3/2006	4/3/2006	4/7/2006	4/7/2006	4/4/2006	
		S-1/GW-3							
EPH	C9 - C18 Aliphatics	1000		7.02 U	7.17 U	7.25 U	7.02 U	7.94 U	9.230
(mg/kg)	C19 - C36 Aliphatics	3000		7.02 U	7.17 U	7.25 U	7.02 U	26.0	11.51
	C11 · C22 Aromatics	800		7.02 U	7.17 U	7.25 U	7.02 U	202	37,303
	Naphthalene	500		0.351 U	0.358 U	0.362 U	0.351 U	0.397 U	0.338
	2-Methylnaphthalene	500		0.351 U	0.358 U	0.362 U	0.351 U	0.397 U	0.195
	Acenaphthylene	100		0.351 U	0.358 U 0.358 U	0.362 U 0.362 U	0.351 U 0.351 U	0.397 U 0.682	0.221 0.227
	Acenaphthene	1000 1000		0.351 U 0.351 U	0.358 U 0.358 U	0.362 U	0.351 U	0.570	0.255
	Fluorene	1000		0.351 U	0.358 U	0.362 U	0.351 U	9.63	1.631
	Phenanthrene Anthracene	1000		0.351 U	0.358 U	0.362 U	0.351 U	2.92	0.538
	Fluoranthene	1000		0.351 U	0.358 U	0.362 U	0.351 U	19.6	2.735
	Рутепе	1000		0.351 U	0.358 U	0.362 U	0.351 U	16.3	2.271
	Benzo(a)anthracene	7		0.351 U	0.358 U	0.362 U	0_351 U	11.8	1.52
	Chrysene	7		0351 U	0.358 U	0.362 U	0.351 U	14.4	1.695
	Benzo(b)fluoranthene	7		0.351 U	0.358 U	0.362 U	0.351 U	10.1	1.348
	Benzo(k)fluoranthene	70		0.351 U	0.358 U	0.362 U	0.351 U	6.47	1.065
1	Benzo(a)pyrene	. 2		0.351 U	0.358 U	0.362 U	0.351 U	9.26	1.372
	Indeno(1,2,3-cd)Pyrene	7		0.351 U	0.358 U	0.362 U	0.351 U	4.72	0.849
	Dibenzo(a,h)anthracene	0.7		0.351 U	0.358 U	0.362 U	0.351 U	1.19	0,30
	Benzo(ghi)perylene	1000		0.351 U	0.358 U	0.362 U	0.351 U	4.24	0.76
PCBs	Aroclor 1016	2	•	NA	NA	NA	NA	NA	0.0176
(mg/kg)	Aroclor 1221	2		NA	NA	NA	NA	NA	0.0176
	Aroclor 1232	2		NA	NA	NA	NA	NA	0.0176 0.0176
	Aroclor 1242	2		NA NA	NA NA	NA NA	NA NA	NA NA	0.0176
	Aroclor 1248	2 2		NA	NA	NA	NA	NA	0.0176
	Aroclor 1254 Aroclor 1260	2		NA	NA	NA	NA	NA	0.0176
Pesticides	Deha-BHC	NS		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	0.0082
(mg/kg)	Lindane	0.5		0.00351 U	0.00287 U	0.00290 U	NA	0.0317 U	0.0065
(ing/KB)	Alpha-BHC	NS		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	0.0082
	Beta-BHC	NS		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	0.0082
	Heptachlor	0.2		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	0.0082
	Aktrin	0.04		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	0.0082
	Heptachior epoxide	0.09		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	0.008Z
	Endrin	8		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	0.0082
	Endrin ketone	NS		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	0.008Z
5	Dieldrin	0.05		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	0.0082
	4,4'-DDE	3		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	0.0095
	4,4'-DDD	4		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	0.0082
	4,4*-DDT	3		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	0.0119
	Endosulfan I Federalfan I	10) 10)		0.00351 U 0.00351 U	0.00358 U 0.00358 U	0.00362 U 0.00362 U	NA NA	0.0397 U 0.0397 U	0.0082 0.0082
	Endosulfan II Endosulfan culfate	NS I		0.00351 U 0.00351 U	0.00358 U 0.00358 U	0.00362 U	NA NA	0.0397 U 0.0397 U	0.0082
1	Endosulfan sulfate Methoxychlor	NS 30		0.0140 U	0.0143 U	0.00382 U	NA	0.159 U	0.0327
	Technical Chlordane	0.7		0.0140 U	0.0143 U	0.0145 U	NA	0.159 U	0.0327
	Toxaphene	NS		0.0140 U	0.0143 U	0.0145 U	NA	0.159 U	0.0327
	Hexachlorobenzene	0.7		0.00351 U	0.00358 U	0.00362 U	NA	0.0397 U	0.0082
Metals	Antimony, Total	20		21 U	2.1 U	2.2 U	NA	2.4 U	1.41
(mg/kg)	Arsenic, Total	20		17	15	27	NA	14	17.01
	Barium, Total	1000		13	13	17	NA	40	33.40
	Beryllium, Total	0.7		0.21 U	0.21 U	0.22 U	NA	0.24 U	0.11
	Cadmium, Total	z		0.42 U	0.42 U	0.43 U	NA	0.47 U	0.22
	Chromium, Total	30		12	12	16	NA	54	19.40
	Lead, Total	300		6.0	5.4	9.9	NA	28	88.29
T	Nickel, Total	20		11	12	15	NA	71	19.50
	Selenium, Total	400		2.1 U	21 U	2.2 U	NA	2.4 U	1.10
	Silver, Total	t00		· 0.42 U	0.42 U	0.43 U	NA	0.54	0.25
	Thallium, Total	8		2.1 U	2.1 U	2.2 U	NA	2.4 U	1.10
	Vanadium, Total	600		9.2	9.5	13	NA NA	20	13.45 59.80
Calida /T-+-	Zinc, Total	2500		15	15	25	95	61	91.69
Solids (Tota	17 (78)	NS		95 ·	93	92	20	84	71.07

Netce

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppru). (1) - MCP Method 1 S-IAGW-3 standard for endosulfirm used.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

NA - Sample not analyzed for the listed analyte.

Victors in Beld indicate the compound was detected. Values in Beld indicate the compound was detected. Values shown in (0.6) and slocked type equation exceed MOP S-1 UW-2 standards EPH - Extractable Petroleum Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

MCP - Massachusetts Contingency Plan.

Average value - Computed by the sum of the detected values and half of the quantitation

Inits for the non-detects divided by the number of samples unalyzed for the smalyse; the higher value of the field duplicate pairs was used in the computation.

Table 5 Comparison of Groundwater Results to MCP Method 1 Standards Former B & M Railroad Newburyport, Massachusetts

Analysis	Analyte	Method 1	Sample Location:	MW-1	MW-2	MW-4	MW-9	MW-10
		GW-3	Date sampled:	4/12/2006	4/12/2006	4/12/2006	4/12/2006	4/12/200
VOCs	Methylene chloride	· 50000		NA	NA	NA	NA NA	5.0 4.6
ug/L)	1,1-Dichloroethane	20000 10000		NA NA	NA NA	NA NA	NA	0.88
	Chloroform Carbon tetrachloride	5000		NA	NA NA	NA NA	NA	0.50
	1,2-Dichloropropane	50000		NA	NA	NA	NA	1.8
	Dibromochloromethane	50000		NA	NA	NA	NA	0.50
	1,1,2-Trichloroethane	50000		NA	NA	NA	NÁ	0.75
	Tetrachloroethene	30000		NA	NA	NA	ŇA	0.73
	Chlorobenzene	1000		NA	NA	NA	NA	0.50
	Trichlorofluoromethane	NS		NA	NA	NA	NA	2.5
	1,2-Dichloroethane	20000		NA	NA	NA	NA	0.50
	1,1,1-Trichloroethane	20000		NA	NA	NA	NA	3.8
	Bromodichloromethane	50000		NA	NA	NA NA	NA NA	0.50
	trans-1,3-Dichloropropene	2000 ⁽³⁾ 2000 ⁽³⁾		NA NA	NA NA	NA	NA	0.50
	cis-1,3-Dichloropropene 1,1-Dichloropropene	NS		NA	NA	NA	NA	2.5
	Bromoform	50000		NA	NA	NA	NA	2.0
	1,1,2,2-Tetrachloroethane	50000		NA	NA	NA	NA	0.50
	Benzene	10000		NA	NA	NA	NA	13
	Toluene	4000		NA	NA	NA	NA	1.6
	Ethylbenzene	4000		NA	NA	NA	NA	9.6
	Chloromethane	NS		NA	NA	NA	NA	2.5
	Bromomethane	50000		NA	NA	NA	NA	1.0
	Vinyl chloride	50000		NA	NA	NA	NA	7.8
	Chloroethane	NS		NA	NA	NA	NA	1.0 0.50
	1,1-Dichloroethene	30000		NA NA	NA NA	NA NA	NA NA	0.30
	trans-1,2-Dichloroethene Trichloroethene	50000 5000		NA	NA	NA	NA	17
	1,2-Dichlorobenzene	2000		NA	NA	NA	NA	2.5
	1,3-Dichlorobenzene	50000		NA	NA	NA	NA	2.5
	1,4-Dichlorobenzene	8000		NA	NA	NA	NA	2.5
	Methyl tert butyl ether	50000		NA	NA	NA	NA	1.0
	p/m-Xylene	500		NA	NA	NA	NA	4.8
•	o-Xylene	500		NA	NA	NA	NA	1.2
	cis-1,2-Dichloroethene	50000		NA	NA	NA	NA	14
	Dibromomethane	NS		NA	NA	NA	NA	5.0
	1,2,3-Trichloropropane	NS		NA	NA	NA	NA	5.0
	Styrene	6000		NA	NA	NA	NA	1.0
	Dichlorodifluoromethane	NS		NA	NA	NA	NA	5.0
	Acetone Carbon disulfide	50000 NS		NA NA	NA NA	NA NA	NA NA	5.0 5.0
	2-Butanone	50000		NA	NA	NA	NA	5.0
	4-Methyl-2-pentanone	50000		NA	NA	NA	NA	5.0
	2-Hexanone	NS		NA	NA	NA	NA	5.0
	Bromochloromethane	NS		NA	NA	NA	NA	2.5
	Tetrahydrofuran	NS	4	NA	NA	NA	NA	10
	2,2-Dichloropropane	NS		NA	NA	NA	NA	2.5
	1,2-Dibromoethane	50000		NA	NA	NA	NA	2.0
	1,3-Dichloropropane	NS		NA	NA	NA	NA	2.5
	1,1,1,2-Tetrachloroethane	50000	1	' NA	NA	NA	NA	0.50
	Bromobenzeue	NS		NA	NA	NA	NA	2.5
	n-Butylbenzene	4000(1)		NA	NA	NA	NA	5.5
	sec-Butylbenzene	4000 ⁽¹⁾ 4000 ⁽¹⁾		NA NA	NA NA	NA NA	NA NA	1.8 2.5
	tert-Butylbenzene o-Chlorotoluene	4000" NS		NA NA	NA NA	NA NA	NA NA	2.5
	p-Chiorotoluene	NS		NA	NA	NA	NA	2.5
	1,2-Dibromo-3-chloropropane	NS		NA	NA	NA	NA	2.5
	Hexachlorobutadiene	3000		NA	NA	NA	NA	0.60
	Isopropylbenzene	4000 ⁿ)		NA	NA	NA	NA	3.2
	p-lsopropyltoluene	4000(1)		NA	NA	NA	NA	1.8
	Naphthalene	20000		NA	NA	NA	NA	9.3
	n-Propylbenzene	40000		NA	NA	NA	NA	8.8
	1,2,3-Trichlorobenzene	NS		NA	NA	NA	NA	2.5
	1,2,4-Trichlorobenzene	50000		NA	ŇA	NA	NA	2.5
	1,3,5-Trimethylbenzene	4000(1)		NA	NA	NA	NA	4.0
	1,2,4-Trimethylbenzene	4000 ⁽¹⁾		NA	NA	NA	NA	23
	Ethyl ether	NS		NA NA	NA	NA	NA	2.5
	Isopropyl Ether Ethyl-Tert-Bund-Ether	NS NS		NA NA	NA NA	NA NA	NA NA	2.0 2.0
	Ethyl-Tert-Butyl-Ether Tertiary-Amyl Methyl Ether	NS NS		NA NA	NA NA	NA	NA NA	2.0
	Lieuma Anno Memor Cuer	C INO		NA NA	NA	INA.	NA	250

,

Table 5 Comparison of Groundwater Results to MCP Method 1 Standards Former B & M Railroad Newburyport, Massachusetts

Analysis	Analyte	Method 1	Sample Location:	MW-1	MW-2	MW-4	MW-9	MW-10
		GW-3	Date sampled:	4/12/2006	4/12/2006	4/12/2006	4/12/2006	4/12/2006
EPH	C9 - C18 Aliphatics	20000		100 U				
(ug/L)	C19 - C36 Aliphatics	50000		100 U				
	C11 - C22 Aromatics	30000		100 U	100 U	100 U	100 U	100 L
	Naphthalene	20000		10.0 U				
	2-Methylnaphthalene	3000		10.0 U	10.0 U	10.0 U	10.0 U	10.0 L
	Acenaphthylene	3000		10.0 U				
	Acenaphthene	5000		10.0 U				
	Fluorene	3000		10.0 U				
	Phenanthrene	50		10.0 U				
	Anthracene	3000		10.0 U				
-	Fluoranthene	200		10.0 U				
	Pyrene	20		10.0 U				
	Benzo(a)anthracene	1000		10.0 U				
	Chrysene	3000		10.0 U				
	Benzo(b)fluoranthene	400		10.0 U				
	Benzo(k)fluoranthene	100		10.0 U				
	Benzo(a)pyrene	500		10.0 U				
	Indeno(1,2,3-cd)Pyrene	100		10.0 U				
	Dibenzo(a,h)anthracene	40		10.0 U				
	Benzo(ghi)perylene	3000		10.0 U				
Metals	Antimony, Total	8000		0.8	0.5 U	0.5 U	0.5 U	0.5 U
(ug/L)	Arsenic, Total	900		3.7	29.4	· 1.5	16.3	6.8
	Baritum, Total	50000		77.3	56.8	18.2	39.5	840
	Beryllium, Total	50		0.5 U				
	Cadmium, Total	4		0.5 U	0.5 U	0.5 U	0.5 U	0.7
	Chromium, Total	300		1.9	0.5	0.9	14.2	3.4
	Lead, Total	10		1.2	0.5 U	0.5 U	6.1	2.0
	Nickel, Total	200		6.3	7.4	9.5	21.2	777.1
	Selenium, Total	100		6.0	1.0 U	2.0	1.0 U	1.0 U
	Silver, Total	7		0.5 U				
	Thallium, Total	3000		0.5 U				
	Vanadium, Total	4000		1.2	0.5 U	0.5 U	10.2	0.5 U
	Zinc, Total	900		138.6	52.4	5.0 U	20.9	35.5
Cyanide (T	otal) (ug/L)	30		NA	NA	NA	NA	167

Notes

All units in ug/L unless otherwise specified.

ug/L - micrograms per liter.

NS - No standard available for this compound.

(1)- Per the MCP VOC Analytical Method requirements, the results for these compounds

are compared to the MCP Method I GW-3 standard for C9-C10 aromatic hydrocarbons.

(2) - MCP Method 1 GW-3 standard for 1,3-Dichloropropene used.

U - Compound was not detected at specified quantitation limit.

NA - Sample not analyzed for the listed analyte.

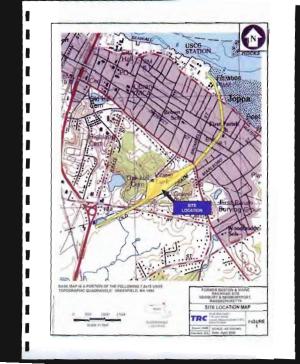
Values in Bold indicate the compound was detected

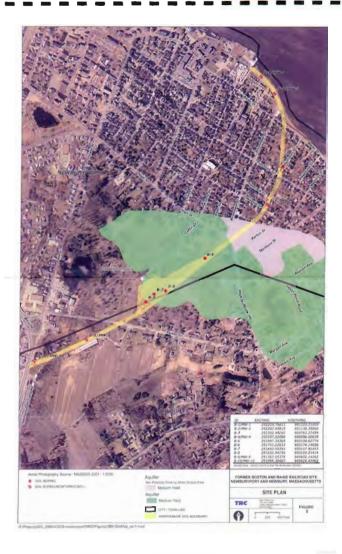
Values shown in Bold and shaded type equal or exceed MCP Method 1 GW-3 standard. (

VOCs - Volatile Organic Compounds.

EPH - Extractable Petroleum Hydrocarbons.

MCP - Massachusetts Contingency Plan


FIGURES


. .

.

•

. .

APPENDIX A

SITE PHOTOS

Client: Merrimack Valley Planning Commission/ City of Newburyport	Date Taken: April 19, 2006
Project: Phase II Site Assessment	Photographerus): F. Calandra
Type of Site: Former Rail Line	Name of Site: Former Boston & Maine Railmad Line
Location: Between Yacht Club and Water Street Adjacent to Treatment Plant	Direction facing: Southeast

Photograph 1: Northern portion of former rail line between American Yachi Club and Water Street (neur monitoring well MW-1)

Client: Merrimack Valley Planning Commission/ City of Newburyport	Date Taken: April 19, 2006
Project: Phase II Site Assessment	Photographer(s): F. Calandra
Type of Site. Former Rail Line	Name of Site: Former Boston & Maine Railroad Line
Location: Between Yacht Club and Water Street Adjacent to Treatment Plant	Direction facing: Southeast

Photograph 2: Northern portion of former rail line between American YachttClub and Water Street (near monitoring well MW-2).

Client: Merrimack Valley Planning Commission/ City of Newburyport	Date Taken: April 19, 2006
Project: Phase II Site Assessment	Photographer(s): F. Calandra
Type of Site: Former Rall Line	Name of Site: Former Boston & Maine Railroad Line
Location: Between Water Street and Harrison Street	Direction facing: North

Photograph 3: Northern side of Harrison Staret crossing (in vicinity of soil buying B-3).

Client: Merrimack Valley Planning Commission/ City of Newburyport	Date Taken: April 19, 2009
Project: Phase II Site Assessment	Photographer(s): F. Calandra
Type of Site: Former Rail Line	Name of Site: Former Boston & Maine Railroad Line
Location: Purchase Street Crossing	Direction facing: South

P

Photograph 4: Former rail line at southern side of Purchase Street.

Client: Merrimack Valley Planning Commission/ City of Newburyport	Date Taken: April 19, 2006
Project: Phase II Site Assessment	Photographer(s): F. Calandra
Type of Site: Former Rail Line	Name of Site: Former Boston & Maine Railroad Line
Location: Between Hancock Street and Chestnut Street	Direction facing: North

Photograph 5: Former rail line between Hancock Street and Chestnat Street. Monitoring Well MW-4 shown.

Client: Merrimack Valley Planning Commission/ City of Newburyport	Date Taken: April 19, 2006
Project: Phase II Site Assessment	Photographer(s): F. Calandra
Type of Site: Former Rail Line	Name of Site: Former Boston & Maine Railroad Line
Location: Between High Street and Chestnut Street	Direction facing: South

ſ l l l Į 1

Photograph 6: Former rail line between High Street and Chestnut Street looking south from Chestnut Street.

Client: Merrimack Valley Planning Commission/ City of Newburyport	Date Taken: April 19, 2006
Project: Phase II Site Assessment	Photographer(s): F. Calandra
Type of Site: Former Rail Line	Name of Site: Former Boston & Maine Railroad Line
Location: Between High Street and Parker Street	Direction facing: Northeast

Photograph 7: Former tail line between High Street and Parker Street near High Street crossing

Client: Merrimack Valley Planning Commission/ City of Newburyport	Date Taken: April 19, 2006
Project: Phase II Site Assessment	Photographer(s): F. Calandra
Type of Site: Former Rail Line	Name of Site: Former Boston & Maine Railroad Line
Location: Parker Sheet	Direction facing: Northeast

Photograph 8: Gate at northern side of Parker Street crossing.

Client: Merrimack Valley Planning Commission/ City of Newburyport	Date Taken: April 19, 2006
Project: Phase II Site Assessment	Photographer(s): F. Calandra
Type of Site: Former Rail Line	Name of Site: Former Boston & Maine Railroad Line
Location: Parker Street	Direction facing: Southwest

1

Photograph 9: Gate at southern side of Parker Street crossing.

Client: Merrimack Valley Planning Commission/ City of Newburyport	Dute Taken: Apri 19, 2006
Project: Phase II Site Assessment	Photographer(s): F. Calandra
Type of Site: Former Rail Line	Name of Site: Former Boston & Maine Railroad Line
Location: Newbury Turnpike (Route 1)	Direction facing: Southwest

1

Photograph 10: Southern portion of former rail line at Newbury Tumpike (Route 1).

B R ł ł l 1 ł ł I

Client: Merrimack Valley Planning Commission/ City of Newburyport	Date Taken: April 19, 2006
Project: Phase II Site Assessment	Photographer(s): F. Calandra
Type of Site: Former Rail Line	Name of Site: Former Boston & Maine Railroad Line
Location: Newbury Tumpike (Route 1)	Direction facing: West

Photograph 11: Photograph of southern terminus of former rail line at Newbury Turnpike (Route 1). Monitoring well MW-10 shown.

Client: Merrimack Valley Planning Commission/ City of Newburyport	Date Taken: April 19, 2006
Project: Phase II Site Assessment	Photographer(s): F Calandra
Type of Site: Former Rail Line	Name of Site: Former Boston & Maine Railroad Line
Location: Southern Terminus	Direction facing: North

1 I 1 Î ł I I. ł 1

1 || ||

Photograph 12: Southern portion of former tail line looking towards Circle Finishing site.

APPENDIX B

SOIL BORING LOGS AND MONITORING WELL CONSTRUCTION DIAGRAMS

L2006-222

		·	Project/Client		Project N	io.		Boring No. B	-1	Sheet
	RC		Former B&M R	ailroad / MVP	C 52037-00	10-00000		Well No. Mh	-1	1 of 1
Geop	probe S	oil Log	Location:	bury/Nev				TRC Geologist		
		tor/Foreman	evelan	Geoprobe	Make/Model		Sampling Contin	Description		
	er Descripti				Sampling Me	ethod	Contain	Coordinates	=	
Tempor			lled ? (list details bei	ют) У		Diameter (if use	d): NA	Ref. El.:		
Depth	14'				Sampler Diam	eter: Z.S	//	Riser Sirck-up: N	A	
Screen I	Length/Type:	101	0010 310	+ PVC	Water Table D	epth: 25'	,	Surface Elevation:		
Riser Le	ength/Type:		Z"PVC		Total Depth:	14'	•	Date Start: 4/3/06	Date Fin	ish: 4/3/0
Depth		PEN/REC		Sample De	-		Strati- graphic Description	Field Testing		iample nber
_	S-1	5.4 5 7.6	0-6"4	cowo c	00156	can d				
1 —								78		
-				graur	-		10-3-4	2.8pp-		
2			16-20"	aray t	o brow	n				
3, —			6-20" Sqn0	1 20 11		ifthe				
° -			7							
4			l c. q	ravel						
5 _	S-2	:/31	20"-3		A	day		MAD 4/3/06		. <u>-</u>
-	5-2		914	y tobro parse sa	wn 510	[]		Zippin.		
6			1 2/4	arst sa	nd		3-10'=	2.1 ppn		
7 .			3'- 3.6'	raz to !	black's	<i>i</i> 17				
	7		w13	ome ;	fand s					
8 -			-moist	O botto.				r.		
9 -			3-3,5' 592 A 315-6,9 5 atur	blackt	obrow	COAISC		<u>1</u>		
4			Sana			,			4	
10	S-3		3.5-6.5	carge	brown	sand				
11 -			satur	Jed P	4.5					
			-	v						
12 -										
13 -										
			-						;	
	Gr∰n¢lar Soil	s	Cohesive Soils	Grain Siz	e (USCS)	Notes				
Blow	ws/ft Der	sity B	lows/ft Density			1) 09	15 a B	-1/0-21.	FPI	1
	10 100	oose se dense	>2 v. soft 2-4 soft	f. sand (<0.08 mm).43-0.08 mm	2)		-1 (0-3):	Met	۹ (۶
30- >5	-50 [@] der	ise	4-8 m. stiff 8-15 stiff 5-20 v. stiff	c-sand 4	2.0-0.43 mm 1.8-2.0 mm 19-4.8 mm	3)			Pesti	cides
	Proportions	' '	5-30 v. stiff >30 hard	c. gravel 7	75-19 mm 800-75 mm	4) 092	zo: ß-	1 (3-10')	ĔРн	1
ittle 10-		20-35% 35-50%			>300 mm	, 				

,

Project: <u>Former B&M</u>	· · · ·	lo.: <u>52037-0010-00000</u>	Reference Elevation:	opofriser
Client: MVPC	D	ate Completed:	Elev. Ground Surface: _	
Location: <u>Newbury &</u>			Depth to Ground Water:	
-		lethod: Direct Push	Development Date:	5105
TRC Geologist:	011417		Development Method:	vrge/while
			protective casing:	
		Elevation of top	ctive casing: NA	
		Stick-up of riser		
Ground Elevation			seal: concreta	
				~ u1
		I.D. of protective	casing:	6-4'
		Type of protectiv	e casing: Z"PVL	
		Donth bottom of	protective casing	
		Riser pipe I.D.	protective casing	
			e:	
e		Borehole diamete	er: 31/2 "	<u> </u>
Lev.	+	Type of backfill:		
ater		·····	1 -1	
A P		Elevation/depth t	op of seal: 1-Z'	
hy an		Type and thickne	ess of seal: butonite-	1
Generalized Stratigraphy and Water Level		Depth top of filte	r pack: Z	
l Stra		Elevation/Depth	top of screen: 4	
lizec		Type of screen	0,010 slot NC (2")
nera		Slot size:		•
<u> </u>		I.D. of screen	,	
		Type of filter/san	d pack: #25and	
		Elevation/depth t	pottom of screen:	14
		Elevation/depth &	oottom of well:	14
			oottom of filter pack: elow observation well:	<u></u>

	_	Elevation/depth o	of borehole:	14

١

.

.

 $\overline{)}$

Project/Client Boring No. B-Z Sheet Project No. TRC 1 of 1 Well No. MW-7 52037-0010-00000 Former B&M Railroad / MVPC TRC Geologist Location: **Geoprobe Soil Log** Newbury/Newburyport, MA MiOliveira Geoprobe Make/Model Sampling Description Geoprobe Contractor/Foreman Geosearch /Steve Law beoprose 6600 Continuous Sampler Description: Sampling Method Coordinates 5' Macro core X =Y= Direct Push Temporary piezometer or well installed ? (list details below) Yes Drill bit/auger Dlameter (If used): NA Ref. El.: 14' Sampler Diameter: 2,5" Riser Sirck-up: NA Depth Screen Length/Type: 10'/0.010 slot PVC Water Table Depth: 26 Surface Elevation: 4'/z"PVC Total Depth: 14' Date Start: 4/3/06 Date Finish: 4/8/06 Riser Length/Type: Strati-Field Lab Sample Sample Depth PEN/REC Sample Description graphic Testing Number Number Descriptio 0-1.5' brown to dark brown 513 S-1 M. Sand w/ some silt, little clay 0-3'= 2,8ppm 1 115-215' brown to black 2 sand + silt w/ little clay 3 + little red brick fragments 2.5-3' brown to dark brown 4 silt + clay w/ some sand 5 512.5' S-2 5-6,5' brown f-m sand 3-10=50,7ppm 6 6.5-8.5' saturated brown 7 M-C. sand w/ black c, sand 8 -saturated @ 6' 9 10 . S-3 11 12 13 -GrSadlar Solls Grain Size (USCS) Notes Cohesive Soils 1) 10:05: B-2(0-3') EPH Blows/ft Density Blows/ft Density 0-4 v. loose <0.08 mm silt/clay >2 v. soft 4-10 loose 2-4 soft f. sand 0.43-0.08 mm m. dense 10-30 Pesticides 4-8 m. stiff m. sand 2.0-0.43 mm 3) 10:10: B-2(3-10) EPH 30-50 dense c. sand 4.8-2.0 mm 8-15 stiff >50 v. dense 19-4.8 mm v. stiff f. gravel 15-30 c. gravel 75-19 mm Proportions >30 hard 300-75 mm cobble FD: B-X(0-3) EPH, Matuls, Pesticides trace 0-10% some 20-35% >300 mm boulder little 10-20% and 35-50% @falsetime 09:40

TRC	Monitorin	ng Well Construct	tion Summary	Well No. MW - 2_
Client: <u>MVPC</u> Location: <u>New</u>	Da Da Da		Reference Elevation:	≈6'
	Me M.Oliveira		Development Date: Development Method: 5 • -	ge/WhalePun
Ground Elevation		Elevation of top r Stick-up of protect Stick-up of riser p Type of surface s	ctive casing: NA pipe: NA seal: <u>concect</u>	0-4'
		I.D. of protective	casing: e casing: <u>Z''PVC</u>	<u></u>
		Depth bottom of p Riser pipe I.D. Type of riser pipe Borehole diamete		
Generalized Stratigraphy and Water Level			op of seal: 1/2 1-2 4/3105 ss of seal: bunton; t - 1	
stratigra		Depth top of filter	op of screen: 4/	
Generalized S		Type of screen	D,010 510+ NC (2")
		Type of filter/sand	pack: #2 Sand	
				14 14 14
		Elevation/depth o	f borehole: _	19

· ·

• • •

Boring No. 5 - 4 **Project/Client** Sheet Project No. TRC 1 of 1 Well No. MW-1 52037-0010-00000 Former B&M Railroad / MVPC **TRC Geologist** Location: Geoprobe Soil Log Newbury/ Newburyport, MA MOLIVINA Geoprobe Contractor/Foreman Geoprobe Make/Model Sampling Description Leosegrch / Steve Law Geoprove 6600 Continuous Sampler Description: Sampling Method Coordinates 51 Macro core Y= X= Direct Push Temporary prezometer or well installed ? (list details below) Yes Drill bit/auger Diameter (if used): NA Ref. El.: Sampler Diameter: 2,5" 20' Riser Sirck-up: NA-Depth 101/0.010510+ PVC Water Table Depth: 215 Screen Length/Type: Surface Elevation: Date Start: 4/ 2/06 10'/2"PVC Date Finish: 4/3/06 Total Depth: 20' Riser Length/Type: Strati-Field Lab Sample Sample Depth PEN/REC Sample Description graphic Testing Number Number Description 51/3.51 0-6": brown topsoil made up of silt w/ trace rootsrom S-1 1 6"-3" : brown to orange f-m 0-3 1.5pm 2 sand wi some clay, trace silt + grave 1 some clay, trace silt 3'-3.5': dark brown to brown 3 m. sand and silt w/ little 4 elay, trace grand 1 5 5'/3,75' S-2 5-5,5' same as 3-3,5' 6 5.5-8.75' light bown to 3-10 Z.1ppm brown F-m sand w/ trace 7 Clay, little gravel 8 9 10 -51/51 S-3 10-12 Same as above 12-13': gray to brown m-c sand w/ some cigram! 11 10-15-0.7ppm 12 13-15'; light brown to brown for sand w/ little silt 13 + clay, Moist B14' 1) (2:20: B-4(0-3') MS/MSD EPH 2) Pesticidus Grain Size (USCS) Notes Grandlar Soils **Cohesive Solls** Blows/ft Density Blows/ft Density 0-4 v. loose silt/clay <0.08 mm Pesticitus >2 v. soft 4-10 loose 0.43-0.08 mm ' f. sand 2-4 soft Metals 2.0-0.43 mm 10-30 m. dense m. sand m. stiff 4-8 30-50 dense c. sand 4.8-2.0 mm 8-15 stiff 3) 12:25. B-4(3-16) >50 v. dense 19-4.8 mm 15-30 v. stiff f. gravel c. gravel 75-19 mm Proportions >30 hard 4) cobble 300-75 mm trace 0-10% some 20-35% boulder >300 mm little 10-20% and 35-50%

			· · ·	MW - 2
Project: Former B&M I	Railroad No.:	52037-0010-00000	Reference Elevation:	spot riser
Client: MVPC	Date B	Completed:	Elev. Ground Surface: _	
Location: <u>Newbury & </u>	ewburyport. MA		Depth to Ground Water:_	
Boring Contractor: Ge	osearch Metho	od: <u>Direct Push</u>	Development Date:	//3/06
TRC Geologist:	oliviira		Development Method:	voge / Whale Pe
		 Elevation top of p 	protective casing:	
		- Elevation of top r	iser pipe:	
		Stick-up of protection	ctive casing: NA	
A A		 Stick-up of riser 		
Ground Elevation		— Type of surface s	eal: grove concrete MAD 4/SIDL	
		 I.D. of protective 	casing: Z'PVC	
		Type of protective	e casing	
		 Depth bottom of [protective casing	10'
		 Riser plpe I.D. 	a	
		Type of riser pipe	Z"PVC	
		 Borehole diameter 		
le ve				
s' Le		Type of backfill: -		
Wate		Elevation/depth t	op of seal:	6
pug		•	ss of seal: heatonita - 2	7
х Ч		Type and unckne	SS OF Sedi	al
a a	◀	Depth top of filter	pack:	<u> </u>
Generalized Stratigraphy and Water Leve		Elevation/Depth t	op of screen:	10'
S De				
aliz	│ │ │ │ │ │ │ ────	Type of screen	0.010 Slot PVC (2")	
Jou .		Slot size:		
ŏ		I.D. of screen		· · · ·
	┥	Type of filter/sand	pack:	
			·	
		 Elevation/depth b 	ottom of seroop	20'
		 Elevation/depth b Elevation/depth b 		20'
		 Elevation/depth b 	ottom of filter pack: alow observation well:	20'

.

•

•

Project/Client Boring No. B-5 Sheet Project No. TRĆ 1 of 1 Well No. 52037-0010-00000 Former B&M Railroad / MVPC Location: **TRC Geologist Geoprobe Soil Log** Newbury/Newburyport, MA M.Oliveira Geoprobe Make/Model Geoprobe Contractor/Foreman Sampling Description (seosearch/Steve Law 6 10 Dro 20 6600 Continuous Sampler Description: Sampling Method Coordinates 5' Macro core Y≔ X= Direct Push Temporary plezometer or well installed ? (list details below) Drill bit/auger Diameter (if used): NA Ref. EL: Sampler Diameter: 2.5" Riser Sirck-up: N 🛧 Depth Screen Length/Type: Water Table Depth: Surface Elevation: 10' Total Depth: Date Start: 4/3/06 Date Finish: 43/0 L Riser Length/Type: Strati-Fleid Lab Sample Sample PEN/REC Sample Description Depth graphic Testing Number Number Description 51/31 S-1 0-1: brown - light brown M. gand 1 and silt, black roal ash like 0-3 = 5. Sppm naterial present for 8-9" 2 1-31: brown to light brown 3 f-m sand w/ trace c.sand 4 5 5/3.5' Same as 1-3'above 3-101 = 3.4pp S-2 6 dry to bottom 7 8 9 10 S-3 11 12 . 13 -Notes Gigadlar Soils Grain Size (USCS) **Cohesive Soils** 1)13:50: B-5(0-3')EPH Blows/ft Density Blows/ft Density 0-4 v. loose silt/clay <0.08 mm >2 v. soft 4-10 loose 2) f. sand 0.43-0.08 mm *psticides* 2-4 soft 10-30 m. dense 2.0-0.43 mm m. sand 4_8 m. stiff 3) 13:55: B-5(3-10) PCBS ZEPH, PCBS (PCB M5/MSD) 30-50 dense 8-15 stiff c. sand 4.8-2.0 mm v. de<mark>nse</mark> >50 19-4.8 mm 15-30 v. stiff f. gravel c. gravel 75-19 mm Proportions >30 hard cobble 300-75 mm trace 0-10% some 20-35% FD: B-Y(0-3'): PCB. @ false >300 mm boulder little 10-20% and 35-50% time 13:20

	76		Project/Client		Project N	No.		Boring No.	-6	Sheet
		•	Former B&M	Railroad / MVP	C 52037-00	10-0000		Well No		1 of 1
Geop	orobe	Soil Log	Location:	and a star	Alema			TRC Geologist		
Geopre	obe Contr	actor/Foreman		Geoprobe	Make/Model	7 0010,1		Description	Veire	×
			iterclaw	· · ·	prose 6	600	Contir	-		M 1978
Sample	er Descrij		OCOIL	Í	Sampling Mo Direct Pu:		1	Coordinates X= Y	_	
Tempor	ary plezon		alled ? (list details b	elow) No		· Diameter (if use	d): NA	Ref. El.:		
Depth					Sampler Diam	eter: 7.5"		Riser Sirck-up:	'A	
Screen l	Length/Typ	pe:			Water Table D	epth:		Surface Elevation:		
Riser Lo	ength/Type	::			Total Depth:	3'	- ·· ·	Date Start: 4/3/06	Date Fini	ish: 4/3/
Depth	Sample	PÉN/REC		Sample De	scription	<u> </u>	Strati- graphic	Field	Lab S	ample
Depth	Number		•	-	-		Description	Testing	Num	uber
-	S-1	3/2.25	0-6'': b	prown to	psoil co	nsisting				
1 —			ot m-	Csand	land s	ilt,		-01		
2 -			roots p	asont, lit	ttle fr	ne granel	0-5	8.1pp~	,	
-			6-"2.25	· lisht b	cown to	brown				
3 —				and, to		17				
4 _			- M-C 3	and it	ace st	1 hotto				
4 —				one cont	se towa					
5 —			DRY							
-	S-2	<u></u>	-							
6 -			_							
7 -										
•			_							
8 -			-							
		,								
9 -			_							
10 -			_			:				
+	S-3									
		-								
12 -			_							,
-			-							
13			-							
1				1						
	Gifgadlar S		Cohesive Soils	Grain Size	e (USCS)	Notes			р	
Biov 0-	4 v	/. loose	Blows/ft Density >2 v. soft	r -	≈0.08 mm	1) 4:4 0	: B-6((0-31) EF Me Pes	fale	
4-) 10- 30-	30 n	oose n. dense lense	2-4 soft 4-8 m. stiff	m. sand 2	0.43-0.08 mm 2.0-0.43 mm	2)		Pes	ticid	15
>5	50 v	. dense	8-15 stiff 15-30 v. stiff	f. gravel 1	9-4.8 mm	3)				
trace 0-		ne 20-35%	>30 hard	cobble 3	5-19 mib 300-75 mm -300 mm	4)		· · ·		
	10% son	ne 20-35%			00-75 mm -300 mm	4)		· . · ·		

÷.

ł

J

77	26	ſ	Project/C	Client		Project	No.		Boring No. 👂	-7	Sheet
			Former	B&M Rails	road / MVI	C 52037-0	010-00000		Well No		1 of 1
Geog	orobe	Soil Log	Location		and l	Nanh	· ·····	14	TRC Geologist		
		ractor/Forema			• • •	Make/Model	yport, N		Description	~ ~ ~	-
		earch /	Stevel	an				Conti	nuous		
Sample	r Descri	ption:	a		.	Sampling M Direct Pu			Coordinates X= Y	=	
Tempor		meter or well ins		etails below)	No		r Diameter (if use	d): NA	Ref. El.:		
Depth						Sampler Dian	neter: 25	11	Riser Sirck-up: \Lambda	A	
Screen I	.ength/Ty	pe:				Water Table I	Depth:		Surface Elevation:		
Riser Le	ngth/Typ	e:				Total Depth:	3'		Date Start: 4/106	Date Finish	4/10
Depth	Sample Number	PEN/REC			Sample De	•		Strati- graphic Description	Field Testing	Lab San Numbe	
	S-1	3'/2.75	0-6	': bla	ckto	brown	too				
1 -			- 50	1+0	M to	e se il .	's silt				
-		•	and	1 <i>F</i>		r	ancest.		74		
2					i sana	. 10015	- the	0-3-	2.4ррт		•
3 -			6-2	: : 55	brown	to lig	W Drow				
4			_ ~	1-2 ;	sange.	DRY	•				
4 -			_		-						
5 _											
	<u>S-2</u>		_!								
6 -											
7											
í			_								
8 -											
。_											
, _			_								
10 -	6.2										
. †	S-3										
			_				,				
12 -			_								
. †	——		-								
13											
				i			1				
. G Blow	Signdiar S /s/ft I	oils Density	Cohesive Soi Blows/ft Den	1	Graîn Siz	e (USCS)	Notes	: R-7	(0-3'): El Me Pes	OH.	
0 4-1	4	v. loose loose	>2 v. s 2-4 soft	oft si		:0.08 mm 0.43-0.08 mm	2)		Me	tals	
10-3 30-3	50	m. dense dense		stiff m	a. sand 2	.0-0.43 mm 1.8-2.0 mm	2)		Pes	sticid	5
>5	0 Proportio	v. dense ns		tiff f. rd c.	gravei 7	9–4.8 mm 5-19 mm	3)				
race 0-1 ittle 10-2		ne 20-35% d 35-50%				00-75 mm 300 mm	4)				

ł

Î

,								·····
TRC	•	Project/Client		Project !	No		Boring No.	3-8 Sheet
		Former B&M R	ailroad / MVI	ed 52037-00	10-00000		Well No	1 of 1
Geoprobe S	oil Log	Location: Neu	bury/	Newby.	yport, 1	MA	TRC Geologist	
Geoprobe Contra-			Geoprobe	Make/Model			g Description	·
Sampler Descripti				Sampling Me Direct Pu			Coordinates X= Y	~
- Temporary piezome	ter or well insta	illed ? (list details bel	ow) No	Drill bit/auger	Diameter (if use	a): NA	Ref. El.:	
Depth				Sampler Diam	eter: 2.5'	1	Riser Sirck-up: 🔥	JA
Screen Length/Type	: .			Water Table D	epth:		Surface Elevation:	
Riser Length/Type:		_		Total Depth:	31		Date Start: 4/3/06	Date Finish: 4/3/06
Depth Sample Number	PEN/REC		Sample De	escription		Strati- graphic Description	Field Testing	Lab Sample Number
S-1	3'/3'	- 0-1':da	4 1 -	. + -	• • •			
1		- 1	(K b /0 b					
		- Topsoil	comprise	or t	- Gsand	~ -	20ppm	
2		- ana sil	w tr	ace C.	gravel	2-2-	Coppm	
3		- [-5:((ght bro	wh t' -	C.sand			
		- DRY						
4		-						
_								
5 <u> </u>								
6		_						
		_						
7					-			
8		_						
- -		_						
9		-						
10				-				
<u>S-3</u>	,	_						
11		-						
12 ++		-1.						
12]						
13		-						
+		-						
Gr§a¢iar Soi	lls	Cohesive Soils	Grain Siz	ze (USCS)	Notes	I		. I
	nsity 1 loose	Blows/ft Density >2 v. soft	süt/clay	<0.08 mm	1) 16:10):B-8	(o-3') : El Ma Pe	
4-10 lo	ose dense	2-4 soft 4-8 m. stiff	f. sand	0.43-0.08 mm 2.0-0.43 mm	2)		Ma 2	Tals 1
30-50 de	nse dense	4-8 m. sun 8-15 stiff 15-30 v. stiff	c. şand	4.8-2.0 mm 19-4.8 mm	3)		12	sticitus
Proportions trace 0-10% some	20-35%	>30 hard	c. gravel	75-19 mm 300-75 mm	4)			
little 10-20% and	35-50%		boulder	>300 mm]		•	

Ļ

f

Ĵ

TR		Project/Client: Former B&M Railro MVPC	oad/	Project No. 52037-0010-0	0000		Boring No. 8- Well No. MM		
Geoprob	e Soil Log	Location: Newking	1 Mansh	un part	- м	A	TRC Geologist		
- Geoprobe Co	ntractor/Foremai		eoprobe Mal				Description	am	
Geose	unch / Bri	en Lare				Cont	timous		
Sampler Des 60" N	cription: Aacrocore			Filling Method			Coordinates X= Y	=	
Well Installatio			D	rill Bit/Auger Dian	neter: N	A	Ref. El.:	•	
Depth	18'		н	lammer weight/fall			Riser Stick-up:		
Screen Length/			v	Vater Table Depth:	~ 8'	,	Surface Elevation:		
Riser Length/T	'ype: 8 '		Т	otal Depth: •			Date Start: 04 07 06	Date Finish; 04 07 06	
Depth Samp	PENDER		Sample Desci			Strati- graphic - Description	Field Testing	Lab Sample Number	
1	3'/3'	0-6" broad and road 6"-3' to Trace gran	un top b in fmi	seil, sil - medeur	L- Soud		1.3 ppm		
2	5'/5'	_					1.3 pp m 1.3 pp m		
5 <u>S-2</u> 6 <u></u> 7				·			0 '4 ppm		
8 9 10 S-3	5'/5'	- 8-11 Lan - trace gre - 11-12 L - Sand, L	fine. mel (1 Ian fu Taci gr	to medua moist) ni do ma accel CS	. Sand dun aturat	(1.3ppm 0.41pm		
		- - - - - - - - - - - - - - - - - - -	preenus)	- gray (Clay				
	Density v. loose loose m. dense dense v. dense	2-4 soft f. 4-8 m. stiff m 8-15 stiff c. 15-30 v. stiff f. >30 hard c. code code code	sand 0.43 5 sand 2.0- 5 sand 4.8- gravel 19 gravel 75- 5bble 300	1 08 mm 3-0.08 mm 2-0.43 mm 2.0 mm 4.8 mm 19 mm -75 mm 4 00 mm		ed for	9.00 0-3 ft EPH Metala Peatrindus	930 3-10 ft Eph	
	ana 55-5070			we	ll Inst	ellatio	n - 1.5 HB #2 gr	entoniti ade Saud	

TRC	Project/Client Former B&M Railroad/ MVPC	Project No. 52037-0010-00000		Boring No. B-	Sheet
-		l		Well No. MW	<u>9</u> <u>2</u> of <u>2</u>
Geoprobe Soil Log	Location Description	/ newburyd	ul-	TRC Geologist	์ กา
Depth Sample PEN/REC	Sample De		Strati- graphic Description	Field Testing	Lab Sampie Number
S-3	13'-18' gruenul (moist)	-gray Clay	/		
15	(moist)				8. Cu.
				•	
16	-				[
	-				
17	-				
18	ist as any	L MAN Class			
	18'- 28' gruens moist	n you any			
19					
20 S-5					
21					
	-				
22	-				
0.0			.		
23	EOB - 1	3#			
24	-				
25 S-6	-		-		
26	- -				
	-				
27	-				
A	-				
28					
29	-				
+	-				
30					
31	-				
Granular Soils	Cohesive Soils Grain Size	(USCS) Notes			
Blows/ft Density Bl	ows/ft Density	10			
4-10 loose	2-4 soft f. sand 0.).08 mm 43-0.08 mm 0-0.43 mm 2)			
30-50 dense g	3-15 stiff c. sand 4.	8-2:0 mm 9-4.8 mm 3)			
Proportions	>30 hard c. gravel 75	5-19 mm 00-75 mm 4)			
ace 0-10% some 20-35% Ne 10-20% and 35-50%		300 mm			

• .

roject: <u>Former B&M R</u> lient: MVPC	tailroad No.: 52037-0010-00000 Date Completed:	Reference Elevation:	
ocation: <u>Newburv & N</u>		Elev. Ground Surface:	~ 8K-
	osearch Method: Direct Push	Development Date:	4/07/06
RC Geologist:		Depth to Ground Water: Development Date: Development Method:	e / Whale Pre
			•
		protective casing:	
	Elevation of top		Flush
	Stick-up of prote		< Flush
Ground	Stick-up of riser	pipe	
Elevation		Callar	
	I.D. of protective	casing:	4 "
	Type of protectiv	ve casing: Road Box	
		protective casing	2"
	Riser pipe I.D.	C + d. d. have	
	Type of riser pip	e: Schiebule 40prC	
	Borehole diamet	AP1	3.5
evel		# 2 Fillie Sand	
- L			
aphy and Water Level	Elevation/depth	top of seal:	4.5
and		ess of seal: Bentonit	
, hy		Chip NI.5 ft	<i>a</i> 1
grap	Depth top of filte	r pack: —	61
Generalized Stratigr	Elevation/Depth	top of screen:	8
S .		-	
alize	Type of screen:	0.010 Stat PVC (2") Schedule 40 PVC	
uera	Slot size:	Schedule 40 PVC	o 'I
පී	I.D. of screen		2
	Type of filter/san	d pack: # 2 Fillis	
		Sand	
			18'
	Elevation/depth l	bottom of screen:	181
	Elevation/depth ł	oottom of filter pack:	18'
	Type of backfill b	elow observation well:	
	Elevation/depth of		23
1			

•

.

T R		Project/Client		Project N	io.		Boring No. B	10 Sheet
		Former B&M R	ilroad / MV	PC 52037-00	10-00000		Well No. Mu	
Geopro	be Soil Log	Location: Newb	Ym/N	lewbury	port, N	1A	TRC Geologist	
• •	Contractor/Forema Search		Geoprob	e Make/Model			Description	
Sampler De		lacrocore	×	Sampling Me Direct Pus			Coordinates X= Y	
Temporary p	iezometer or well ins	talled ? (list details belo	") Yes	Drill bit/auger	Diameter (If use	i): NA	Ref. El.:	
Depth	/4'			Sampler Diam	eter: 7.5'	1	Riser Sirck-up: 🔥	IA I
Screen Lengt	h/Type: 10'/0	,010 Slot P	VC	Water Table D	epth: 🌮	2'	Surface Elevation: -	
Riser Length		" puc		Total Depth:	14'		Date Start: 4/4/06	Date Finish: 4/4/06
	nple nber PEN/REC	_	Sample D			Strati- graphic Description	Field Testing	Lab Sample Number
<u>S</u> -	1 3'/22		ack to !	brown they	and t	Fill		
1		- siti	+ w/ 50	ne ciq	ravel +	?		
,		- trai	e OM,	me ciq trace c	obble		NM	
2		6-12.	light	brown 1	n-c.			
3		_ Sque	1 w/ 1	ittle f	gravel	V		- x
4		12'-1211 Mag 4/4/	: cobb	k+ G	ravel			
·		- 15" 16"	•					
5	2 .	15":18":	510W 1	C, 59n0	t + figran	1		
6	2	- 18-22":	light	brown ,	togray			
			sand	and (iff	1 Enter	j -		
7		- 20 -20 ;	lights	form Co	DATSO			
		Sand	w/ lit	He	figrame	<i>i</i>		[
8 —		- Sand Water f	usle X	·2'!!				
9				•				
10		_						
<u>S-</u>	3	·						
11								
12		_		•				
+		_					-	
13		-			. "			
					· · · ·	-		
Gr§¤ Blows/ft	dlar Soils Density	Cobesive Soils Blows/ft Density	Grain Si	ze (USCS)	Notes	R	-10(0-3)	EPH
0-4 4-10	v. loose loose	>2 v. soft 2-4 soft	silt/clay f. sand	<0.08 mm 0.43-0.08 mm	2)			: EPH 7 Metals Pesticides
10-30 30-50	m. dense dense	4-8 m. stiff 8-15 stiff	m. sand c. sand	2.0-0.43 mm 4.8-2.0 mm	3)	couldas	mensure (Pesticides
>50 Proj	v. dense portions	15-30 v. stiff >30 bard	f. gravel c. gravel	19-4.8 mm 75-19 mm	4) 501	volum	lue to insuf a Eter fill	ficient
	some 20-35%	1	cobble bouider	300-75 mm >300 mm	" 100	tainer		

÷

Project: <u>Former B&A</u>	Railroad No.: 52037-0010-00000	Reference Elevation: 1000	Eriser
Client: <u>MVPC</u>	Date Completed:	Elev. Ground Surface:	
Location: <u>Newbury &</u>		Depth to Ground Water:	L Tak
	Geosearch Method: Direct Push	Development Date: 4/4	
TRC Geologist: <u>M</u>	iOliveira	Development Method: 50192	(Whate Pump
Cround	Elevation of top r Stick-up of protect	ctive casing: NA pipe: NA	·
Ground Elevation	Type of surface s	seal: concrete	5-4.1
aphy and Water Level	 Depth bottom of Riser pipe I.D. Type of riser pipe Borehole diamete Type of backfill: - 	e casing: <u>Z"PVC</u> protective casing 	
	 Type and thickne Depth top of filter Elevation/Depth t 	r pack: Z'	
Generalized Stratig	Slot size: I.D. of screen	d pack: #2 Sand	
	· · · ·		14 14 14 14
	Elevation/depth o	of borehole:	<u> </u>

· -

APPENDIX C

SOIL AND GROUNDWATER ANALYTICAL LABORATORY REPORTS

Former Boston & Maine Railroad, Newbury & Newburyport, MA Data Usability Assessment

The data associated with soil samples collected 4/3/06, 4/4/06, and 4/7/06 and groundwater samples collected 4/12/06 were reviewed. In general, the data are usable for MCP decisions based on the Compendium of Analytical Methods (CAM) requirements for acceptable accuracy, precision, and sensitivity. Although there were select quality control (QC) nonconformances, the data are valid as reported and may be used for decision-making purposes with the following caution.

 Potential uncertainty exists for the majority of EPH constituents in soil sample B-2 (0-3') due to field duplicate variability. Select results in the original sample exceed the S-1 RC and should be used for decisionmaking purposes in order to remain conservative.

Details on the data usability assessment are provided below.

I. Soil Samples

t

There were no biases or uncertainty associated with the PCB analyses of soil samples. Sensitivity was not acceptable for gamma-BHC (lindane) in select samples (i.e., nondetect results exhibited quantitation limits above the applicable S-1 RC). The following table summarizes the affected samples.

Analyte Affected	Affected Samples	S-1 RC (mg/kg)	Quantitation Limits (mg/kg)
Gamma-BHC	B-1 (0-3'), B-2 (0-3'), B-3 (0-	0.003	0.0290, 0.0150, 0.0148,
(Lindane)	3'), B-4 (0-3'), B-5 (0-3')		0.0146, 0.0140

A. Low-Biased Results

Potential low bias exists for the barium results in all soil samples due to slightly low recovery in the matrix spike analysis. The overall data usability and decision-making process was not affected by the QC nonconformance as all results for barium were over an order of magnitude below the applicable RC.

B. High-Biased Results

Potential false positives (or high bias) exist for zinc results in all soil samples with the exception of B-9 (0-3') and B-9 (3-10') due to method blank contamination. The overall data usability and decision-making process was not affected by the blank contamination since the detected results for zinc were below the applicable RC in all associated samples.

C. Potential Uncertainty

Potential uncertainty exists for select results due to various QC nonconformances. The majority of EPH constituents showed high variability in the field duplicate performed on sample B-2 (0-3'). The end user of the data should use the results of the original sample which exhibited higher concentrations of all constituents, some of which exceeded S-1 RCs in the original sample only. In general, the overall data usability and decision-making process was not affected by the other QC nonconformances, as shown in the table below.

Samples Affected	Analytes Affected	Reason for Uncertainty	Reason Data Usability or Decision- making Process Not Affected
B-4 (0-3')	Hexachlorobenzene	MS/MSD RPD nonconformance	Result significantly below the S-1 RC
B-10 (0-3')	Fluorene	LCS/LCS Duplicate RPD nonconformance	Result significantly below the S-2 RC

III. Groundwater Samples

There were no biases or uncertainty associated with the metals and cyanide analyses of groundwater samples. Sensitivity was acceptable for all analyses (i.e., quantitation limits were below the MCP GW-2 RCs for all nondetect results).

A. Low-Biased Results

Potential low bias exists for select results due to various QC nonconformances. In general, the overall data usability and decision-making process was not affected by the QC nonconformances, as shown in the table below.

Samples Affected	Analytes Affected	Reason for Low Bias	Reason Data Usability or Decision making Process Not Affected
MW-10	C9-C18 Aliphatics and C19- C36 Aliphatics	Low surrogate recovery	Nondetect results for these hydrocarbon ranges significantly below the GW-2 RC
MW-10	Dichlorodifluoromethane	Low recovery in LCS and LCS Duplicate	Nondetect result for this compound significantly below the GW-2 RC

•

.

.

.

.

•

.

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: TRC Environmental Corporation	Laboratory Job Number: L0604684
Address: Boott Mills South 116 John Street Lowell, MA 01852	Date Received: 05-AFR-2006
Attn: Mr. Frank Calandra	Date Reported: 08-MAY-2006
Project Number: 52037-0010-00000	Delivery Method: Alpha
Site: FORMER B&M RAILROAD	

The following questions pertain only to MCP Analytical Methods

An affirmative response to questions A,B,C & D is required for "Presumptive Certainty" status

- A. Were all samples received by the laboratory in a condition consistent with those YES described on their Chain-of-Custody documentation for the data set?
- B. Were all QA/QC procedures required for the specified analytical method(s) included YES in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?
- C. Does the analytical data included in this report meet all the requirements for YES "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?
- D. VPH and EPH methods only: Was the VPH or EPH method run without significant YES modifications, as specified in Section 11.3?

A response to questions E and F is required for "Presumptive Certainty" status

- E. Were all QC performance standards and recommendations for the specified method(s) NO achieved?
- F. Were results for all analyte-list compounds/elements for the specified method(s) YES reported?

Any answers of NO to the above questions are addressed in the case narrative.

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by: Director

05080616:28 Pa

Page 1 of 59

Laboratory Job Number: L0604684 Date Reported: 08-MAY-2006

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L0604684-01	B-1 (0-3')	NEWBURYPORT, MA
L0604684-02	B-1 (3-10')	NEWBURYPORT, MA
L0604684-03	B-X (0-3')	NEWBURYPORT, MA
L0604684-04	B-2 (0-3')	NEWBURYPORT, MA
L0604684-05	B-2 (3-10')	NEWBURYPORT, MA
L0604684-06	B-3 (0-3')	NEWBURYPORT, MA
L0604684-07	B-4 (0-3')	NEWBURYPORT, MA
L0604684-08	B-4 (3-10')	NEWBURYPORT, MA
L0604684-09	B-Y (0-3')	NEWBURYPORT, MA
L0604684-10	B-5 (0-3')	NEWBURYPORT, MA
L0604684-11	B-5 (3-10')	NEWBURYPORT, MA
10604684-12	B-6 (0-3')	NEWBURYPORT, MA
L0604684-13	B-7 (0-3')	NEWBURYPORT, MA
L0604684-14	B-8 (0-3')	NEWBURYPORT, MA
L0604684-15	B-10 (0-3')	NEWBURYPORT, MA

05080616:28

Page 2 of 59

.

•

ALPHA ANALYTICAL LABORATORIES NARRATIVE REPORT

Laboratory Job Number: L0604684

Report Submission

This report replaces the report issued April 13, 2006. The EPH narrative section has been amended and the non-diluted EPH run of L0604684-15 has been added to the report.

MCP Related Narratives

Metals

The WG235174-4,5 solid LCS/LCSD % recoveries for Cd are acceptable since they fall within the vendor specified control limits.

In reference to question E:

The WG235175-2 MS % recovery for Ba is outside the acceptance criteria for the method. A post analytical spike was performed with an acceptable recovery of 99%.

PCB

WG235183

Extraction method 3545

Cleanup method 3665A

Pesticides

WG235185

Extraction method: 3545

Cleanup method: 3620B

In reference to question E:

The MS/MSD RPD for Hexachlorobenzene is above method acceptance criteria.

The following samples have elevated limits of detection due to analytical dilutions required by the matrix of the samples. Failure of instrument QC required reanalysis on dilution. The Reporting limits were not achieved for Lindane:

L0604684-03, -04, -07, -10 (5x)

L0604684-01 and -15 (10x)

L0604684-06 has elevated limits of detection due to the 5x dilutions required by the elevated concentrations of target compounds in the sample. The Reporting Limits were not achieved for Lindane.

In reference to question E:

The surrogates could not be recovered on -01 and -15 due to the dilutions required to quantitate the samples.

05080616:28 Page 3 of 59

ALPHA ANALYTICAL LABORATORIES NARRATIVE REPORT

Laboratory Job Number: L0604684

Continued

EPH

WG235816:

Extraction method 3545

L0604684-04 has elevated limits of detection due to the 2x dilution required by the elevated concentrations of target compounds in the sample. The dilution was based on the physical appearance of the final extract.

The results for L0604684-15 were re-evaluated at the client's request. It was determined that an analytical oversight occurred with the first analysis and the initial results were not reported.

L0604684-15 required re-analysis on a 2x dilution in order to quantitate the sample within the range of the calibration. The result is reported as a greater than value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the range of the calibration.

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Condition of Sample:	Satisfactory	Field Prep:	None	
Sample Matrix:	SOIL	Date Reported :	08-MAY-2006	
	B-1 (0-3')	Date Received :	05-APR-2006	
Laboratory Sample Number:	L0604684-01	Date Collected:	03-APR-2006 09:1	15

Number & Type of Containers: 3-Amber

PARAMETER	RESULT	UNITS	RDL	REF M	ETHOD	DA PREP	TE	ID
Solids, Total	92	q	0.10	30 25	540G		0410 12:3	7 PD
otal Métals by MCP 6000/7000	serles	ېردونې ور د د. مېردې د کې		60,60	010B			- 22
Antimony, Total	ND	mg/kg.	2.2	60 60	010B	0406 17:45	0407 12:1	7 RW
Arsenic, Total	12	mg/kg	0.43	60 60	010B	0406 17:45	0407 12:1	7 RW
Barium, Total	43	mg/kg	0.43	60 60	010B	0406 17:45	0407 12:1	7 88
Beryllium, Total	ND	mg/kg	0.22	60 60)10в	0406 17:45	0407 12:1	7 RW
admium, Total	ND	mg/kg	0.43	60 60)10в	0406 17:45	0407 12:1	7 RW
Chromium, Total	15	mg/kg	0.43	60 60	010B	0406 17:45	0407 12:1	7 RW
ead, Total	80	mg/kg	2.2	60 60	010B	0406 17:45	0407 12:1	7 RW
lickel, Total	12	mg/kg	1.1	60 60	010B	0406 17:45	0407 12:13	7 RW
elenium, Total	ND	mg/kg	2.2	60 60	010B	0406 17:45	0407 12:1	7 RW
ilver, Total	ND	mg/kg	0.43	60 60	010B	0406 17:45	0407 12:1	RW
'hallium, Total	ND	mg/kg	2.2	60 60	010B	0406 17:45	0407 12:1	7 RW
anadium, Total	16	mg/kg	0.43	60 60)10B	0406 17:45	0407 12:11	7 RW
inc, Total	120	mg/kg	2 2			A 40 4 13 15		
·		ingy kg	2.2	60 60	<u> </u>	0406 17:45	0407 12:1	τ
Drganochlorine, Pesticides by Surrogate(s)		ngy kg	QC Cri	64 80	<u> </u>			τ
Drganochlorine, Pesticides by	MCP 8081A	1122 - 1122 - 22 8		<u>64 80</u> Iteria	<u> </u>			τ
Drganochlorine, Pesticides by	MCP 8081A Recovery		QC Cri	64_80 Lteria)	<u> </u>			τ
organochlorine, Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine, Pesticides by	MCP 8081A Recovery ND ND MCP 8081A	122002.23 % *	QC Cri 30-150 30-150	64_80 Lteria)	A 181		0411_23:24	i JB
rganochlorine, Pesticides by urrogate(s) ,4,5,6-Tetrachloro-m-xylene ecachlorobiphenyl rganochlorine Pesticides by elta-BHC	MCP 8081A Recovery ND ND MCP 8081A ND	% % ug/kg	QC Cri 30-150 30-150 30-150 36.2	64 80 Lteria)	A 181	. 0406 23:50	0411_23:24	រៃ ក្រ
rganochlorine, Pesticides by urrogate(s) ,4,5,6-Tetrachloro-m-xylene ecachlorobiphenyl rganochlorine, Pesticides by elta-BHC indane	MCP 8081A Recovery ND ND MCP 8081A ND ND	% % ug/kg ug/kg	QC Cri 30-150 30-150 36.2 29.0	64 80 Lteria)	A 181	. 0406 23:50	0411_23:24	1 JB
rganochlorine, Pesticides by urrogate(s) ,4,5,6-Tetrachloro-m-xylene ecachlorobiphenyl rganochlorine, Pesticides by elta-BHC indane lpha-BHC	MCP 8081A Recovery ND ND MCP 8081A ND ND ND	% % ug/kg ug/kg ug/kg ug/kg	QC Cri 30-150 30-150 36.2 29.0 36.2	64 80 Lteria)	A 181	. 0406 23:50	0411_23:24	រៃ ក្រ
irganochlorine, <u>Pesticides</u> by ,4,5,6-Tetrachloro-m-xylene ecachlorobiphenyl <u>Irganochlorine Pesticides by</u> elta-BHC indane lpha-BHC eta-BHC	MCP 8081A Recovery ND ND MCP 8081A ND ND ND ND	% % ug/kg ug/kg ug/kg ug/kg ug/kg	QC Cri 30-150 30-150 36.2 29.0 36.2 36.2 36.2	64 80 Lteria)	A 181	. 0406 23:50	0411_23:24	រៃ ក្រ
rganochlorine, <u>Pesticides</u> by 4,5,6-Tetrachloro-m-xylene ecachlorobiphenyl rganochlorine <u>Pesticides</u> by elta-BHC indane lpha-BHC eta-BHC eta-BHC	MCP 8081A Recovery ND ND MCP 8081A ND ND ND ND ND ND	% % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	QC Cri 30-150 30-150 36.2 29.0 36.2 36.2 36.2 36.2 36.2	64 80 Lteria)	A 181	. 0406 23:50	0411_23:24	រៃ ក្រ
irganochlorine, <u>Pesticides</u> by urrogate(s) ,4,5,6-Tetrachloro-m-xylene ecachlorobiphenyl <u>rganochlorine Pesticides by</u> elta-BHC indane lpha-BHC eta-BHC eta-BHC eptachlor ldrin	MCP 8081A Recovery ND ND MCP 8081A ND ND ND ND ND ND ND ND	% % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	QC Cri 30-150 30-150 36.2 29.0 36.2 36.2 36.2 36.2 36.2 36.2 36.2	64 80 Lteria)	A 181	. 0406 23:50	0411_23:24	i JB
rganochlorine, Pesticides by urrogate(s) ,4,5,6-Tetrachloro-m-xylene ecachlorobiphenyl rganochlorine Pesticides by elta-BHC indane lpha-BHC eta-BHC eptachlor ldrin eptachlor epoxide	MCP 8081A Recovery ND ND MCP 8081A ND ND ND ND ND ND ND ND ND ND	% % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	QC Cri 30-150 30-150 36.2 29.0 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2	64 80 Lteria)	A 181	. 0406 23:50	0411_23:24	i JB
rganochlorine, Pesticides by urrogate(s) ,4,5,6-Tetrachloro-m-xylene ecachlorobiphenyl rganochlorine Pesticides by elta-BHC indane lpha-BHC eta-BHC eptachlor ldrin eptachlor epoxide ndrin	MCP 8081A Recovery ND ND MCP 8081A ND ND ND ND ND ND ND ND	% % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	QC Cri 30-150 30-150 36.2 29.0 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2	64 80 Lteria)	A 181	. 0406 23:50	0411_23:24	រៃ ក្រ
rganochlorine, Pesticides by urrogate(s) ,4,5,6-Tetrachloro-m-xylene ecachlorobiphenyl rganochlorine Pesticides by elta-BHC indane lpha-BHC eta-BHC eptachlor ldrin eptachlor epoxide ndrin ndrin ketone	MCP 8081A Recovery ND ND MCP 8081A ND ND ND ND ND ND ND ND ND ND	% % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	QC Cri 30-150 30-150 36.2 29.0 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2	64 80 Lteria)	A 181	. 0406 23:50	0411_23:24	រៃ ក្រ
irganochlorine, <u>Pesticides</u> by urrogate(s) ,4,5,6-Tetrachloro-m-xylene ecachlorobiphenyl rganochlorine <u>Pesticides</u> by elta-BHC indane lpha-BHC eta-BHC eta-BHC eptachlor ldrin eptachlor epoxide ndrin ndrin ketone ieldrin	MCP 8081A Recovery ND ND MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND	<pre>% % ug/kg ug/</pre>	QC Cri 30-150 30-150 36.2 29.0 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2	64 80 Lteria)	A 181	. 0406 23:50	0411_23:24	i JB
irganochlorine, <u>Pesticides</u> by urrogate(s) ,4,5,6-Tetrachloro-m-xylene ecachlorobiphenyl rganochlorine <u>Pesticides</u> by elta-BHC indane lpha-BHC eta-BHC eta-BHC eptachlor ldrin eptachlor epoxide ndrin ndrin ketone ieldrin ,4'-DDE	MCP 8081A Recovery ND ND MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	% % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	QC Cri 30-150 30-150 36.2 29.0 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2	64 80 Lteria)	A 181	. 0406 23:50	0411_23:24	i JB
irganochlorine, <u>Pesticides</u> by urrogate(s) 4,5,6-Tetrachloro-m-xylene ecachlorobiphenyl urganochlorine <u>Pesticides by</u> elta-BHC elta-BHC eta-BHC leta-BHC letachlor ldrin eptachlor epoxide ndrin ndrin ketone ieldrin ,4'-DDE ,4'-DDD	MCP 8081A Recovery ND ND MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	<pre>% % ug/kg ug/</pre>	QC Cri 30-150 30-150 36.2 29.0 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2	64 80 Lteria)	A 181	. 0406 23:50	0411_23:24	i JB
organochlorine, Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	MCP 8081A Recovery ND ND MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	<pre>% % ug/kg ug/</pre>	QC Cri 30-150 30-150 36.2 29.0 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2	64 80 Lteria)	A 181	. 0406 23:50	0411_23:24	ι JB

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 5 of 59

Laboratory Sample Number: L0604684-01 B-1 (0-3')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT	TE .	ID
					PREP	ANAL	
Organochlorine Pesticides by	MCP-8081A	cont 'd		64 8081A	0406 23:50	0411_23;2	4_JB_
Endosulfan II	ND	ug/kg	36.2				
Endosulfan sulfate	ND	ug/kg	36.2				
Methoxychlor	ND	ug/kg	145.				
Chlordane	ND	ug/kg	145.				
Toxaphene	ND	ug/kg	145.				
Hexachlorobenzene	ND	ug/kg	36.2				
Surrogate(s)	Recovery		.QC Cri	itería			
2,4,5,6-Tetrachloro-m-xylene	ND	я.	30-150)			
Decachlorobiphenyl	ND	8	30-150)			

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 6 of 59

Laboratory Sample Number: L0604684-01

B-1 (0-3')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANA	ID L
Extractable Petroleum Hydroca	irbons ' 🔬			61 EPH_04-1	0411119:30 0413 0	0:57'BN
Qua	ility Čont	ról Inform	ation	A the second		
Condition of sample received:	1		Satisf	actory		
Sample temperature upon recei	pt:		Receiv	ed on Ice		
Sample extraction method:			Extrac	ted Per the Met	hod	
Were all QA/QC procedures RE(UIRED by	the method	followe	1? :		YES
Were all performance/acceptar	ice standa	rds for the	e requir	ed procedures a	chieved?	YES
Were significant modification	is made to	the method	d as spe	cified in Sect	11.3?	NO
The normal acceptance range f	or the ex	traction su	irrogate	s, Chloro-octad	ecane '	
and o-Terphenyl, is 40-140%.						
The normal acceptance range f	for the fr	actionatio	n surroga	ates, 2-Fluorob	iphenyl	
and 2-Bromonaphthalene, is 40)-140%.					
			······································			
C9-C18 Aliphatics	ND	mg∕kg	7.25			
C19-C36 Aliphatics	68.5	mg/kg	7.25			
C11-C22 Aromatics	105	mg/kg	7.25			
C11-C22 Aromatics, Adjusted	102	mg/kg	7.25 *		•	
Naphthalene	ND	mg/kg	0.362			
2-Methylnaphthalene	ND	mg/kg	0.362			
Acenaphthylene	ND	mg/kg	0.362			
Acenaphthene	ND	mg/kg	0.362			
Fluorene	ND	mg/kg	0.362			
Phenanthrene	ND	mg/kg	0.362			
Anthracene .	ND	mg/kg	0.362			
Fluoranthene	0.616	mg/kg	0.362			
Pyrene	0.644	mg/kg	0.362			
Benzo(a)anthracene	0.398	mg/kg	0.362	,		
Chrysene	0.474	mg/kg	0.362			
Benzo(b)fluoranthene	0.415	mg/kg	0.362			
Benzo(k)fluoranthene	0.400	mg/kg	0.362			
Benzo(a)pyrene	0.459	mg/kg	0.362			
Indeno (1, 2, 3-cd) Pyrene	ND	. mg/kg	0.362			
Dibenzo(a,h)anthracene	ND	mg/kg	0.362			
Benzo(ghi)perylene	ND	mg/kg	0.362			
Surrogate(s)	Recovery		QC Cr:	iteria		
Chloro-Octadecane	70.0	8	40-140)		
o-Terphenyl	89.0	ક	40-140)	•	
2-Fluorobiphenyl	84.0	80	40-140)		
2-Bromonaphthalene	88.0	8	40-140)		

Comments: Complete list of References and Glossary of Terms found in Addendum I

.

05080616:28 Page 7 of 59

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:L0604684-02
B-1 (3-10')Date Collected:03-APR-200609:20Sample Matrix:SOILDate Received :05-APR-2006Condition of Sample:SatisfactoryField Prep:None

Number & Type of Containers: 1-Amber

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	86	95	0.10	30 2540G	0410 12:37 PD

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 8 of 59

Laboratory Sample Number: L0604684-02

B-1 (3-10')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT PREP	E ID ANAL
Extractable Petroleum Hydroc	arbons	1 <u>.</u>		61 EPH-04-1	0411 19:30-0	412,21:42_BN
e ou	ality Cont	rol_Inform	ation			E. S. S. S. C.
Condition of sample received	:		Satisfa	ctory .		
Sample temperature upon rece	ipt:		Receive	d on Ice		
Sample extraction method:			Extract	ed Per the Met	hod	
Were all QA/QC procedures RE	QUIRED by	the method	followed	?		YES
Were all performance/accepta	nce standa	rds for the	e require	d procedures a	chieved?	YES
Were significant modificatio	ns made to	the metho	d as spec	ified in Sect	11.3?	NO
The normal acceptance range						
and o-Terphenyl, is 40-140%.			2			
The normal acceptance range	for the fr	actionatio	n surroga	tes, 2-Fluorob	iphenyl	
and 2-Bromonaphthalene, is 4	0-140%.				-	
and the survey of the second		بىر. بىر <u>بە سىر</u> ىمۇرىخ مۇر				7 16 M. 13
C9-C18 Aliphatics	ND	mg/kg	7.75			
C19-C36 Aliphatics	ND	mg/kg	7.75			
C11-C22 Aromatics	ND	mg/kg	7.75			
C11-C22 Aromatics, Adjusted	ND	mg/kg	7.75			
Naphthalene	NÐ	mg/kg	0.388			
2-Methylnaphthalene	ND	mg/kg	0.388			
Acenaphthylene	ND	mg/kg	0.388			
Acenaphthene	ND	mg/kg	0.388			
Fluorene	ND	mg/kg	0.388			
Phenanthrene	ND	mg/kg	0.388			
Anthracene	NÐ	mg/kg	0.388			
Fluoranthene	ND	mg/kg	0.388			
Pyrene	ND	mg/kg	0.388			
Benzo(a)anthracene	ND	mg/kg	0.388			
Chrysene	ND	mg/kg	0.388			
Benzo(b) fluoranthene	ND	mg/kg	0.388			
Benzo(k) fluoranthene	ND	mg/kg	0.388			
Benzo (a) pyrene	ND	mg/kg	0.388			
Indeno (1, 2, 3-cd) Pyrene	ND	mg/kg	0.388			
Dibenzo(a,h)anthracene	ND	mg/kg	0.388			
Benzo(ghi)perylene	ND	mg/kg	0.388			-
Surrogate(s)	Recovery		QC Cri	teria		
Chloro-Octadecane	59.0	8	40-140			
	76.0	용	40-140			
o-Terphenyl						
o-Terphenyl 2-Fluorobiphenyl	77.0	ક	40-140			

Comments: Complete list of References and Glossary of Terms found in Addendum I

.

05080616:28 Page 9 of 59

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE.

Laboratory Sample Number:	L0604684-03 B-X (0-3')	Date Collected: 03-APR-2006 09:40 Date Received : 05-APR-2006
Sample Matrix:	SOIL	Date Reported : 08-MAY-2006
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 3-Amber

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	88	8	0.10	30 2540G	0410 12:37 PD
Total Metals by MCP 6000	/7000_series		<u>18</u>	= 60.6010B	
Antimony, Total	4.3	mg/kg	2.3	60 6010B	0406 17:45 0407 12:19 RW
Arsenic, Total	13	mg/kg	0.45	60 6010B	0406 17:45 0407 12:19 RW
Barium, Total	83 .	mg/kg	0.45	60 6010B	0406 17:45 0407 12:19 RW
Beryllium, Total	ND	mg/kg	0.23	60 6010B	0406 17:45 0407 12:19 RW
Cadmium, Total	ND	mg/kg	0.45	60 6010B	0406 17:45 0407 12:19 RW
Chromium, Total	13	mg/kg	0.45	60 6010B	0406 17:45 0407 12:19 RW
Lead, Total	320	mg/kg	2.3	60 6010B	0406 17:45 0407 12:19 RW
Nickel, Total	12	mg/kg	1.1	60 6010B	0406 17:45 0407 12:19 RW
Selenium, Total	NÐ	mg/kg	2.3	60 6010B	0406 17:45 0407 12:19 RW
Silver, Total	ND	mg/kg	0.45	60 6010B	0406 17:45 0407 12:19 RW
Thallium, Total	ND	mg/kg	2.3	60 6010B	0406 17:45 0407 12:19 RW
Vanadium, Total	13	mg/kg	0.45	60 6010B	0406 17:45 0407 12:19 RW
Zinc, Total	130	πq/kq	2.3	60 6010B	0406 17:45 0407 12:19 RW
Organochlorine Pesticide Delta-BHC	ND	ug/kg	18.9	04 0001A	0406 <u>23:50 0412-01:19 JB</u>
Lindane	ND	ug/kg	15.2		
Alpha-BHC	ND	ug/kg	18.9		
Beta-BHC	ND	ug/kg	18.9		
Heptachlor	ND	ug/kg			
Aldrin			18.9		
	ND	ug/kg	18.9 18.9		
Heptachlor epoxide	ND ND				
		ug/kg	18.9		
Endrin	ND	ug/kg ug/kg	18.9 18.9 18.9 18.9		
Endrin Endrin ketone	ы МD	ug/kg ug/kg ug/kg	18.9 18.9 18.9 18.9 18.9		
Endrin Endrin ketone Dieldrin	NÐ ND ND	ug/kg ug/kg ug/kg ug/kg	18.9 18.9 18.9 18.9 18.9 18.9		
Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	18.9 18.9 18.9 18.9 18.9 18.9 18.9		
Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9		
Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9		•
Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I Endosulfan II	NÐ ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9		·
Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I Endosulfan II Endosulfan Sulfate	NÐ ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9		
Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I Endosulfan II Endosulfan Sulfate	NÐ ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9		
Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I Endosulfan II Endosulfan sulfate Methoxychlor Chlordane	NÐ ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9		·
Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I Endosulfan II Endosulfan sulfate Methoxychlor	NÐ ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9		

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 10 of 59

Laboratory Sample Number: L0604684-03

B-X (0-3').

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT	E	ID
					PREP	ANAL	
Organochlorine Pesticides by	MCP_8081A	cont_d			0406,23,50,0	412.01:1	9ரக்
Surrogate(s)	Recovery			iteria			
2,4,5,6-Tetrachloro-m-xylene	75.0	8	30-15	0			
Decachlorobiphenyl	76.0	¥	30-15	0			
Organochlorine Pesticides by	MCP 8081A	in the second		54.8081A	0406.23:50.0	412 01:1	9. JB.
Surrogate(s)	Recovery		QC Cr	iteria			
2,4,5;6-Tetrachloro-m-xylene	77.0	94	30-15	0			
Decachlorobiphenyl	77.0	8	30-15	Û			

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 11 of 59

Laboratory Sample Number: L0604684-03 B-X (0-3')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP AN	ID AL
··· ,				1		
Sxtractable Petroleum Hydroca	rbons			61 EPH-04-1	0411, 19:30-0412	22:14 BN
Qua	lity Contr	ol Inform	ation ta			
Condition of sample received:			Satisfa	actory		
Sample temperature upon recei	.pt:		Receive	ed on Ice		
Sample extraction method:			Extract	ted Per the Met	hod	
Were all QA/QC procedures REQ	UIRED by t	he method	followed	d?		YES
Nere all performance/acceptar	ice standai	ds for the	e require	ed procedures a	achieved?	YES
Were significant modification	is made to	the method	d as spec	cified in Sect	11.3?	NO
The normal acceptance range f	or the ext	raction s	urrogates	s, Chloro-octad	lecane	
and o-Terphenyl, is 40-140%.						
The normal acceptance range f	or the fra	actionatio	n surroga	ates, 2-Fluorob	oiphenyl	
and 2-Bromonaphthalene, is 40)-140%.	ر. دا د کر شد.	, n. 7. 72 	مده و ۲۰۰۱ می می می از می اور در ماند از می می می می می می می می		
C9-C18 Aliphatics	ND	mg/kg	7.58			
C19-C36 Aliphatics	10.5	mg/kg	7.58			
C11-C22 Aromatics	134	mg/kg	7.58			
C11-C22 Aromatics, Adjusted	80.0	mg/kg	7.58			
Naphthalene	1.10	mg/kg	0.379			
2-Methylnaphthalene	ND	mg/kg	0.379			
Acenaphthylene	ND	mg/kg	0.379	•		
Acenaphthene	0.503	mg/kg	0.379			
Fluorene	0.594	mg/kg	0.379			
Phenanthrene	6.98	mg/kg	0.379			
Anthracene	1.61	mg/kg	0.379			
Fluoranthene	9.68	mg/kg	0.379			
Pyrene	7.73	mg/kg	0.379			
Benzo (a) anthracene	4.35	mg/kg	0.379			
Chrysene	4.23	mg/kg	0.379			
Benzo(b)fluoranthene	3.91	mg/kg	0.379			
Benzo(k)fluoranthene	3.43	mg/kg	0.379			
Benzo (a) pyrene	4.16	mg/kg	0.379			
Indeno (1,2,3-cd) Pyrene	2.57	mg/kg	0.379			
Dibenzo (a, h) anthracene	0.569	mg/kg	0.379			
	2.07	mg/kg	0.379			
Benzo(ghi)perylene	2.07	nig/ kg	0.379			
Surrogate(s)	Recovery		QC Cri	iteria		
Chloro-Octadecane	60.0	oj	40-140)		
o-Terphenyl	105	₽; ·	40-14()		
2-Fluorobiphenyl	72.0	ક	40-140)		
2-Bromonaphthalene	73.0	8	40-140	1		

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 12 of 59

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	•	Date Collected: 03-APR-2006 10:05
Sample Matrix:	B-2 (0-3') SOIL	Date Received : 05-APR-2006 Date Reported : 08-MAY-2006
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 3-Amber

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
					-
Solids, Total	89	8	0.10	30 2540G	0410 12:37 PD
Total Metals by MCP_600	0/7000 series			60 6010B	
Antimony, Total	ND	mg/kg	2.2	60 6010B	0406 17:45 0407 12:22 RW
Arsenic, Total	12	mg/kg	0.44	60 6010B	0406 17:45 0407 12:22 RW
Barium, Total	100	mg/kg	0.44	60 6010B	0406 17:45 0407 12:22 RW
Beryllium, Total	ND	mg/kg	0.22	60 6010B	0406 17:45 0407 12:22 RW
Cadmium, Total	ND	mg/kg	0.44	60 6010B	0406 17:45 0407 12:22 RW
Chromium, Total	15	mg/kg	0.44	60 6010B	0406 17:45 0407 12:22 RW
Lead, Total	430	mg/kg	2.2	60 6010B	0406 17:45 0407 12:22 RW
Nickel, Total	12	mg/kg	1.1	60 6010B	0406 17:45 0407 12:22 RW
Selenium, Total	ND	mg/kg	2.2	60 6010B	0406 17:45 0407 12:22 RW
Silver, Total	ND	mg/kg	0.44	60 6010B	0406 17:45 0407 12:22 RW
Thallium, Total	ND	mg/kg	2.2	60 6010B	0406 17:45 0407 12:22 RW
Vanadium, Total	16	mg/kg	0.44	60 6010B	0406 17:45 0407 12:22 RW
Zine Matel	120		~ ~		
Zinc, Total	. 130	mg/kg	2.2	60 6010B	0406 17:45 0407 12:22 RW
		mg/kg	2.2	وروي والمراجع والمحتورة الحافر والم	ومحجوب والماري ومنجوه سروم والإوراقي والرواري
Örganöchlorine Pesticide	es by MCP 8081A			وروي والمراجع والمحتورة الحافر والم	0406 17:45 0407 12:22 RW
Örganöchlorine Pesticide Delta-BHC	es by MCP 8081A ND	ug/kg	18.7	وروي والمراجع والمحتورة الحافر والم	ومحجوب والماري ومنجوه سروم والإوراقي والرواري
Örganöchlórine Pesticide Delta-BHC Lindane	es by <u>MCP 8081A</u> ND ND	ug/kg ug/kg	18.7 15.0	وروي والمراجع والمحتورة الحافر والم	پرهه ساله دار در در ایرینه به هم به مرد پهره که در این
Örgahöchlörine Pesticide Delta-BHC Lindane Alpha-BHC	es by <u>MCP 8081A</u> ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7	وروي والمراجع والمحتورة الحافر والم	پرهه ساله دار در در ایرینه به هم به مرد پهره که در این
Örganöchlörine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC	es <u>by MCP 8081A</u> ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7 18.7	وروي والمراجع والمحتورة الحافر والم	پرهه ساله دار در در ایرینه به هم به مرد پهره که در این
Örganöchlörine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor	es by MCP 8081A ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7 18.7 18.7	وروي والمراجع والمحتورة الحافر والم	پرهه ساله دار در در ایرینه به هم به مرد پهره که در این
Örganöchlörine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin	es by MCP 8081A ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7 18.7 18.7 18.7	وروي والمراجع والمحتورة الحافر والم	ومحجوب والماري ومنجوه سروم والإوراقي والرواري
Örganöchlörine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide	es by MCP 8081A ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7 18.7 18.7 18.7 18.7 18.7	ورزي والمراجع والمحتورة الحافر والم	م محمولات الاستان الاستان المالية الم
Örganöchlörine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin	es by MCP 8081A ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7 18.7 18.7 18.7 18.7 18.7 18.7	ورزي والمراجع والمحتورة الحافر والم	ومحجوب والماري ومنجوه سروم والإوراقي والرواري
Organôchlorine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone	es by MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	ورزي والمراجع والمحتورة الحافر والم	م محمولات الاستان الاستان المالية الم
Organôchlorine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin	es by MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	ورزي والمراجع والمحتورة الحافر والم	م محمولات الاستان الاستان المالية الم
Organöchlörine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE	es by MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	ورزي والمراجع والمحتورة الحافر والم	م ورها استواده از این ایر سه بیاره است را به او ای ورو ای و از این
Organöchlörine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD	es by MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	ورزي والمراجع والمحتورة الحافر والم	م محمولات الاستان الاستان المالية الم
Organöchlörine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD	es by MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	ورزي والمراجع والمحتورة الحافر والم	م محمولات الاستان الاستان المالية الم
Drganöchlörine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I	es by MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	ورزي والمراجع والمحتورة الحافر والم	م محمولات الاستان الاستان المالية الم
Drganöchlörine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I Endosulfan II	es by MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	ورزي والمراجع والمحتورة الحافر والم	م ورها استواده از این ایر سه بیاره است را به او ای ورو ای و از این
Drganöchlörine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I Endosulfan II Endosulfan sulfate	es by MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7	ورزي والمراجع والمحتورة الحافر والم	م ورها استواده از این ایر سه بیاره است را به او ای ورو ای و از این
Drganöchlörine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDT Endosulfan I Endosulfan II Endosulfan sulfate Methoxychlor	es by MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	ورزي والمراجع والمحتورة الحافر والم	ويحصونه الدادة الإستارية سارية دارة ومراقحا وارار
Drganöchlörine Pesticide Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I Endosulfan II Endosulfan sulfate	es by MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	18.7 15.0 18.7	ورزي والمراجع والمحتورة الحافر والم	ويحصونه الدادة الإستارية سارية دارة ومراقحا وارار

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 13 of 59

Laboratory Sample Number: L0604684-04 B-2 (0-3')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAȚE PREP ANA	. ID L
Organochlörine Pesticides by	MCP-8081A	cont d			0406 23:50 0411 2	3:5 <u>3 ú</u>
Surrogate(s)	Recovery		QC Cri	teria		
2,4,5,6-Tetrachloro-m-xylene	58.0	8	30-150	1		
Decachlorobiphenyl	56.0	8	30-150)		
Organochlorine Pesticides by	MCP 8081A	· · · · · · · · · · · · · · · · · · ·		64 8081A	0406 23:50 0411 2	3:53')JB
Surrogate(s)	Recovery		OC Cri	teria		
	-		-			
2,4,5,6-Tetrachloro-m-xylene	59.0	8	30-150			

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 14 of 59

Laboratory Sample Number: L0604684-04

B-2 (0-3')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAI	'E ANAL	ID
Extractable_Petroleum Hydroca	arbons		8		0411419:30	9412 23:	5,2 BN ₂₀
united and the second second second	ality Cont	rol Inform	ation 4			<u>इल्क्र</u> ्यू	2
Condition of sample received	:		Satisfa	actory			
Sample temperature upon rece:	ipt:		Receive	ed on Ice			
Sample extraction method:			Extract	ed Per the Met	hod		
Were all QA/QC procedures RE(QUIRED by	the method	followed	1?		3	ΈS
Were all performance/acceptar						3	ΈŚ
Were significant modification						ł	10
The normal acceptance range :	for the ex	traction s	urrogates	s, Chloro-octad	ecane		
and o-Terphenyl, is 40-140%.							
The normal acceptance range i		actionatio	n surroga	ites, 2-Fluorob	iphenyl		
and 2-Bromonaphthalene, is 40	0-140%.			ينى در سور د ماريور زينده د	1. And		
			· · · · · · · · · · · · · · · · · · ·		1960 di		b
C9-C18 Aliphatics	ND	mg/kg	15.0				
C19-C36 Aliphatics	ND	mg/kg	15.0				
C11-C22 Aromatics	231	mg/kg	15.0				
C11-C22 Aromatics, Adjusted	139	mg∕kg	15.0				
Naphthalene	2.18	mg/kg	0.749				
2-Methylnaphthalene	ND	mg/kg	0.749				
Acenaphthylene	0.769	mg∕kg	0.749				
Acenaphthene	ND	mg/kg	0.749				
Fluorene	0.908	mg/kg	0.749				
Phenanthrene	10.9	mg/kg	0.749				
Anthracene	2.80	mg/kg	0.749				
Fluoranthene	16.0	mg/kg	0.749				
Pyrene	12.8	mg/kg	0.749		*		
Benzo(a)anthracene	7.56	mg/kg	0.749				
Chrysene	7.37	mg/kg	0.749				
Benzo(b)fluoranthene	6.57	mg/kg	0.749				
Benzo(k)fluoranthene	6.02	mg/kg	0.749				
Benzo(a)pyrene	7.59	mg/kg	0.749				
Indeno (1, 2, 3-cd) Pyrene	5.00	mg/kg	0.749				
Dibenzo(a,h)anthracene	1.02	mg/kg	0.749	•	•		
Benzo(ghi)perylene	4.44	mg/kg	0.749				
Surrogate(s)	Recovery		QC Cri	teria			
Chloro-Octadecane	53.0	ŝ	40-140				
o-Terphenyl	119	<u>&</u>	40-140				
2-Fluorobiphenyl	72.0	00	40-140				

Comments: Complete list of References and Glossary of Terms found in Addendum I

. .

05080616:28 Page 15 of 59

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0604684-05	Date Collected: 03	-APR-2006 10:10
	B-2 (3-10')	Date Received : 05	-APR-2006
Sample Matrix:	SOIL	Date Reported : 08	-MAY-2006
Condition of Sample:	Satisfactory	Field Prep: None	e

Number & Type of Containers: 1-Amber

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	87	2 7	0.10	30 2540G	0410 12:37 PD

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 16 of 59

Laboratory Sample Number: L0604684-05 P-2 /3-101

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAS	re id
					PREP	ANAL
Extractable Petroleum Hydroca	rbons			61 EPH-04-1	0411 19:30	0412_22:47_BN
Que	ality Cont	rol Inform	ation			<u> </u>
Condition of sample received:	:		Satisfa	actory .		
Sample temperature upon recei	ipt:		Receive	ed on Ice		
Sample extraction method:			Extract	ted Per the Met	hod	
Were all QA/QC procedures REC	DUIRED by	the method	followed	i?		· YES
Were all performance/acceptar	nce standa:	rds for th	e require	ed procedures a	chieved?	YES
Were significant modification						NO
The normal acceptance range f	for the ext	traction s	urrogates	s, Chloro-octad	ecane	
and o-Terphenyl, is 40-140%.						
The normal acceptance range f	for the fra	actionatio	n surroga	ates, 2-Fluorob	iphenyl	
and 2-Bromonaphthalene, is 40)-140%.					
		an a trata .		- + is the subliman -	· · · ·	
C9-C18 Aliphatics	83.8	mg/kg	7.66			
C19-C36 Aliphatics	25.6	mg/kg	7.66			
C11-C22 Aromatics	66.9	mg∕kg	7.66			
Cll-C22 Aromatics, Adjusted	55.8	mg/kg	7.66			
Naphthalene	0.527	mg/kg	0.383			
2-Methylnaphthalene	ND	mg/kg	0.383			
Acenaphthylene	ND	mg∕kg	0.383			
Acenaphthene	ND	mg/kg	0.383			
Fluorene	ND	mg/kg	0.383			
Phenanthrene	1.51	mg/kg	0.383			
Anthracene	ND	mg/kg	0.383			
Fluoranthene	2.10	mg/kg	0.383			
Pyrene	1.66	mg∕kg	0.383			
Benzo(a)anthracene	0.933	mg/kg	0.383			
Chrysene	0.871	mg/kg	0.383			
Benzo(b)fluoranthene	0.718	mg/kg	0.383			
Benzo(k)fluoranthene	0.785	mg/kg	0.383			
Benzo(a)pyrene	0.889	mg/kg	0.383			
Indeno (1, 2, 3-cd) Pyrene	0.575	mg/kg	0.383			
Dibenzo(a,h)anthracene	ND	mg/kg	0.383			
Benzo(ghi)perylene	0.500	mg/kg	0.383			
Surrogate(s)	Recovery		QC Cri	teria		
Chloro-Octadecane	58.0	₽	40-140)		
o-Terphenyl	90.0	8	40-140)		
2-Fluorobiphenyl	80.0	용	40-140) .		
2-Bromonaphthalene	78.0	90	40-140)		

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 17 of 59

,

,

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0604684-06 B-3 (0-3')	Date Collected: Date Received :	03-APR-2006 11:05 05-APR-2006
Sample Matrix:	SOIL	Date Reported :	08-MAY-2006
Condition of Sample:	Satisfactory	Field Prep:	None .

Number & Type of Containers: 3-Amber

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	90	Ŗ	0.10	30 25400	0410 12:37 PD
Total Metals by MCP 6000	0/7000 series	Barris Providence	ne o synthesig 	60,6010B	
Antimony, Total	ND	mg/kg	2.2	60 6010B	0406 17:45 0407 12:25 RW
Arsenic, Total	23	mg/kg	0.44	60 6010B	0406 17:45 0407 12:25 RW
Barium, Total	40	mg∕kg	0.44	60 601CB	0406 17:45 0407 12:25 RW
Beryllium, Total	ND	mg/kg	0.22	60 6010B	0406 17:45 0407 12:25 RW
Cadmium, Total	ND	mg/kg	0.44	60 6010B	0406 17:45 0407 12:25 RW
Chromium, Total	21	mg/kg	0.44	60 6010B	0406 17:45 0407 12:25 RW
Lead, Total	280	mg/kg	2.2	60 6010B	0406 17:45 0407 12:25 RW
Nickel, Total	17	mg/kg	1.1	60 6010B	0406 17:45 0407 12:25 RW
Selenium, Total	ND	mg/kg	2.2	60 6010B	0406 17:45 0407 12:25 RW
Silver, Total	ND	mg/kg	0.44	60 6010B	0406 17:45 0407 12:25 RW
Thallium, Total	ND	mg/kg	2.2	60 6010B	0406 17:45 0407 12:25 RW
Vanadium, Total	16	mg/kg	0.44	60 6010B	0406 17:45 0407 12:25 RW
Zinc, Total	57	mg/kg	2.2	. 60 6010B	0406 17:45 0407 12:25 RW
			·	64_8081A	0406-23:50 0412 00:21 JB
Organochlorine Pesticide Delta-BHC	ND	ug/kg	18.5		
Delta-BHC Lindane	ND ND	ug/kg ug/kg	14.8		
Delta-BHC Lindane Alpha-BHC	ND ND ND	ug/kg ug/kg ug/kg	14.8 18.5		
Delta-BHC Lindane Alpha-BHC Beta-BHC	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5 18.5		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5 18.5 18.5		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5 18.5		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5 18.5 18.5		
Delta-BHC	ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5 18.5 18.5 18.5		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5 18.5 18.5 18.5 18.5		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin	ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE	ND ND ND ND ND ND ND ND ND ND ND 22.8	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD	ND ND ND ND ND ND ND ND 22.8 ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD Endosulfan I	ND ND ND ND ND ND ND ND 22.8 ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD Endosulfan I Endosulfan II	ND ND ND ND ND ND ND ND 22.8 ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD Endosulfan I Endosulfan II Endosulfan sulfate	ND ND ND ND ND ND ND ND 22.8 ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD Endosulfan I Endosulfan II Endosulfan sulfate Methoxychlor	ND ND ND ND ND ND ND ND 22.8 ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14.8 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18		

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 18 of 59

Laboratory Sample Number: L0604684-06

B-3 (0-3')

-						
RESULT	UNITS	RDL	REF METHOD			ID
				PREP	ANAL	
MCP/80813 -	cont.18		64, 80818	0406 23-50 m	412 00-2	1.79.41
				7.7.9.0.0.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.00	412_0012	
83.0	Ъ.	-				
75.0	ક્ષ	30~15)			
					*	
MCP-8081A			64-8081A	0406 23:50 0	412 00:2	1 JB
46.3	ug/kg	18.5				
Recoverv		OC Cr	iteria			
Recovery 81.0	q	QC Cr: 30-150				
	MCP:8081A - Recovery 83.0 75.0 MCP:8081A .	MCP:8081A_cont:8 Recovery 83.0 % 75.0 % MCP:8081A	MCP:8081A-cont!d Recovery QC Cr 83.0 % 30-150 75.0 % 30~150 MCP:8081A	MCP:8081A_cont.1d Recovery QC Criteria 83.0 % 30-150 75.0 % 30-150 MCP:8081A	PREP MCP:8081A_cont.18 Recovery QC Criteria 83.0 % 30-150 75.0 % 30~150 MCP:8081A0406_23:50 0	PREP ANAL MCP:8081A_cont:8

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 19 of 59

Laboratory Sample Number: L0604684-06

B-3 (0-31)

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID ANAL
Extractable?Petroleum_Hydroca	Trons			61 EPH-04-1	.0411_19:30_04	12 23:19 BN
Qui						
		<u>- 01 - 111 01 m</u>			an 1993 na hairin an Antoine Star	
Condition of sample received			Satisf	-		
Sample temperature upon rece.	ipt:			ed on Ice		
Sample extraction method:				ted Per the Met	noa	
Were all QA/QC procedures REG					- h. i	YES
Were all performance/acceptar				-		YES
Were significant modification						NO
The normal acceptance range :	tor the ex	traction s	urrogate	s, Unioro-octad	ecane	
and o-Terphenyl, is 40-140%.	fan bha fa			the O Fluench	imb on ul	
The normal acceptance range :		actionatio	n surrog	ates, Z-Fiuorob	rbueuAT	
and 2-Bromonaphthalene, is 40	0-1408.			an inclusion	And the second se	
	ND	malka	7,41		بالمرب المقسيتينين أرام	
C9-C18 Aliphatics C19-C36 Aliphatics	9.28	mg/kg mg/kg	7.41			
Cl1-C22 Aromatics	30.3		7.41			
C11-C22 Aromatics, Adjusted	24.9	mg/kg mg/kg	7.41			
		5	0.370			
Naphthalene	ND	mg/kg	0.370			
2-Methylnaphthalene	ND	mg/kg	0.370			
Acenaphthylene	ND ND	mg/kg	0.370			
Acenaphthene Fluorene	ND ND	mg/kg	0.370			
	0.456	mg/kg	0.370			
Phenanthrene		mg/kg				
Anthracene	ND	mg/kg	0.370			
Fluoranthene	0.914	mg/kg	0.370			
Pyrene	0.875	mg/kg	0.370			
Benzo(a)anthracene	0.392 0.513	mg/kg	0.370			
Chrysene Benzo(b)fluoranthene	0.513	mg/kg mg/kg	0.370			
Benzo(b)fluoranthene	0.503	mg/kg	0.370			
Benzo (a) pyrene	0.584	mg/kg	0.370			
Indeno (1,2,3-cd) Pyrene	0.384	mg/kg mg/kg	0.370			
Dibenzo(a,h)anthracene	0.473 ND	mg/kg mg/kg	0.370			
Benzo(qhi)perylene	ND	mg/kg mg/kg	0.370			
peuso(dur)berAteve	чп	nig/ kg	0.370			
Surrogate(s)	Recovery		QC Cr:	iteria		
Chloro-Octadecane	58.0	8	40-140			
o-Terphenyl	79.0	*	40-140	D.		
2-Fluorobiphenyl	80.0	8	40-140			
2-Bromonaphthalene	78.0	ş.	40-140			

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 20 of 59

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:			03-APR-2006 12:20
Sample Matrix:		Date Received : Date Reported :	
Condition of Sample:	Satisfactory	Field Prep:	None

Number & Type of Containers: 6-Amber

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP A	NAL
Solids, Total	91		0.10	30 2540G	0410) 12:37 PD
Total Metals by MCP.6000/7000) series			60 6010B		
Antimony, Total	ND	mg/kg	2.2	60 6010B	0406 17:45 040	/ 12:31 RW
Arsenic, Total	9.1	mg/kg	0.44	60 6010B	0406 17:45 040	12:31 RW
Barium, Total	37	mg/kg	0.44	60 6010B	0406 17:45 040	12:31 RW
Beryllium, Total	ND	mg/kg	0.22	60 6010B	0406 17:45 040	12:31 RW
Cadmium, Total	ND	mg/kg	0.44	60 6010B	0406 17:45 040	12:31 RW
Chromium, Total	19	mg/kg	0.44	60.6010B	0406 17:45 040	12:31 RW
Lead, Total	20	mg/kg	2.2	60 6010B	0406 17:45 040	/ 12:31 RW
Nickel, Total	18	mg/kg	1.1	60 6010B	0406 17:45 040	12:31 RW
Selenium, Total	ND	mg/kg	2.2	60 6010B	0406 17:45 040	12:31 RW
Silver, Total	ND	mg/kg	0.44	60 6010B	0406 17:45 040	12:31 RW
Thallium, Total	ND	mg/kg	2.2	60 6010B	0406 17:45 040	12:31 RW
Vanadium, Total	14	mg/kg	0.44	60 6010B	0406 17:45 040	
Zinc, Total	28 MCR-8081A	mg/kg	2.2	60 6010B	0406 17:45 040	e ene grade - 3
-				60 6010B	0406 17:45 040	e ene groupe - g
Zinc, Total Organochlorine Pesticides by	MCP-8081A			<u></u>	, "hai ya a na na na ayang	n ener gener s
Zinc, Total <u>Organochlorine Pesticides by</u> Surrogate(s)	MCR 8081A	NIN	QC Cri	<u>. 64 8081a (</u> iteria	, "hai ya a ta ta ta sayang	e ene groupe - g
Zinc, Total <u>Organochlorine Pesticides</u> by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	MCR:8081A Recovery 66.0 63.0	8 8	QC Cr 30-150	<u>. 64 8081a (</u> iteria	, "hai ya a ta ta ta sayang	00:45 JB
Zinc, Total Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by	MCR:8081A Recovery 66.0 63.0	8 8	QC Cr 30-150	<u>. 64 8081a .</u> iteria))	<u>-0406.23.50 041</u>	00:45 JB
Zinc, Total Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by Delta-BHC	MCR 8081A Recovery 66.0 63.0 MCP 8081A	8	QC Cr 30-150 30-150	<u>. 64 8081a .</u> iteria))	<u>-0406.23.50 041</u>	00:45 JB
Zinc, Total <u>Organochlorine Pesticides by</u> Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene	MCR 8081A Recovery 66.0 63.0 MCR 8081A ND	۶ ۶ ۶ ug/kg	QC Cr 30-150 30-150	<u>. 64 8081a .</u> iteria))	<u>-0406.23.50 041</u>	00:45 JB
Zinc, Total Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by Delta-BHC Lindane	MCR 8081A Recovery 66.0 63.0 MCR 8081A ND ND	۶ ۶ ۶ ug/kg ug/kg ug/kg	QC Cr 30-150 30-150 18.3 14.6	<u>. 64 8081a .</u> iteria))	<u>-0406.23.50 041</u>	00:45 JB
Zinc, Total Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC	MCP 8081A Recovery 66.0 63.0 MCP 8081A ND ND ND	% % ug/kg ug/kg ug/kg	QC Cr 30-150 30-150 18.3 14.6 18.3	<u>. 64 8081a .</u> iteria))	<u>-0406.23.50 041</u>	00:45 JB
Zinc, Total Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor	MCP 8081A Recovery 66.0 63.0 MCP 8081A ND ND ND ND ND	% % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	QC Cr 30-150 30-150 18.3 14.6 18.3 18.3	<u>. 64 8081a .</u> iteria))	<u>-0406.23.50 041</u>	00:45 JB
Zinc, Total Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin	MCP 8081A Recovery 66.0 63.0 MCP 8081A ND ND ND ND ND ND	% % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	QC Cr 30-150 30-150 18.3 14.6 18.3 18.3 18.3 18.3	<u>. 64 8081a .</u> iteria))	<u>-0406.23.50 041</u>	00:45 JB
Zinc, Total Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide	MCP 8081A Recovery 66.0 63.0 MCP 8081A ND ND ND ND ND ND ND ND	% % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	QC Cr 30-150 30-150 18.3 14.6 18.3 18.3 18.3 18.3 18.3	<u>. 64 8081a .</u> iteria))	<u>-0406.23.50 041</u>	00:45 JB
Zinc, Total Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin	MCP 8081A Recovery 66.0 63.0 MCP 8081A ND ND ND ND ND ND ND ND ND ND	<pre>% % ug/kg ug/kg</pre>	QC Cr 30-150 30-150 18.3 14.6 18.3 18.3 18.3 18.3 18.3 18.3	<u>. 64 8081a .</u> iteria))	<u>-0406.23.50 041</u>	00:45 JB
Zinc, Total Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone	MCP 8081A Recovery 66.0 63.0 MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND	<pre>% % ug/kg ug/kg</pre>	QC Cr 30-150 30-150 18.3 14.6 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	<u>. 64 8081a .</u> iteria))	<u>-0406.23.50 041</u>	00:45 ⁻ JB
Zinc, Total Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin	MCP 8081A Recovery 66.0 63.0 MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	<pre>% % ug/kg ug/</pre>	QC Cr 30-150 30-150 18.3 14.6 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	<u>. 64 8081a .</u> iteria))	<u>-0406.23.50 041</u>	00:45 JB
Zinc, Total Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by Delta-BHC Lindane Alpha-BHC	MCP 8081A Recovery 66.0 63.0 MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	<pre>% % ug/kg ug/</pre>	QC Cr 30-150 30-150 18.3 14.6 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	<u>. 64 8081a .</u> iteria))	<u>-0406.23.50 041</u>	00:45 JB
Zinc, Total Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE	MCP 8081A Recovery 66.0 63.0 MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	<pre>% % ug/kg ug/</pre>	QC Cr 30-150 30-150 18.3 14.6 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	<u>. 64 8081a .</u> iteria))	<u>-0406.23.50 041</u>	00:45 JB

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 21 of 59

Laboratory Sample Number: L0604684-07 B-4 (0~3')

PARAMETER	RESULT UNITS RDL REF METHOD					D DATE 1		
					PREP	ANAL		
Organochlörine Pesticides by	MCP: 8081A	cont d	<u>-</u>	54 8081A	0406 23 50 0	412 100 4	5 JB	
Endosulfan II	ND	ug/kg	18.3					
Endosulfan sulfate	ND	ug/kg	18.3					
Methoxychlor	ND	ug/kg	73.3					
Chlordane	ND	ug/kg	73.3					
Toxaphene	ND	ug/kg	73.3					
Hexachlorobenzene	ND	ug/kg	18.3					
Surrogate(s)	Recovery		QC Cri	teria				
2,4,5,6-Tetrachloro-m-xylene	68.0	£	30-150)				
Decachlorobiphenyl	58.0	dio	30-150)				

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 22 of 59

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT	E ID
					PREP	ANAL
Extractable Petroleum Hydroc	arbons 5.72			51,22,72,72,72,72,72,72,72,72,72,72,72,72,	0411 19:30	0412-21:43 BN
Lati,	ality Cont	rol Inform	ation -1		- the idea	
Condition of sample received			Satisfa	-		
Sample temperature upon rece	ipt:			ed on Ice		
Sample extraction method:				ed Per the Met	hod	
Were all QA/QC procedures RE	-					YES
Were all performance/accepta			-	-		YES
Were significant modification						NO
The normal acceptance range	for the ex	traction su	urrogates	s, Chloro-octad	ecane	
and o-Terphenyl, is 40-140%.						
The normal acceptance range	for the fra	actionatio	n surroga	ates, 2-Fluorob	iphenyl	
and 2-Bromonaphthalene, is 4	0-140%.	್ಷ	5 5 · • • • · · · · · · · · · · · ·		·	
						2 c
C9-C18 Aliphatics	ND	mg/kg	7.33			
C19-C36 Aliphatics	ND	mg/kg	7.33			
C11-C22 Aromatics	ND	mg/kg	7.33			
C11-C22 Aromatics, Adjusted	ND	mg/kg	7.33			
Naphthalene	ND	mg/kg	0.366			
2-Methylnaphthalene	ND	mg/kg	0.366			
Acenaphthylene	ND	mg/kg	0.366			
Acenaphthene	ND	mg/kg	0.366			
Fluorene	ND	mg/kg	0.366			
Phenanthrene	ND	mg/kg	0.366			
Anthracene	ND	mg/kg	0.366			
Fluoranthene	ND	mg/kg	0.366			
Pyrene	ND	mg/kg	0.366			
Benzo(a)anthracene	ND	mg/kg	0.366			
Chrysene	ND	mg/kg	0.366			
Benzo(b)fluoranthene	ND	mg/kg	0.366			
Benzo(k)fluoranthene	ND	mg/kg	0.366			
Benzo(a)pyrene	ND	mg/kg	0.366		-	
Indeno(1,2,3-cd)Pyrene	ND	mg/kg	0.366			
Dibenzo(a,h)anthracene	ŅD	mg/kg	0.366	-		
Benzo(ghi)perylene	ND	mg/kg	0.366			
Surrogate(s)	Recovery		QC Cr:			
Chloro-Octadecane	65.0	40	40-140			
o-Terphenyl	B5.0	95	40-140)		
2-Fluorobiphenyl	87.0	0 ,0	40-140			
2-Bromonaphthalene	89.0		40-140			

Comments: Complete list of References and Glossary of Terms found in Addendum I

.

•

05080616:28 Page 23 of 59

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0604684-08
B-4 (3-10')Date Collected: 03-APR-2006 12:25
Date Received : 05-APR-2006Sample Matrix:SOILDate Received : 08-MAY-2006Condition of Sample:SatisfactoryField Prep: NoneNumber & Type of Containers: 1-AmberSatisfactory

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
	<u>_</u>				
Solids, Total	93	8	0.10	30 2540G	0410 12:37 PD

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 24 of 59

Laboratory Sample Number: L0604684-08 B-4 (3-10')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	
					PREP	ANAL
Sxtractable Petroleum Hydroca	arbons				0411 19-30	0412_22:16_BN
Qu	lity Conti	rol Inform	ation 7 13			
Condition of sample received:	:		Satisfa	ctory		
Sample temperature upon recei	ipt:		Receive	d on Ice		
Sample extraction method:	-		Extract	ed Per the Met	chod	
Were all QA/QC procedures RE(UIRED by t	he method	followed	?		YES
Were all performance/acceptar					chieved?	YES
Nere significant modification						NO
The normal acceptance range i						
and o-Terphenyl, is 40-140%.						
The normal acceptance range i	for the fra	actionatio	n surroga	tes, 2-Fluorob	piphenyl	
and 2-Bromonaphthalene, is 40)-140%.		_			
				میں کر بریا ہوتھی کر میں ان کر ا ان کر ان ک		motor
C9-C18 Aliphatics	ND	mg/kg	7.17			
Cl9-C36 Aliphatics	ND	mg/kg	7.17			
C11-C22 Aromatics	ND	mg/kg	7.17			
C11-C22 Aromatics, Adjusted	ND	mg/kg	7.17			
Naphthalene	ND	mg/kg	0.358			
2-Methylnaphthalene	ND	mg/kg	0.358			
Acenaphthylene	ND	mg/kg	0.358			
Acenaphthene	ND	mg/kg	0.358			
fluorene	ND	mg/kg	0.358			
Phenanthrene	ND	mg/kg	0.358			
Anthracene	ND	mg∕kg	0.358			
fluoranthene	ND	mg/kg	0.358			
Pyrene	NÐ	mg/kg	0.358			
Benzo (a) anthracene	ND	mg/kg	0.358			
Chrysene	ND	mg/kg	0.358			
Benzo(b)fluoranthene	ND	mg/kg	0.358			
Benzo(k)fluoranthene	ND	mg/kg	0.358			
Benzo(a)pyrene	ND	mg/kg	0.358			
Indeno (1,2,3-cd) Pyrene	ND	mg/kg	0.358			
Dibenzo(a,h)anthracene	ND	mg/kg	0.358			
Senzo(ghi)perylene	ND	mg/kg	0.358			
Surrogate(s)	Recovery		QC Cri	teria		
Chloro-Octadecane	48.0	5	40-140			
o-Terphenyl	71.0	. <mark>9</mark> с	40-140			
2-Fluorobiphenyl	89.0	웅	40-140			
	90.0	8				

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 25 of 59

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0604684-09	Date Collected: 03-APR-2006 13:20
	B-Y (0-3')	Date Received : 05-APR-2006
Sample Matrix:	SOIL	Date Reported : 08-MAY-2006
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 1-Amber

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ĪD
·					PREP AN	AL
Solids, Total	94	8	0.10	30 2540G	0410	12:37 PD
Polychlorinated Biphenyls by	MCP_8082			64 8082	0407 00:30 0411	02:25 SS
Aroclor 1016	ND	ug/kg	35.5			
Aroclor 1221	ND	ug/kg	35.5			
Aroclor 1232	ND	ug/kg	35.5			
Aroclor 1242	ND	ug/kg	35.5			
Aroclor 1248	ND	ug/kg	35.5			
Aroclor 1254	ND	ug/kg	35.5			
Aroclor 1260	NÐ	ug/kg	35.5			
Surrogate(s)	Recovery		QC Cri	iteria	·	
2,4,5,6-Tetrachloro-m-xylene	82.0	d'o	30-150)		
Decachlorobiphenyl	74.0	8	30-150)		
Polychlorinated Biphenyls by	MCP '8082			64 8082	0407 00:30 0411	02:25 SS-
Surrogate(s)	Recovery		QC Cri	tería		
2,4,5,6-Tetrachloro-m-xylene	84.0	융	30-150)		
Decachlorobiphenyl	65.0	8	30-150)		

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 26 of 59

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0604684-10 B-5 (0-3')	Date Collected: Date Received :	03-APR-2006 13:50
Sample Matrix:	SOIL	Date Reported :	
Condition of Sample:	Satisfactory	Field Prep:	None

Number & Type of Containers: 4-Amber

Solids, Total 95 % 0.10 30 25406 0410 12:37 Total Metals by MCP 6000/7000 series 63 60108 0406 17:45 0407 12:57 64 60108 0406 17:45 0407 12:57 Antimony, Total ND mg/kg 0.42 66 60108 0406 17:45 0407 12:57 Barium, Total 15 mg/kg 0.42 66 60108 0406 17:45 0407 12:57 Beryllium, Total ND mg/kg 0.42 66 60108 0406 17:45 0407 12:57 Cadmium, Total ND mg/kg 0.42 66 60108 0406 17:45 0407 12:57 Cadmium, Total 14 mg/kg 0.42 66 60108 0406 17:45 0407 12:57 Lead, Total 18 mg/kg 1.0 66 60108 0406 17:45 0407 12:57 Selenium, Total ND mg/kg 1.0 60 60108 0406 17:45 0407 12:57 Sliver, Total ND mg/kg 0.42 60 60108 0406 17:45 0407 12:57 Sliver, Total ND mg/kg 0.12 60 60108 0406 17:45 0407 12:57 Sliver, Total ND mg/kg 0.42 60 60108 0406 17:45 0407 12:57	PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Antimony, Total ND mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 Barium, Total 15 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 5 Barium, Total 15 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Baryum, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Cadmium, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Chronium, Total 14 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Lead, Total 18 mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 Selenium, Total ND mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 Silver, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407	Solids, Total	95	8 ·	0.10	30 2540G	0410 12:	37 PD
Arsenic, Total 21 mg/kg 0.42 60 60108 0406 17:45 0407 12:57 F Barium, Total 15 mg/kg 0.42 60 60108 0406 17:45 0407 12:57 F Barium, Total ND mg/kg 0.42 60 60108 0406 17:45 0407 12:57 F Cadmium, Total ND mg/kg 0.42 60 60108 0406 17:45 0407 12:57 F Cadmium, Total 14 mg/kg 0.42 60 60108 0406 17:45 0407 12:57 F Lead, Total 14 mg/kg 0.42 60 60108 0406 17:45 0407 12:57 F Lead, Total 18 mg/kg 0.42 60 60108 0406 17:45 0407 12:57 F Nickel, Total ND mg/kg 1.0 60 60108 0406 17:45 0407 12:57 F Silver, Total ND mg/kg 0.42 60 60108 0406 17:45 0407 12:57 F Silver, Total ND mg/kg 0.42 60 60108 0406 17:45 0407 12:57 F Tallium, Total ND mg/kg 0.42 60 60108 0406 17:45 0407 12:57 F Zinc, Total ND mg/kg 0.42 60 60108 0406 17:45 0407 12:57 F <td>Total Metals by MCP 6000/7000</td> <td>series</td> <td></td> <td>1</td> <td>60 60108</td> <td>and the second second</td> <td>123</td>	Total Metals by MCP 6000/7000	series		1	60 60108	and the second second	123
Barium, Total 15 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 H Beryllium, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 H Cadmium, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 H Cadmium, Total 14 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 H Lead, Total 18 mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 H Lead, Total 13 mg/kg 1.0 60 6010B 0406 17:45 0407 12:57 H Nickel, Total ND mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 H Selenium, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 H Silver, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 H Yanadium, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 H Zinc, Total 130 mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 H Surrogate(s) Recovery QC Criteria 2.4,5,6-Tetrachloro-m-xylene 69.0 30	Antimony, Total	ND	mg/kg	2.1	60 6010B	0406 17:45 0407 12:	57 สพ
Beryllium, Total ND mg/kg 0.21 60 60108 0406 17:45 6407 12:57 Cadmium, Total 14 mg/kg 0.42 60 60108 0406 17:45 6407 12:57 Chromium, Total 14 mg/kg 0.42 60 60108 0406 17:45 6407 12:57 Dead, Total 18 mg/kg 2.1 60 60108 0406 17:45 0407 12:57 Nickel, Total 13 mg/kg 1.0 60 60108 0406 17:45 0407 12:57 Selenium, Total ND mg/kg 0.42 60 60108 0406 17:45 0407 12:57 Silver, Total ND mg/kg 0.42 60 60108 0406 17:45 0407 12:57 12:57 Thallium, Total ND mg/kg 0.42 60 60108 0406 17:45 0407 12:57 12:57 Zinc, Total ND mg/kg 0.42 60 60:08 0406 <t< td=""><td>Arsenic, Total</td><td>21</td><td>mg/kg</td><td>0.42</td><td>60 6010B</td><td>0406 17:45 0407 12:</td><td>57 RW</td></t<>	Arsenic, Total	21	mg/kg	0.42	60 6010B	0406 17:45 0407 12:	57 RW
Cadmium, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Chromium, Total 14 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Lead, Total 18 mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 Nickel, Total 13 mg/kg 1.0 60 6010B 0406 17:45 0407 12:57 Selenium, Total ND mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 Selenium, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Silver, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Zanch Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 5 Surrogate(s) Recovery QC Criteria 2,4,5,6 0407 00:30'0411	Barium, Total	15	mg/kg	0.42	60 6010B	0406 17:45 0407 12:5	57 RW
Chromium, Total 14 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Bead, Total 18 mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 Wickel, Total 13 mg/kg 1.0 60 6010B 0406 17:45 0407 12:57 Selenium, Total ND mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 Silver, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Thallium, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Zanadium, Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 5 Zanadium, Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 5 Surrogate(s) Recovery QC Criteria 30-150 30-150 100:30*0411<	Beryllium, Total	ND	mg/kg	0.21	60 6010B	0406 17:45 0407 12:5	57 RW
Lead, Total 18 mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 Selenium, Total ND mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 Selenium, Total ND mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 Selenium, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Fallium, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Anadium, Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 Anadium, Total 9.8 mg/kg 2.1 60 60 60 12:57 64 0406 17:45 0407 12:57 5 Surrogate(s) Recovery QC Criteria 0407 00130 0411 02:54 5 Solychlorinated Biphenyls by MCP 8082 64 8082 64 8082 <td>Cadmium, Total</td> <td>ND</td> <td>mg/kg</td> <td>0.42</td> <td>60 6010B</td> <td>0406 17:45 0407 12:5</td> <td>57 RW</td>	Cadmium, Total	ND	mg/kg	0.42	60 6010B	0406 17:45 0407 12:5	57 RW
Nickel, Total 13 mg/kg 1.0 60 6010B 0406 17:45 0407 12:57 B Selenium, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 B Silver, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 B Silver, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 B Vanadium, Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 B Zanadium, Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 B Zanadium, Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 B Zanadium, Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 B Zanadium, Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 B Zanadium, Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 B Zanadium, Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 B Surrogate(s) Recovery QC Criteria 0407 00:3070417 02:54 S 0407	Chromium, Total	14	mg/kg	0.42	60 6010B	0406 17:45 0407 12:	57 RW
Selenium, Total ND mg/kg 2.1 60 6000B 0406 17:45 0407 12:57 Silver, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 60 Thallium, Total ND mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 60 Vanadium, Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 60 Zinc, Total 130 mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 60 Polychlorinated Biphenyls by MCP 3082 64 8082 9407 00130 0411 02:54 5 Surrogate (s) Recovery QC Criteria 30-150 64 8082 9407 00130/0411 02:54 5 Surrogate (s) Recovery QC Criteria 30-150 64 8082	Lead, Total	18	mg/kg	2.1	60 60108	0406 17:45 0407 12:5	57 RW
Silver, Total ND mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 64 60 60 0406 17:45 0407 12:57 64 60 60 0406 17:45 0407 12:57 57 64 60 64 60 70 64 60 70 <td>Nickel, Total</td> <td>13</td> <td>mg/kg</td> <td>1.0</td> <td>60 6010B</td> <td>0406 17:45 0407 12:5</td> <td>57 RW</td>	Nickel, Total	13	mg/kg	1.0	60 6010B	0406 17:45 0407 12:5	57 RW
Thallium, Total ND mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 B Vanadium, Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 B Zinc, Total 130 mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 B Zinc, Total 130 mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 B Polychlorinated Biphenyls by MCP 8082 64 8082 1 9407 00:30 0411 02:54 S Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 69.0 % 30-150 Polychlorinated Biphenyls by MCP 8082 64 8082 1 9407 00:30 0411 02:54 S Aroclor 1016 ND ug/kg 35.1 Aroclor 1221 ND ug/kg 35.1 Aroclor 1242 ND ug/kg 35.1 Aroclor 1248 ND ug/kg 35.1 Aroclor 1254 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Surrogate(s) Recovery QC Criteria 2,4	Selenium, Total	ND	mg/kg	2.1	60 6010B	0406 17:45 0407 12:5	57 RW
Vanadium, Total 9.8 mg/kg 0.42 60 6010B 0406 17:45 0407 12:57 F Sinc, Total 130 mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 F Sourogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 69.0 % 30-150 Decachlorobiphenyl 63.0 % 30-150 Colychlorinated Biphenyls by MCP 8062 64 8082 **********************************	Silver, Total	ND	mg/kg	0.42	60 6010B	0406 17:45 0407 12:5	57 RW
Binc, Total 130 mg/kg 2.1 60 6010B 0406 17:45 0407 12:57 F Polychlorinated Biphenyls by MCP 8082 64 8082	Fhallium, Total	ND	mg/kg	2.1	60 6010B	0406 17:45 0407 12:5	57 RW
Polychlorinated Biphenyls by MCP 3082 CC Criteria Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 69.0 % 30-150 Decachlorobiphenyl 63.0 % 30-150 Zolychlorinated Biphenyls by MCP 8082 64 8082 0407 90/3070417 02:54 S Aroclor 1016 ND ug/kg 35.1 Aroclor 1221 ND ug/kg 35.1 Aroclor 1232 ND ug/kg 35.1 Aroclor 1242 ND ug/kg 35.1 Aroclor 1248 ND ug/kg 35.1 Aroclor 1254 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Aroclor 1248 ND ug/kg 35.1 Aroclor 1260 ND ug/kg <td>Vanadium, Total</td> <td>9.8</td> <td>mg/kg</td> <td>0.42</td> <td>60 6010B</td> <td>0406 17:45 0407 12:5</td> <td>57 RW</td>	Vanadium, Total	9.8	mg/kg	0.42	60 6010B	0406 17:45 0407 12:5	57 RW
Polychlorinated Biphenyls by MCP 3082 CC Criteria Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 69.0 % 30-150 Decachlorobiphenyl 63.0 % 30-150 Zolychlorinated Biphenyls by MCP 8082 64 8082 0407 90/3070417 02:54 S Aroclor 1016 ND ug/kg 35.1 Aroclor 1221 ND ug/kg 35.1 Aroclor 1232 ND ug/kg 35.1 Aroclor 1242 ND ug/kg 35.1 Aroclor 1248 ND ug/kg 35.1 Aroclor 1254 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Aroclor 1248 ND ug/kg 35.1 Aroclor 1260 ND ug/kg <td>Sinc, Total</td> <td>130</td> <td></td> <td>2.1</td> <td>60 6010B</td> <td>0406 17:45 0407 12:5</td> <td>57 RW</td>	Sinc, Total	130		2.1	60 6010B	0406 17:45 0407 12:5	57 RW
Decachlorobiphenyl 63.0 % 30-150 Rolychlorinated Biphenyls by MCP 8082 64.8082 0407.00/3070411/02/54.5 Aroclor 1016 ND ug/kg 35.1 Aroclor 1221 ND ug/kg 35.1 Aroclor 1232 ND ug/kg 35.1 Aroclor 1242 ND ug/kg 35.1 Aroclor 1248 ND ug/kg 35.1 Aroclor 1254 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 67.0 % 30-150 Decachlorobiphenyl 70.0 % 30-150 Drganochlorine Pesticides/by/MCP.8081A	Surrogate(s)	Recovery		QC Cri	teria		
Rolychlorinated Biphenyls by MCP 8082 64 8082 9407 0013070411 02:54 s Aroclor 1016 ND ug/kg 35.1 Aroclor 1221 ND ug/kg 35.1 Aroclor 1232 ND ug/kg 35.1 Aroclor 1242 ND ug/kg 35.1 Aroclor 1242 ND ug/kg 35.1 Aroclor 1242 ND ug/kg 35.1 Aroclor 1248 ND ug/kg 35.1 Aroclor 1254 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Surrogate (s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 67.0 % 30-150 Decachlorobiphenyl 70.0 % 30-150 Drganachlorine Pesticides/by MCP 8081A	2,4,5,6-Tetrachloro-m-xylene	69.0	8	30-150)		
Aroclor 1016 ND ug/kg 35.1 Aroclor 1221 ND ug/kg 35.1 Aroclor 1232 ND ug/kg 35.1 Aroclor 1232 ND ug/kg 35.1 Aroclor 1242 ND ug/kg 35.1 Aroclor 1248 ND ug/kg 35.1 Aroclor 1254 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Surrogate (s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 67.0 % 30-150 Decachlorobiphenyl 70.0 % 30-150 Drganochlorine Pesticides: by: MCP :8081A	Decachlorobiphenyl	63.0	8	30-150)		
Aroclor 1221 ND ug/kg 35.1 Aroclor 1232 ND ug/kg 35.1 Aroclor 1242 ND ug/kg 35.1 Aroclor 1242 ND ug/kg 35.1 Aroclor 1248 ND ug/kg 35.1 Aroclor 1254 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Surrogate(s) Recovery QC Criteria 8.4,5,6-Tetrachloro-m-xylene 67.0 % 30-150 Decachlorobiphenyl 70.0 % 30-150 Drgangchlorine Pesticides/by/MCP .8081A		MCP 8082			64 8082	0407 00:3070411 02:	54.,SS
Aroclor 1232 ND ug/kg 35.1 Aroclor 1242 ND ug/kg 35.1 Aroclor 1248 ND ug/kg 35.1 Aroclor 1248 ND ug/kg 35.1 Aroclor 1254 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Surrogate(s) Recovery QC Criteria 8.4,5,6-Tetrachloro-m-xylene 67.0 % 30-150 Decachlorobiphenyl 70.0 % 30-150 Decachlorine Pesticides/by/MCP .8081A	Aroclor 1016	ND	ug/kg	35.1			
Aroclor 1242 ND ug/kg 35.1 Aroclor 1248 ND ug/kg 35.1 Aroclor 1254 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 67.0 % 30-150 Decachlorobiphenyl 70.0 % 30-150 Drgangchlorine Pesticides/by/MCP 8081A	roclor 1221	ND	ug/kg	35.1			
Aroclor 1248 ND ug/kg 35.1 Aroclor 1254 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 67.0 % 30-150 Decachlorobiphenyl 70.0 % 30-150	roclor 1232	ND	ug/kg	35.1			
Aroclor 1254 ND ug/kg 35.1 Aroclor 1260 ND ug/kg 35.1 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 67.0 % 30-150 Decachlorobiphenyl 70.0 % 30-150 Decachlorine Pesticides by MCP 8081A	roclor 1242	ND	ug/kg	35.1			
Aroclor 1260 ND ug/kg 35.1 Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 67.0 % 30-150 Decachlorobiphenyl 70.0 % 30-150 Drganachlorine Pesticides by MCP 8081A	Aroclor 1248	ND	ug/kg	35.1			
Surrogate(s) Recovery QC Criteria 2,4,5,6-Tetrachloro-m-xylene 67.0 % 30-150 Decachlorobiphenyl 70.0 % 30-150 Drganochlorine Pesticides by MCP 8081A	Aroclor 1254	ND	ug/kg	35.1			
2,4,5,6-Tetrachloro-m-xylene 67.0 % 30-150 Decachlorobiphenyl 70.0 % 30-150 Drganochlorine Pesticides by MCP 8081A	Aroclor 1260	ND	ug/kg	35.1			
Decachlorobiphenyl 70.0 % 30-150	Surrogate(s)	Recovery	•	QC Cri	teria		
Drgangchlorine Pesticides by MCP .8081A	2,4,5,6-Tetrachloro-m-xylene	67.0	용	30-150)		
	Decachlorobiphenyl	70.0	ક	30-150	1		
ND ug/kg 17.5	rganachlorine Pesticides by	MCP .8081A ·			54 BO81A	0406 23-50 0412 01:1	4 JB
	Delta-BHC	ND	ug/kg	17.5			

Comments: Complete list of References and Glossary of Terms found in Addendum I

.

.

05080616:28 Page 27 of 59

1

Laboratory Sample Number: L0604684-10

B-5 (0-3')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT	TE.	ID
					PREP	ANAL	
rganochlorine Pesticides by	MCP 8081A	cont"d		5 -1. 64 8081A	0406:23:50	0412 01:1	4. ĴB. (
Lindane	ND	ug/kg	14.0				
lpha-BHC	ND	ug/kg	17.5				
Seta-BHC	ND	ug/kg	17.5				
leptachlor	ND	ug/kg	17.5				
ldrin	ND	ug/kg	17.5				
Meptachlor epoxide	ND	ug/kg	17.5				
Indrin	ND	ug/kg	17.5				
Indrin ketone	ND	ug/kg	17.5				
Dieldrin	ND	ug/kg	17.5				
1,4'-DDE	ND	ug/kg	17.5	· · · · · ·			
,4'-DDD	ND	ug/kg	17.5				
4'-DDT	ND	ug/kg	17.5				
Indosulfan I	ND	ug/kg	17.5				
Indosulfan II	ND	uq/kq	17.5				
ndosulfan sulfate	ND	ug/kg	17.5				
lethoxychlor	ND .	ug/kg	70.2				
Chlordane	ND	ug/kg	70.2				
oxaphene	ND	ug/kg	70.2				
lexachlorobenzene	ND	ug/kg	17.5				
urrogate(s)	Recovery		QC Cri	teria			
,4,5,6-Tetrachloro-m-xylene	65.0	ક	30-150	ł			
ecachlorobiphenyl	55.0	clo	30-150	I			
rganochlorine Pesticides by	MCP 8081A .		<u> 7797</u>	64 8081A	0406 23:50 (412 01:1	4 (JB]
urrogate(s)	Recovery		QC Cri	teria			
,4,5,6-Tetrachloro-m-xylene	63.0	9 6	30-150	-			
ecachlorobiphenyl	59.0	&	30-150				

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 28 of 59

. .

Laboratory Sample Number: L0604684-10

B-5 (0-3')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Extractable Petroleum Hydroca	arbons			61 ¹¹ EPH-04-17	0411 19:30 0412 22:49 BN
Qua	lity Contr	ol Information	ition.	- '12'	an a
Condition of sample received	:		Satisfa	actory	
Sample temperature upon recei	ipt:		Receive	ed on Ice	
Sample extraction method:			Extract	ted Per the Met	hod
Were all QA/QC procedures RE(DUIRED by t	he method	followed	1?	YES
Were all performance/acceptar	_				chieved? YES
Were significant modification			-	-	
The normal acceptance range i			-		
and o-Terphenyl, is 40-140%.					~ ~
The normal acceptance range i	for the fra	actionation	n surroa	ates, 2-Fluorob	iphenyl ·
and 2-Bromonaphthalene, is 40					
	1. 1. 1. 1.	and a second of the			
C9-C18 Aliphatics	ND	mg/kg	7.02		and a second of the second of
C19-C36 Aliphatics	ND	mg/kg	7.02		
Cll-C22 Aromatics	ND	mg/kg	7.02		
C11-C22 Aromatics, Adjusted	ND	mg/kg	7.02		
Naphthalene	ND	mg/kg	0.351		
2-Methylnaphthalene	ND	mg/kg	0.351		
Acenaphthylene	ND	mg/kg	0.351		
Acenaphthene	ND	mq/kq	0.351		
Fluorene	ND	mg/kg	0.351		
Phenanthrene	ND	mg/kg	0.351		
Anthracene	ND	mg/kg	0.351		
Fluoranthene	ND	mg/kg	0.351		•
Pyrene	ND	mg/kg	0.351		
Benzo (a) anthracene	ND	mg/kg	0.351		
Chrysene	ND	mg/kg	0.351		
Benzo(b)fluoranthene	ND	mg/kg	0.351	*	
Benzo(k)fluoranthene	ND	mq/kg	0.351		
Benzo(a)pyrene	ND	mg/kg	0.351		
Indeno (1, 2, 3-cd) Pyrene	ND	mg/kg	0.351		
Dibenzo(a,h)anthracene	ND	mg/kg	0.351		
Benzo(ghi)perylene	ND	mg/kg	0.351		
Surrogate(s)	Recovery		QC Cri	teria	
Chloro-Octadecane	57.0	40	40-140)	
o-Terphenyl .	79.0		40-140)	
2-Fluorobiphenyl	99.0	ક	40-140)	
2-Bromonaphthalene	101	8	40-140)	

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 29 of 59

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

				Date Collected: 03-APR-2006 13:55 Date Received : 05-APR-2006					
	SOIL Date Reported : 08-MAY-2006								
Condition of Sample:	Satisfactory Field Prep: None								
Number & Type of Container	s: 3-Amber								
PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL				
Solids, Total	96	8	0.10	30 2540G	0410 12:37 PD				
Polychlorinated Biphenyls	oy MCP 8082	6		64 8082	0407 00:30,0411 01:57 ss }				
Surrogate(s)	Recovery		QC Cri	iteria					
2,4,5,6-Tetrachloro-m-xyle	ne 69.0	8	30-150	D					
Decachlorobiphenyl	58.0	8	30-150	0					
Polychlorinated Biphenyls	09_MCP_8082		<u>A</u>	64-8082	0407_00-30_0411_01:57 SS				
Aroclor 1016	ND	ug/kg							
Aroclor 1221	ND	ug/kg	34.7						
Aroclor 1232	ND	ug/kg	34.7						
Aroclor 1242	ND	ug/kg	34.7						
Aroclor 1248	ND	ug/kg	34.7						
Aroclor 1254	ND	ug/kg	34.7						
Aroclor 1260	ND	ug/kg	34.7						
Surrogate(s)	Recovery		QC Cri	iteria					
2,4,5,6-Tetrachloro-m-xyler	ne 69.0	ક	30-150	}					
Decachlorobiphenvl	64.0	÷ .	30-150	ı					

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 30 of 59

Laboratory Sample Number: L0604684-11

B-5 (3-10')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT PREP	e Anal	ID
Extractable Petroleum Hydroc	arbons 📿 🗸	V6/8 / + P		61: BPH-04-1	0411, 19:30 0	412 17 5	4_BN
Qu	ality Cont	rol Inform	ation <u>s</u>		مر المراجع الم مراجع المراجع ال	2 X	
Condition of sample received	:		Satisfa	actory			
Sample temperature upon rece	ipt:		Receive	ed on Ice			
Sample extraction method:				ed Per the Met	hod		
Were all QA/QC procedures RE	-						ES
Were all performance/accepta						Y	ES
Were significant modificatio	ns made to	the metho	d as spec	ified in Sect	11.3?	N	0
The normal acceptance range	for the ex	traction s	urrogates	, Chloro-octad	ecane		
and o-Terphenyl, is 40-140%.							
The normal acceptance range		actionatio	n surroga	ates, 2-Fluorob	iphenyl		
and 2-Bromonaphthalene, is 4							
					and man all	and a second	4
C9-C18 Aliphatics	ND	mg/kg	6.94				
C19-C36 Aliphatics	ND	mg/kg	6.94				
Cl1-C22 Aromatics	ND	mg/kg	6.94				
C11-C22 Aromatics, Adjusted	NÐ	mg/kg	6.94				
Naphthalene	ND	mg/kg	0.347		-		
2-Methylnaphthalene	ND	mg/kg	0.347				
Acenaphthylene	ND	mg∕kg	0.347				
Acenaphthene	ND	mg/kg	0.347				
Fluorene	ND	mg∕kg	0.347				
Phenanthrene	ND	∙mg/kg	0.347				
Anthracene	ND	mg∕kg	0.347				
Fluoranthene	ND	mg/kg	0.347				
Pyrene	ND	mg/kg	0.347				
Benzo(a)anthracene	ND	mg/kg	0.347				
Chrysene	ND	mg/kg	0.347				
Benzo(b)fluoranthene	ND	mg/kg	0.347				
Benzo(k)fluoranthene	ND	mg/kg	0.347				
Benzo(a)pyrene	ND	mg/kg	0.347				
Indeno (1, 2, 3-cd) Pyrene	NÐ	mg/kg	0.347				
Dibenzo(a,h)anthracene	ND	mg/kg	0.347				
Benzo(ghi)perylene	ND	mg/kg	0.347				
Surrogate(s)	Recovery		QC Cri	teria			
Chloro-Octadecane	55.Ò	8	40-140				
o-Terphenyl	82.0	96	40-140				
2-Fluorobiphenyl	91.0	8	40-140				
2-Bromonaphthalene	92.0	8	40-140				

Comments: Complete list of References and Glossary of Terms found in Addendum I

,

.

Page 31 of 59

05080616:28

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

1

Laboratory Sample Number: Sample Matrix:	L0604684-12 B-6 (0-3') SOIL	Date Collected: 03-APR-2 Date Received : 05-APR-2 Date Reported : 08-MAY-2	006
Condition of Sample:	Satisfactory	Field Prep: None	

Number & Type of Containers: 3-Amber

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE I	D
					PREP	ANAL	
Solids, Total	95	8	0.10	30 2540G		0410 12:37 1	6D
lotal_Metals_by_MCP_6000/7000	series						<u> </u>
Antimony, Total	ND	mg/kg	2.1	60 6010B	0406 17:45	0407 13:00 1	RW
Arsenic, Total	19	mg/kg	0.42	60 6010B	0406 17:45	0407 13:00 #	RW
Barium, Total	16	mg/kg	0.42	60 6010B	0406 17:45	0407 13:00 8	RW
Beryllium, Total	ND	mg/kg	0.21	60 6010B	0406 17:45	0407 13:00 8	RW
Cadmium, Total	ND	mg/kg	0.42	60 6010B	0406 17:45	0407 13:00 8	RW
Chromium, Toțal	16 -	mg/kg	0.42	60 6010B	0406 17:45	0407 13:00 8	RW
Lead, Total	5.6	mg/kg	2.1	60 6010B	0406 17:45	0407 13:00 8	RW
Nickel, Total	14	mg/kg	1.0	60 6010B	0406 17:45	0407 13:00 8	RW
Selenium, Total	ND	mg/kg	2.1	60 6010B	0406 17:45	0407 13:00 F	RW
Silver, Total	ND	mg/kg	0.42	60 6010B	0406 17:45	0407 13:00 F	RW
Thallium, Total	ND	mg/kg	2.1	60 6010B	0406 17:45	0407 13:00 F	RW
			0 40	60 60100	0406 17.45	0407 13:00 F	RW
Vanadium, Total	11	mg/kg	0.42	60 6010B	0406 17:40		
Zinc, Total	17	mg/kg mg/kg	2.1	60 6010B 60 6010B	0406 17:45	0407 13:00 F	RM
Vanadium, Total Zinc, Total <u>Orgánochlorine Pesticides by</u> Surrogate(s)	17	mg/kg	2.1	60 6010B	0406 17:45	0407 13:00 F	RM
Zinc, Total <u>Orgánochlorine Pesticidés by</u>	17 MCP <u>8081A</u>	mg/kg	2.1	60 6010B	0406 17:45	0407 13:00 F	RM
Zinc, Total <u>Orgánochlorine Pesticidés by</u> Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene	17 MCP <u>8081A</u> Recovery	mg/kg	2.1	60 6010B 64 8081A iteria	0406 17:45	0407 13:00 F	RM
Zinc, Total Drgånochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by	17 MCP <u>8081A</u> Recovery 64.0 64.0	mg/kg * *	2.1 QC Cri 30-150	60 6010B 64 8081A iteria	0406 17:45	0407 13:00 F	W JB }
Zinc, Total Drgånochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by	17 MCP <u>8081A</u> Recovery 64.0 64.0	mg/kg * *	2.1 QC Cri 30-150	60 6010B 64 8081A iteria))	0406 17:45	0407 13:00 F	W JB }
Zinc, Total Drgånochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC	17 MCP_8081A Recovery 64.0 64.0 64.0	mg/kg * *	2.1 QC Cri 30-150 30-150	60 6010B 64 8081A iteria))	0406 17:45	0407 13:00 F	W JB }
Zinc, Total Drgånochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drgånochlorine Pesticides by Delta-BHC Lindane Alpha-BHC	17 MCP_8081A Recovery 64.0 64.0 64.0 MCP_8081A; ND	mg/kg % % ug/kg	2.1 QC Cri 30-150 30-150 3.51	60 6010B 64 8081A iteria))	0406 17:45	0407 13:00 F	W JB }
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC	17 MCP_8081A Recovery 64.0 64.0 64.0 MCP_8081A; ND ND	mg/kg % % ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81	60 6010B 64 8081A iteria))	0406 17:45	0407 13:00 F	W JB }
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC	17 MCP_8081A Recovery 64.0 64.0 64.0 MCP_8081A: ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51	60 6010B 64 8081A iteria))	0406 17:45	0407 13:00 F	W JB }
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin	17 MCP_8081A Recovery 64.0 64.0 64.0 MCP_8081A: ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51	60 6010B 64 8081A iteria))	0406 17:45	0407 13:00 F	W JB }
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin	17 Recovery 64.0 64.0 64.0 MCP 8081A: ND ND ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51 3.51	60 6010B 64 8081A iteria))	0406 17:45	0407 13:00 F	W JB }
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin	17 Recovery 64.0 64.0 MCP 8081A: ND ND ND ND ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51 3.51 3.51 3.51	60 6010B 64 8081A iteria))	0406 17:45	0407 13:00 F	W JB }
Zinc, Total <u>Orgánochlorine</u> <u>Pesticidés by</u> Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drgánochlorine <u>Pesticidés by</u> Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin	17 Recovery 64.0 64.0 MCP_8081A ND ND ND ND ND ND ND ND ND ND ND ND	<pre>mg/kg % % ug/kg ug/kg</pre>	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51	60 6010B 64 8081A iteria))	0406 17:45	0407 13:00 F	W
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin	17 Recovery 64.0 64.0 0 MCP_8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	<pre>mg/kg % % ug/kg ug/kg</pre>	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.5	60 6010B 64 8081A iteria))	0406 17:45	0407 13:00 F	W
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin	17 Recovery 64.0 64.0 MCP_8081A ND ND ND ND ND ND ND ND ND ND	<pre>mg/kg % % ug/kg ug/kg</pre>	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.5	60 6010B 64 8081A iteria))	0406 17:45	0407 13:00 F	W
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD	17 Recovery 64.0 64.0 MCP_8081A: ND ND ND ND ND ND ND ND ND ND	<pre>mg/kg % % ug/kg ug/kg</pre>	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51	60 6010B 64 8081A iteria))	0406 17:45	0407 13:00 F	W
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Indrin ketone Dieldrin 4,4'-DDE	17 Recovery 64.0 64.0 MCP_8081A: ND ND ND ND ND ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51	60 6010B 64 8081A iteria))	0406 17:45	0407 13:00 F	W JB }

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 32 of 59

Laboratory Sample Number: L0604684-12

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	ľE	ID
					PREP	ANAL	
Organochlorine Pesticides by	MCP 8081A	cont ² d		64 8081A 2	-0406-23:50	0412 03 3	S JB
Endosulfan II	ND	ug/kg	3.51				
Endosulfan sulfate	ND	ug/kg	3.51				
Methoxychlor	ND	ug/kg	14.0				
Chlordane	ND	ug/kg	14.0				
Toxaphene	ND	ug/kg	14.0				
Hexachlorobenzene	ND	ug/kg	3.51				
Surrogate(s)	Recovery		QC Cr:	iteria			
2,4,5,6-Tetrachloro-m-xylene	68.0	o-0	30-150)			
Decachlorobiphenyl	62.0	8	30-150)			

. •

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 33 of 59

Laboratory Sample Number: L0604684-12

B-6 (0-3')

-

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT PREP	TE ANAL	ID
Extractable Petroleum Hydroc	arbons 👘	ri cana a ma		₫ 61 Ери-04-1_	0411 19:30	0412_18:	27-BN
Qu	ality Cont	rol Inform	ation ¹	12	A		ಲ್ಲ ನಿಷ್ಠೆ ತಿನ್ನಾರಿ –
Condition of sample received	:		Satisf	actory			
Sample temperature upon rece	ipt:		Receiv	ed on Ice			
Sample extraction method:			Extrac	ted Per the Met	hod		
Were all QA/QC procedures RE	QUIRED by	the method	followe	d?		2	ſES
Were all performance/accepta	nce standa	rds for the	e requir	ed procedures a	chieved?	2	YES
Were significant modificatio	ns made to	the method	d as spe	cified in Sect	11.3?	1	NO
The normal acceptance range			-				
and o-Terphenyl, is 40-140%.			-				
The normal acceptance range		actionatio	n surrog	ates, 2-Fluorob	iphenyl		
and 2-Bromonaphthalene, is 4							
A started at the star		the P	ny adalah sarata		a and a second	19. - 9 9. 	
C9-C18 Aliphatics	ND	mg/kg	7.02				
C19-C36 Aliphatics	ND	mg/kg	7.02				
C11-C22 Aromatics	ND	mg/kg	7.02				
C11-C22 Aromatics, Adjusted	ND	mg/kg	7.02				
Naphthalene	ND	mg/kg	0.351				
2-Methylnaphthalene	ND	mg/kg	0.351				
Acenaphthylene	ND	mg/kg	0.351				
Acenaphthene	ND	mg/kg	0.351				
Fluorene	ND	mg/kg	0.351				
Phenanthrene	ND	mg/kg	0.351				
Anthracene	ND	mg/kg	0.351				
Fluoranthene	ND	mg/kg	0.351				
Pyrene	ND ND	mg/kg	0.351				
Benzo (a) anthracene		mg/kg	0.351				
Chrysene	ND	mg/kg	0.351				
Benzo(b)fluoranthene	ND	mg/kg	0.351				
Benzo(k)fluoranthene	ND	mg/kg	0.351				
Benzo (a) pyrene	ND	mg/kg	0.351				
Indeno (1, 2, 3-cd) Pyrene	ND	mg/kg	0.351				
Dibenzo(a,h)anthracene	ND	mg/kg	0.351				
Benzo(ghi)perylene	ND	mg/kg	0.351				
Surrogate(s)	Recovery		QC Cr.	iteria			
Chloro-Octadecane	.50.0	8	40-14				
o-Terphenyl	76.0	8	40-14				
2-Fluorobiphenyl	96.0	ę	40-14				
	2010		10 11	*			

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 34 of 59

.

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:		Date Collected: Date Received :	: 03-APR-2006 15:30 : 05-APR-2006
Sample Matrix:	SOIL	Date Reported :	08-MAY-2006
Condition of Sample:	Satisfactory	Field Prep:	None

Number & Type of Containers: 3-Amber

-

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
		,			
Solids, Total	95	9 5	0.10	30 2540G	0410 12:37 PD
fotal ^y Metals by MCP 6000/7000	series			60 6010B	
Antimony, Total	ND	mg/kg	2.1	60 6010B	0406 17:45 0407 13:03 RW
Arsenic, Total	17	mg/kg	0.42	60 6010B	0406 17:45 0407 13:03 RW
Barium, Total	13	mg/kg	0.42	60 6010B	0406 17:45 0407 13:03 RW
Beryllium, Total	ND	mg/kg	0.21	60 6010B	0406 17:45 0407 13:03 RW
Cadmium, Total	ND	mg/kg	0.42	60 6010B	0406 17:45 0407 13:03 RW
Chromium, Total	12	mg/kg	0.42	60 6010B	0406 17:45 0407 13:03 RW
Lead, Total	6.0	mg/kg	2.1	60 60109	0405 17:45 0407 13:03 RW
Nickel, Total	11	mg/kg	1.0	60 6010B	0406 17:45 0407 13:03 RW
Selenium, Total	ND	mg/kg	2.1	60 6010B	0406 17:45 0407 13:03 RW
Silver, Total	ND	mg/kg	0.42	60 6010B	0406 17:45 0407 13:03 RW
Thallium, Total	ND	mg/kg	2.1	60 6010B	0406 17:45 0407 13:03 RW
te se el é su metre 1	9.2	mg/kg	0.42	60 6010B	0406 17:45 0407 13:03 RW
/anadium, Total	2.2				
Linc, Total	15	mg/kg	2.1	60 6010B	0406 17:45 0407 13:03 RW
Vanadium, Total Zinc, Total Drganochlorine Pesticides by Surrogate(s)	15	mg/kg		64 8081A	بالمريبي المراجع والمراجع والمراجع
Zinc, Total Drgañochlórine Pesticides by	15 <u>MCP-8081A</u>	mg/kg	2.1	64 8081 <u>x</u>	بالمريبي المراجع والمراجع والمراجع
Linc, Total Drganochlörine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene	15 <u>MCP-8081A</u> Recovery	mg/kg	2.1 QC Cri	iteria	0406 17:45 0407 13:03 RW 0406 23:50 0412 04:04 JB
Zinc, Total Drganochlörine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlörine Pesticides by	15 <u>MCP-808TA</u> Recovery 67.0 69.0 <u>MCP-808TA</u>	mg/kg % %	2.1 QC Cri 30-150 30-150	iteria)	0406_23:50_0412_04:04 JB
Zinc, Total Drganochlörine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlörine Pesticides by Delta-BHC	15 <u>MCP-8081A</u> Recovery 67.0 69.0 <u>MCP-8081A</u> ND	mg/kg % % ug/kg	2.1 QC Cri 30-150 30-150 3.51	iteria)	0406_23:50_0412_04:04_08
Linc, Total Drganochlörine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlörine Pesticides by Delta-BHC Lindane	15 <u>MCP-808TA</u> Recovery 67.0 69.0 <u>MCP 808TA</u> ND ND	mg/kg % % ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81	iteria)	0406_23:50_0412_04:04_08
Linc, Total Drganochlörine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlörine Pesticides by Delta-BHC Lindane Alpha-BHC	15 <u>MCP-8081A</u> Recovery 67.0 69.0 <u>MCP 8081A</u> ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51	iteria)	0406_23:50_0412_04:04 JB
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC	15 <u>MCP-8081A</u> Recovery 67.0 69.0 <u>MCP 8081A</u> ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51	iteria)	0406_23:50_0412_04:04 JB
Zinc, Total Drganochlörine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Deganochlöfine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor	15 <u>MCP-808TA</u> Recovery 67.0 69.0 <u>MCP 808TA</u> ND ND ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51	iteria)	0406_23:50_0412_04:04 JB
Zinc, Total Drganochlörine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Deganochlörine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin	15 <u>MCP-8081A</u> Recovery 67.0 69.0 <u>MCP 8081A</u> ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51	iteria)	0406_23:50_0412_04:04 JB
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Deganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide	15 <u>MCP-808TA</u> Recovery 67.0 69.0 <u>MCP 808TA</u> ND ND ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51	iteria)	0406_23:50_0412_04:04 JB
Zinc, Total Drganochlörine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlörine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin	15 <u>MCP-808TA</u> Recovery 67.0 69.0 <u>MCP 808TA</u> ND ND ND ND ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51 3.51 3.51	iteria)	0406_23:50_0412_04:04 JB
Zinc, Total Drganochlörine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlörine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin	15 <u>MCP-808TA</u> Recovery 67.0 69.0 <u>MCP 808TA</u> ND ND ND ND ND ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51 3.51 3.51 3.51	iteria)	0406_23:50_0412_04:04 JB
Linc, Total Drganochlörine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlörine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin	15 <u>MCP-808TA</u> Recovery 67.0 69.0 <u>MCP 808TA</u> ND ND ND ND ND ND ND ND ND ND	mg/kg % % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51	iteria)	0406_23:50_0412_04:04 JB
Linc, Total Drganochlörine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlörine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin	15 <u>MCP.8081A</u> Recovery 67.0 69.0 <u>MCP.8081A</u> ND ND ND ND ND ND ND ND ND ND	mg/kg % % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51	iteria)	0406_23:50_0412_04:04 JB
Zinc, Total Drganochlörine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlörine Pesticides by Delta-BHC Lindane Alpha-BHC	15 <u>MCP.8081A</u> Recovery 67.0 69.0 <u>MCP.8081A</u> ND ND ND ND ND ND ND ND ND ND	mg/kg % % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51	iteria)	0406,23:50_0412_04:04 JB
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Deganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin L,4'-DDE	15 <u>MCP. 8081A</u> Recovery 67.0 69.0 <u>MCP 8081A</u> ND ND ND ND ND ND ND ND ND ND	mg/kg % % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.1 QC Cri 30-150 30-150 3.51 2.81 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51	iteria)	in providence and the second

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 35 of 59

Laboratory Sample Number: L0604684-13 B-7 (0-3')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT	E	ID
					PREP ANA		L
Organochlorine Pesticides by.	MCP-8081A	cont !d		64 B081A	0406 23:50 0	412 04:0	4_JB-
Endosulfan II	ND	ug/kg	3.51				
Endosulfan sulfate	ND	ug/kg	3.51				
Methoxychlor	ND	ug/kg	14.0				
Chlordane	ND	ug/kg	14.0				
Toxaphene	ND	ug/kg	14.0				
Hexachlorobenzene	ND	ug/kg	3.51				
Surrogate(s)	Recovery		QC Cri	iteria			
2,4,5,6-Tetrachloro-m-xylene	71.0	8	30-150)			
Decachlorobiphenyl	64.0	96	30-150)			

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 36 of 59

Laboratory Sample Number: L0604684-13

B-7 (0-3")

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP 2	ID
Extractable_Petroleum_Hydroca	rbons	5 414 La		- = 61-EPK-04-1	0411 19:30-041	2 19:00 BN
ELQUE	lity Cont	ről Inform	ation	and the second se		- M. 197
Condition of sample received:			Satisf	actorv		
Sample temperature upon recei				ed on Ice		
Sample extraction method:	1		Extrac	ted Per the Met	hod	
Were all QA/QC procedures REQ	UIRED by t	the method	followe	d?		YES
Were all performance/acceptan	-				chieved?	YES
Were significant modification			-	-		NO
The normal acceptance range f			-			_
and o-Terphenyl, is 40-140%.			2		•	
The normal acceptance range f	or the fra	actionatio	n surroq	ates, 2-Fluorob	iphenyl	
and 2-Bromonaphthalene, is 40						
		a ang ang ang ang ang ang ang ang ang an	ing war en som. Die son is statut			····· · · · · · · · · · · · · · · · ·
C9-C18 Aliphatics	ND	mg/kg	7.02			
C19-C36 Aliphatics	ND	mq/kq	7.02			
C11-C22 Aromatics	ND	mg/kg	7.02			
C11-C22 Aromatics, Adjusted	ND	mg/kg	7.02			
Naphthalene	ND	mg/kg	0.351			
2-Methylnaphthalene	ND	mg/kg	0.351			
Acenaphthylene	NÐ	mg/kg	0.351			
Acenaphthene	ND	mg/kg	0.351			
Fluorene	ND	mg/kg	0.351			
Phenanthrene	ND	mg/kg	0.351			
Anthracene	ND'	mg/kg	0.351			
Fluoranthene	ND	mg/kg	0.351			
Pyrene	ND	mg/kg	0.351			
Benzo(a)anthracene	ND	mg/kg	0.351			
Chrysene	ND	mg/kg	0.351			
Benzo(b)fluoranthene	ND	mg/kg	0.351			
Benzo(k)fluoranthene	ND	mg/kg	0.351			
Benzo(a)pyrene	ND	mg/kg	0.351			
Indeno(1,2,3-cd)Pyrene	ND	mg/kg	0.351			
Dibenzo(a,h)anthracene	ND	mg/kg	0.351			
Benzo(ghi)perylene	ND	mg/kg	0.351			
Surrogate(s)	Recovery		QC Cr:	iteria		
Chloro-Octadecane	54.0	8	40-140) ,		
o-Terphenyl	83.0	8	40-140			
2-Fluorobiphenyl	100	8	40-140	}		
2-Bromonaphthalene	102	5	40-14()		

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 37 of 59

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0604684-14 B-8 (0-3')	Date Collected: 03-APR-2006 16:10 Date Received : 05-APR-2006
Sample Matrix:	SOIL	Date Reported : 08-MAY-2006
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 3-Amber

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	93	8 ·	0.10	30 2540G	0410 12:37 PD
Fotal Metals by MCP_6000	/7000 series	·····	<u> </u>		ter to the second term
Antimony, Total	ND	mg/kg	2.1	60 6010B	0406 17:45 0407 13:05 RW
Arsenic, Total	15	mg/kg	0.42	60 6010B	0406 17:45 0407 13:05 RW
Barium, Total	13	mg/kg	0.42	60 6010B	0406 17:45 0407 13:05 RW
Beryllium, Total	ND	mg/kg	0.21	60 6010B	0406 17:45 0407 13:05 RW
Cadmium, Total	ND	mg/kg	0.42	60 6010B	0406 17:45 0407 13:05 RW
Chromium, Total	12	mg/kg	0.42	60 6010B	0406 17:45 0407 13:05 RW
Lead, Total	5.4	mg/kg	2.1	60 6010B	0406 17:45 0407 13:05 RW
Nickel, Total	12	mg/kg	1.0	60 6010B	0406 17:45 0407 13:05 RW
Selenium, Total	ND	mg/kg	2.1	60 6010B	0406 17:45 0407 13:05 RW
Silver, Total	ND	mq/kq	0.42	60 6010B	0406 17:45 0407 13:05 RW
Thallium, Total	ND	mq/kg	2.1	60 6010B	0406 17:45 0407 13:05 RW
Vanadium, Total	9.5	mg/kg	0.42	60 6010B	0406 17:45 0407 13:05 RW
Zinc, Total	15	mg∕kg	2.1	60 6010B	0406 17:45 0407 13:05 RW
Organochlorine Pesticide	s by MCP 8081A			64 8081A	10406 23:50 0412 04:32 JB
			and the second	04 0001A	UIUU 23,30 0412 04,32 00 1
Delta-BHC	ND	ug/kg	3.58	04 0001A	0100_223.00_0412_04.022,0D_1
		ug/kg ug/kg			<u></u>
Delta-BHC	ND		3.58		<u></u>
Delta-BHC Lindane	ND ND	ug/kg	3.58 2.87		
Delta-BHC Lindane Alpha-BHC Beta-BHC	ND ND ND	ug/kg ug/kg ug/kg	3.58 2.87 3.58		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58 3.58		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58 3.58 3.58		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58 3.58 3.58 3.58 3.58		
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58 3.58 3.58 3.58 3.58 3.58 3.58 3.58		<u> </u>
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58 3.58 3.58 3.58 3.58 3.58 3.58 3.58		,
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58 3.58 3.58 3.58 3.58 3.58 3.58 3.58		<u></u>
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE	ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58 3.58 3.58 3.58 3.58 3.58 3.58 3.58		<u></u>
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58 3.58 3.58 3.58 3.58 3.58 3.58 3.58		<u></u>
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT	ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58 3.58 3.58 3.58 3.58 3.58 3.58 3.58		<u></u>
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I	ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58 3.58 3.58 3.58 3.58 3.58 3.58 3.58		<u></u>
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I Endosulfan II	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58 3.58 3.58 3.58 3.58 3.58 3.58 3.58		<u></u>
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I Endosulfan II Endosulfan sulfate	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58		<u></u>
Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT Endosulfan I Endosulfan II Endosulfan sulfate Methoxychlor	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58		
Delta-BHC Lindane Alpha-BHC	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.58 2.87 3.58		

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 38 of 59

Laboratory Sample Number: L0604684-14 ·B-8 (0-3')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP ANA	AL.
Organochlorine Pesticides_by,	MCP 8081A_c	cont'd ·····	<u> </u>		0406-23:50 0412-0	4.32 JB
Surrogate(s)	Recovery	~	QC Cri	teria		
2,4,5,6-Tetrachloro-m-xylene	49.0	뵹	30-150			
Decachlorobiphenyl	47.0	9	30-150			
Organochlorine Pesticides by	MCP-8081A	و میں ایک پیسی سے ایک آٹ ایک آرسی میں جگی ای		64 8081A.	0406 23,50 0412 0	4.32 JB
Surrogate(s)	Recovery		OC Cri	teria		
2,4,5,6-Tetrachloro-m-xylene	47.0	90	30-150			
	52.0	- %	30-150			

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 39 of 59

.

Laboratory Sample Number: L0604684-14

B-8 (0-3*)

Parameter	RESULT	UNITS	RDL	REF METHOD	DA1	ANAL	ID
ExtractablesPetróleum Hydroca	rbons			- 61_EPH-04-1	-0411-19:30	0412:19:	2_BN_
Que	ality Cont	rol Inform	ation	4	1967 - 1784		
Condition of sample received	:		Satisfa	ctory			
Sample temperature upon rece:	ipt:		Receive	d on Ice			
Sample extraction method:			Extract	ed Per the Met	hod		
Were all QA/QC procedures RE(UIRED by	the method	followed	?		2	ES
Were all performance/acceptar	nce standa	rds for the	e require	d procedures a	chieved?	У	ES
Were significant modification						N	10
The normal acceptance range i							
and o-Terphenyl, is 40-140%.			_				
The normal acceptance range i	for the fra	actionation	n surroga	tes, 2-Fluorob	iphenyl		
and 2-Bromonaphthalene, is 40							
					REAL T		
C9-C18 Aliphatics	ND	mg/kg	7.17				
C19~C36 Aliphatics	ND	mq/kg	7.17				
C11-C22 Aromatics	ND	mg/kg	7.17				
C11-C22 Aromatics, Adjusted	ND	mg/kg	7.17				
Naphthalene	ND	mg/kg	0.358				
2-Methylnaphthalene	ND	mg/kg	0.358				
Acenaphthylene	ND	mg/kg	0.358				
Acenaphthene	ND	mg/kg	0.358				
Fluorene	ND	mg/kg	0.358				
Phenanthrene	ND	mg/kg	0.358				
Anthracene	ND	mg/kg	0.358		•		
Fluoranthene	ND	mg/kg	0.358				
Pyrene	ND	mg/kg	0.358				
Benzo(a)anthracene	ND	mg/kg	0.358				
Chrysene	ND	mg/kg	0.358				
Benzo(b)fluoranthene	ND	mg/kg	0.358				
Benzo(k) fluoranthene	ND	mg/kg mg/kg	0.358				
Senzo(a)pyrene	ND	mg/kg mg/kg	0.358				
Indeno (1, 2, 3-cd) Pyrene	ND	mg/kg mg/kg	0.358				·
Dibenzo (a, h) anthracene	ND	mg/kg mg/kg	0.358				
Benzo(ghi)perylene							
seuvo (dur) berArene	ND	mg/kg	0.358				
Surrogate (s)	Recovery		OC Crit	eria			
Chloro-Octadecane	56.0	8	40-140				
o-Terphenyl	87.0	0 24	40-140				
2-Fluorobiphenyl	100	8	40-140				
2-Bromonaphthalene	100	ъ 95	40-140				
, promonuburnarene	102	0	40-140				

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 40 of 59

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0604684-15	Date Collected:	04-APR-2006 09:05
	B-10 (0-3')	Date Received :	05-APR-2006
Sample Matrix:	SOIL	Date Reported :	08-MAY-2006
Condition of Sample:	Satisfactory	Field Prep:	None

Number & Type of Containers: 3-Amber

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
					Pr. 1844-1
Solids, Total	84	8	0.10	30 2540G	0410 12:37 PD
Total Metals by MCP 6000	/7000_series			60 6010B	
Antimony, Total	ND	mg/kg	2.4	60 6010B	0406 17:45 0407 13:08 RW
Arsenic, Total	14	mg/kg	0.47	60 6010B	0406 17:45 0407 13:08 RW
Barium, Total	40	mg/kg	0.47	60 6010B	0406 17:45 0407 13:08 RW
Beryllium, Total	ND	mg/kg	0.24	60 6010B	0406 17:45 0407 13:08 RW
Cadmium, Total	ND	mg/kg	0.47	60 6010B	0406 17:45 0407 13:08 RW
Chromium, Total	54	mg/kg	0.47	60 6010B	0406 17:45 0407 13:08 RW
Lead, Total	28	mg/kg	2.4	60 6010B	0406 17:45 0407 13:08 RW
Nickel, Total	71	mg/kg	1.2	60 6010B	0406 17:45 0407 13:08 RW
Selenium, Total	ND	mg/kg	2.4	60 6010B	0406 17:45 0407 13:08 RW
Silver, Total	0.54	mg/kg	0.47	60 6010B	0406 17:45 0407 13:08 RW
Thallium, Total	ND	mg/kg	2.4	60 6010B	0406 17:45 0407 13:08 RW
Vanadium, Total	20	mg/kg	0.47	60 6010B	0406 17:45 0407 13:08 RW
Zinc, Total	61	mg∕kg	2.4	60 6010B	0406 17:45 0407 13:08 RW
Organochlorine Pesticide	S by MCP 808TA			64 8081A	0406 23:50 0412 00:50 JB
Delta-BHC	ND	uq/kq	39.7		
Lindane	ND	ug/kg	31.7		
Alpha-BHC	ND	ug/kg	39.7 .		· .
Beta-BHC	ND	ug/kg	39.7		
Heptachlor	ND	ug/kg	39.7		
Aldrin	ND	ug/kg	39.7		
Heptachlor epoxide	ND	ug/kg	39.7		
Endrin	ND	ug/kg	39.7		
Endrin ketone	ND	ug/kg ·	39.7		
Dieldrin	ND	ug/kg	39.7		
4, 4'-DDE	ND	ug/kg	39.7		
4,4'~DDD	ND	ug/kg	39.7		
4,4'-DDT	ND	ug/kg	39.7		
Endosulfan I	ND	ug/kg	39.7		
Endosulfan II	ND	ug/kg	39.7		
Endosulfan sulfate	ND	ug/kg	39.7		
Methoxychlor	ND	ug/kg	159.		
Chlordane	ND	ug/kg	159.		
Toxaphene	ND	ug/kg	159.		
Hexachlorobenzene	ND	ug/kg	39.7		
HCARCHIOLODENZENE	111/	uy/xy	53.1		

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 41 of 59

Laboratory Sample Number: L0604684-15 B-10 (0-3')

PARAMETER	RESULT	UNITS	RDL	REF M	ETHOD	DA' PREP	TE ANAL	ID
Organochloříně, Pesticides by	MCP 8081A	cont'd	مىلىغۇر بىرى 1 قارىيى مەرىيى بىرى بىرى 1 قارىيى مەرىيى بىرى بىرى بىرى بىرى	64 80	81A [] = =	0406 23:50	0412 00:5	0 JB;
Surrogate(s)	Recovery		QC Cri					
2,4,5,6-Tetrachloro-m-xylene	ND	95	30-150					
Decachlorobiphenyl	ND	qio	30-150	ł				
Drganochlorine Pesticides by Surrogate(s)		- an star an dan an s	QC Cri			0406.23:50	adamining the "adamin's	
Surrogate(s)	Recovery		_					
2,4,5,6-Tetrachloro-m-xylene	ND	ક્ષ	30-150					
Decachlorobiphenyl	ND	ક	30-150					
								•

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28

Page 42 of 59

Laboratory Sample Number: L0604684-15

B-10 (0-3')

	RESULT	UNITS	RDL	REF METHOD	DAI	'E ID ANAL
xtractable Petroleum Hydroc.	arbons	- A. Maria	a 35	⊃ 61 EPH-04-1	0413 19:30 (1413_00:24 BN
Oue	ality Confi	ol inform	ation			т. с. к <u>.</u> к.г.
Condition of sample received	:		Satisfa	actory		
Sample temperature upon rece	ipt:		Receive	ed on Ice		
Sample extraction method:			Extract	ted Per the Met	hod	
Were all QA/QC procedures RE(QUIRED by t	the method	followed	d?		YES
Were all performance/acceptar	nce standaı	ds for the	e require	ed procedures a	chieved?	YES
Were significant modification	ns made to	the method	d as spec	cified in Sect	11.3?	NO .
The normal acceptance range i	for the ext	raction s	urrogates	s, Chloro-octad	lecane .	
and o-Terphenyl, is 40-140%.						
The normal acceptance range :	for the fra	actionatio	n surroga	ates, 2-Fluorob	iphenyl	
and 2-Bromonaphthalene, is 40			-			
C9-C18 Aliphatics	ND	mg/kg	7.94			
C19-C36 Aliphatics	26.0	mg/kg	7.94			
C11-C22 Aromatics	314	mg/kg	7.94			
C11-C22 Aromatics, Adjusted	202	mg/kg	7.94			
Naphthalene	ND	mg∕kg	0.397			
2-Methylnaphthalene	ND	mg/kg	0.397			
Acenaphthylene	ND	mg/kg	0.397			
Acenaphthene	0.682	mg/kg	0.397			
Fluorene	0.570	mg/kg	0.397			
Phenanthrene	9.63	mg/kg	0.397			
Anthracene	2,92	mg/kg	0.397			
an chi cu	>13.3	mg/kg	.397			
Fluoranthene						
	>13.3	ma/ka	397			
Pyrene	>13.3	mg/kg mg/kg	.397			
Pyrene Benzo(a)anthracene	11.8	mg/kg	0.397			
Pyrene Benzo (a) anthracene Chrysene	11.8 14.4	mg/kg mg/kg	0.397 0.397			
Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene	11.8 14.4 10.1	mg/kg mg/kg mg/kg	0.397 0.397 0.397			
Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	11.8 14.4 10.1 6.47	mg/kg mg/kg mg/kg mg/kg	0.397 0.397 0.397 0.397			
Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	11.8 14.4 10.1 6.47 9.26	mg/kg mg/kg mg/kg mg/kg mg/kg	0,397 0.397 0.397 0.397 0.397 0.397			
Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) Pyrene	11.8 14.4 10.1 6.47 9.26 4.72	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.397 0.397 0.397 0.397 0.397 0.397			
Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) Pyrene Dibenzo (a,h) anthracene	11.8 14.4 10.1 6.47 9.26 4.72 1.19	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.397 0.397 0.397 0.397 0.397 0.397 0.397			
Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) Pyrene Dibenzo (a,h) anthracene	11.8 14.4 10.1 6.47 9.26 4.72	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.397 0.397 0.397 0.397 0.397 0.397			
Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) Pyrene Dibenzo (a,h) anthracene Benzo (ghi) perylene	11.8 14.4 10.1 6.47 9.26 4.72 1.19	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397	iteria		
Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) Pyrene Dibenzo (a,h) anthracene Benzo (ghi) perylene	11.8 14.4 10.1 6.47 9.26 4.72 1.19 4.24	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397			
Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1, 2, 3-cd) Pyrene Dibenzo (a, h) anthracene Benzo (ghi) perylene Surrogate (s) Chloro-Octadecane o-Terphenyl	11.8 14.4 10.1 6.47 9.26 4.72 1.19 4.24 Recovery	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397)		
Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1, 2, 3-cd) Pyrene Dibenzo (a, h) anthracene Benzo (ghi) perylene Surrogate (s) Chloro-Octadecane	11.8 14.4 10.1 6.47 9.26 4.72 1.19 4.24 Recovery 59.0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 QC Cri 40-140	}		

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 43 of 59

Laboratory Sample Number: L0604684-15

B-10 (0-3')

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP AN	AL.

Extractable Petroleum Hydrocarbons

Quality Control Information ...

Condition of sample received: Satisfactory Sample temperature upon receipt: Received on Ice Sample extraction method: Extracted Per the Method Were all QA/QC procedures REQUIRED by the method followed? YES Were all performance/acceptance standards for the required procedures achieved? YES Were significant modifications made to the method as specified in Sect 11.3? NO The normal acceptance range for the extraction surrogates, Chloro-octadecane and o-Terphenyl, is 40-140%. The normal acceptance range for the fractionation surrogates, 2-Fluorobiphenyl and 2-Bromonaphthalene, is 40-140%. 124 Fluoranthene 19.6 mg/kg 0.794 Pyrene 16.3 mg/kg 0.794

Comments: Complete list of References and Glossary of Terms found in Addendum I

05080616:28 Page 44 of 59

Laboratory Job Number: L0604684

Parameter	Value 1	Value 2	Units	RPD	RPD Limits
Solids, Tot	al for same	blé(s) [/] 01-15	(10604684	-11; WG2	35431-1)
Solids, Total	96	96	8	0	20
Total Metals by MCP 600077000	series for	sample(s)	01:03-04:0	6-07;10,	12-15 (L0604684-07, WG23
Antimony, Total	ND	ND	mg/kg	NC	35
Arsenic, Total	9.1	9.6	mg/kg	5	35
Barium, Total	37	26 ·	mg/kg	35	35
Beryllium, Total	ND	ND	mg/kg	NC	35
Cadmium, Total	ND	ND	mg/kg	NC	35
Chromium, Total	19	15	mg/kg	24	35
Lead, Total	20	19	mg/kg	5	35
Nickel, Total	18	16	mg/kg	12	35
Selenium, Total	ND	ND	mg/kg	NC	35
Silver, Total	ND	ND	mg/kg	NC	35
Thallium, Total	ND	ND	mg/kg	NC	35
Vanadium, Total	14	12	mg/kg	15	35
Zinc, Total	28	26	mg/kg	7	35
Extractable Petroleum Hy C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjusted Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC NC NC	50 50 50 50 50 50 50 50 50 50 50 50 50 5
Fluorene	ND	' ND	mg/kg	NC	50
Phenanthrene	ND	ND	mg/kg	NC	50
Anthracene	ND	אD	mg/kg	NC	50
Fluoranthene	ND	ND	mg/kg	NC	50
Pyrene	ND	ND	mg/kg	NC	50
Benzo(a)anthracene	ND	ND	mg/kg mg/kg	NC	50
Chrysene	ND	ND	mg/kg mg/kg	NC	50
Benzo(b)fluoranthene	ND	ND	mg/kg	NC	50
Benzo(k) fluoranthene	ND	ND	mg/kg	NC	50
Benzo(a)pyrene	ND	ND		NC	50
Indeno (1,2,3-cd) Pyrene	ND		mg/kg		50
Dibenzo (a, h) anthracene		ND	mg/kg	NC	
	ND	ND	mg/kg	NC	50
Benzo(ghi)perylene	ND	ND	mg/kg	NC	50
Surrogate(s)	Reco	very			QC Criteria
Chloro-Octadecane	65.0	52.0	8		40-140
	85.0	87.0	8		40-140
o-Terphenyl	63.0	0/.0	- D		40 140
o-Terphenyl 2-Fluorobiphenyl	87.0	84.0	2		40-140

05080616:28

Page 45 of 59

Laboratory Job Number: L0604684

Parameter	% Recovery	QC Criteria
Tet 2 Mate 1 - 1 - 1 - 1 - 1 - 2 Mon - 2000/2000 - 2		(s):01,03-04,06-07,10,12-15 (1.0604684-07
Antimony, Total	87	75-125
Arsenic, Total	93	75-125
Barium, Total	72	75-125
	72	75-125
Beryllium, Total Cadmium, Total	78 94	75-125
	80	75-125
Chromium, Total Lead, Total	90	75-125
	82	75-125
Vickel, Total Selenium, Total	92	75-125
-		
Silver, Total	84 86	75-125
Thallium, Total		75-125
Vanadium, Total	87 78	75-125
linc, Total	18	75-125
xtractable Petroleum Hydrocarbo	ns SPIKE for sample (s) 01-08,10-15 (L0604684-07; WG235816-4)
29-C18 Aliphatics	66	40-140
C19-C36 Aliphatics	. 80	40-140
C11-C22 Aromatics	89	40-140
laphthalene	81	40-140
-Methylnaphthalene	81	40-140
cenaphthylene	86	40-140
cenaphthyrene	87	40-140
luorene	90	40-140
Phenanthrene	96	
		40-140
Inthracene	103	40-140
luoranthene	94	40-140
Pyrene	. 93	40-140
Senzo (a) anthracene	87	40-140
Chrysene	103	40-140
Senzo(b)fluoranthene	81	40-140
Senzo(k)fluoranthene	82	40-140
Senzo (a) pyrene	80	40-140
ndeno(1,2,3-cd)Pyrene	77	40-140
Dibenzo(a,h)anthracene	80	40-140
Senzo(ghi)perylene	80	40-140
Ionane (C9)	53	30-140
Decane (C10)	62	40-140
odecane (C12)	68	40-140
etradecane (C14)	70	40-140
lexadecane (C16)	72	40-140
octadecane (C18)	73	40-140
Ionadecane (C19)	76	40-140
licosane (C20)	78	40-140
locosane (C22)	81	40-140
etracosane (C24)	80	40-140
lexacosane (C26)	80	40-140
chacosane (czo)		
Octacosane (C28)	79	40-140

05080616:28 Page 46 of 59

Continued

Laboratory Job Number: L0604684

Parameter	% Recovery	QC Criteria
Extractable Petroleum_Hydrocarbo	ons SPIKE for sample (s) 01-08, 10-15 (L0604684-07, WG235816-4)
Hexatriacontane (C36)	80	40-140
Surrogate(s)		
Chloro-Octadecane	. 65	40-140
o-Terphenyl	107	40-140
2-Fluorobiphenyl	90	40-140
2-Bromonaphthalene	93	40-140

05080616:28

:28 Page 47 of 59

01 35

,

Laboratory Job Number: L0604684

Parameter	LCS &	LCSD %	RPD	RPD Limit	QC Limits
Total Metals by MCP 6000/7000 s	eries for sa	mple(s)_01,(03-04,06-0)7,10,12-15 (WG	235175-4: WG2351
Antimony, Total	81	81	0	30	75-125
Arsenic, Total	86	86	0	30	75-125
Barium, Total	94	93	1	30	75-125
Beryllium, Total	83	86	4	30	75-125
Cadmium, Total	74	74	0	30	75-125
Chromium, Total	85	90	6	30	75-125
Lead, Total	76	81	6	30	75-125
Nickel, Total	78	81	4	30	75-125
Selenium, Total	91	91	. 0	30	75-125
Silver, Total	84	84	õ	30	75-125
Thallium, Total	80	85	6	30	75-125
Vanadium, Total	76	81	6	30	75-125
Zinc, Total	70	81	5	30	75-125
inc, iotai	,,	01	5	30	75-125
olychlorinated Biphenyls by MC	P 8082 for s	ample(s)=09-	-11 (WG235	183-2, WG23518	3-3)
Aroclor 1016	76	77	1	30	40-140
Aroclor 1260	76	77	l	30	40-140
Surrogate(s)					
2,4,5,6-Tetrachloro-m-xylene	87	86	1		30-150
2,4,5,6-Tetrachloro-m-xylene	87	88	1		30-150
Decachlorobiphenyl	77	75	3		30-150
Decachlorobiphenyl	63	68	8		30-150
Organöchlorine Pesticides by MCI	P. 80811 for	sample(s) 01	03-04-06	-07:10:12-15: /#	10225185-2 WC23
Delta-BHC	71	71	0	30	40-140
Lindane	67	66	1	30	40-140
Alpha-BHC	67	65	3,	30	
-					40-140
Beta-BHC	68	68	0	30	40-140
leptachlor	70	70	1	30	40-140
Aldrin	69	68	2	30	40-140
leptachlor epoxide	68	67	0	30	40-140
Indrin	76	75	1	30	40-140
Endrin ketone	66	65	2	30	40-140
Dieldrin	65	65	0	30	40-140
1,4'-DDE	70	69	2	30	40-140
1,4'-DDD	66	66	1	30	40-140
1,4'-DDT	72	71	1	30	40-140
Indosulfan I	65	65	1	30	40-140
Indosulfan II	69	68	1	30	40-140
ndosulfan sulfate	73	72	2	30	40-140
lethoxychlor	78	77	1	30	40-140
lexachlorobenzene	76	74	3	30	40-140
	1				
Surrogate(s) ,4,5,6-Tetrachloro-m-xylene	69	61	0		20-160
		64	8		30-150
2,4,5,6-Tetrachloro-m-xylene	73	68	7		30-150
Decachlorobiphenyl	66	61	8		30-150

05080616:28 Page 48 of 59

Laboratory Job Number: L0604684

Continued

Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
Organochlörine-Pesticides by MCP	8081A for	sample(s)_0	1,03-04,06	-07,10,12-15-(1	G235185-2, WG23
Decachlorobiphenyl	64	61	5		30-150
Extractable Petroleum Hydrocafbo	ns_fór_samp	le(s) 01-08	,10-15 (WG	235816-2,-WG23	816-3)
C9-C18 Aliphatics	60	62	3	25	40-140
C19-C36 Aliphatics	73	77	5	25	40-140
C11-C22 Aromatics	75	82	9	25	40-140
Naphthalene	68	72	6	25	40-140
2-Methylnaphthalene	69	73	6	25	40-140
Acenaphthylene	74	76	3	25	40-140
Acenaphthene	75	78	4	25	40-140
Fluorene	77	80	4	25	40-140
Phenanthrene	81	85	5	25	40-140
Anthracene	86	91	6	25	40~140
Fluoranthene	79	85	7	25	40-140
Pyrene	79	84	6	25	40-140
Benzo(a)anthracene	72	79	9	25	40-140
Chrysene	85	94	10	25	40-140
Benzo(b)fluoranthene	67	74	10	25	40-140
Benzo(k)fluoranthene	68	76	11	25	40-140
Benzo(a)pyrene	66	73	10	25	40-140
Indeno(1,2,3-cd)Pyrene	64	71	10	25	40-140
Dibenzo(a,h)anthracene	65	73	12	- 25	40-140
Benzo(ghi)perylene	66	74	11	· 25	40-140
Nonane (C9)	47	49	4	25	30-140
Decane (C10)	55	. 57	4	25	40-140
Dodecane (C12)	61	63	3	25	40-140
Tetradecane (C14)	64	66	3	25	40-140
Hexadecane (C16)	68	70	3	25	40-140
Octadecane (C18)	69	72	4	25	40-140
Nonadecane (C19)	71	74	4	25	40-140
Eicosane (C20)	73	76	4	25	40-140
Docosane (C22)	74	78	5	25	40-140
Tetracosane (C24)	73	78	7	25	40-140
Hexacosane (C26)	73	78	7	25	40-140
Octacosane (C28)	73	77	5	25	40-140
Triacontane (C30)	73	77	5	25	40-140
Hexatriacontane (C36)	75	79	5	25	40-140
Surrogate(s)					
Chloro-Octadecane	62	62	0		40-140
o-Terphenyl	93	104	11		40-140
2-Fluorobiphenyl	82	84	2		40-140
2-Bromonaphthalene	85	87	2		40-140
% Naphthalene Breakthrough	0	0	NÇ		
<pre>% 2-Methylnaphthalene Breakthr</pre>					
ough	0	0	NC		
					•

05080616:28

28 Page 49 of 59

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE FRACTIONATION CHECK

,

Laboratory Job Number: L0604684

Parameter	% Recovery QC Criteria
Fractionation Checks	tandard.Recoveries for Lot FISH52618
C9-C18 Aliphatics	62 40-140
C19-C36 Aliphatics	71 40-140
Cll-C22 Aromatics	80 40-140
Naphthalene	74 40-140
2-Methylnaphthalene	70 40-140
Acenaphthylene	69 40-140
Acenaphthene	72 40-140
Fluorene	72 40-140
Phenanthrene	72 40-140
Anthracene	77 40-140
Fluoranthene	75 40-140
Pyrene	75 40-140
Benzo (a) anthracene	74 40-140
	88 40-140
Chrysene Benzo(b)fluoranthene	72 40-140
Benzo(k) fluoranthene	74 40-140
	73 40-140
Benzo (a) pyrene	72 40-140
Indeno (1, 2, 3-cd) Pyrene	
Dibenzo(a,h)anthracene	
Benzo(ghi)perylene	73 40-140
Nonane (C9)	57 30-140
Decane (C10)	62 40-140
Dodecane (C12)	65 40-140
Tetradecane (C14)	63 40-140
Hexadecane (C16)	64 40-140
Octadecane (C18)	64 40-140
Nonadecane (C19)	64 40-140
Eicosane (C20)	67 40-140
Docosane (C22)	71 40-140
Tetracosane (C24)	72 40-140
Hexacosane (C26)	72 40-140
Octacosane (C28)	73 40-140
Triacontane (C30)	73 40-140
Hexatriacontane (C36)	76 40-140
Surrogate(s)	
Chloro-Octadecane	57 40-140
o-Terphenyl	78 40-140
2-Fluorobipheny1	72 40-140 .
2-Bromonaphthalene	72 40-140

Laboratory Job Number: L0604684

Parameter	MS %	MSD %	RPD	RPD Limit	MS/MSD Limits
			114 /1000	<u>604 117 mc223</u>	
Polychlorinated Biphenyl's by MC Aroclor 1016		71			
Aroclor 1016 Aroclor 1260	77 85	71	9	50 50	40-140
AFOCIOF 1280	80	//	10	50	40-140
Surrogate(s)					
2,4,5,6-Tetrachloro-m-xylene	72	68	6		30-150
2,4,5,6-Tetrachloro-m-xylene	74	70	6		30-150
Decachlorobiphenyl	83	72	14		30-150
Decachlorobiphenyl	78	65	18		30-150
Organochlorine Pesticides by MC	P=8081A for	sample(s) (1,03-04,06	-07;10,12-15	(L0604684-07,) WG2
Delta-BHC	60	51	17	30	30-150
Lindane	.58	55	5	30	30-150
Alpha-BHC	· 57	54	5	30	30-150
Beta-BHC	63	52	19	30	30-150
Heptachlor	61	60	1	30	30-150
Aldrin	61	60	1	30	30-150
Heptachlor epoxide	60	59	1	30	30~150
Endrin	66	65	1	30	30-150
Endrin ketone	58	. 52	12	30	30-150
Dieldrin	58	56	2	30	30-150
4,4'-DDE	83	86	4	30	30-150
4,4'-DDD	63	61	4	30	30-150
4,4'-DDT	115	110	4	30	30-150
Endosulfan I	57	57	1	· 30	30-150
Endosulfan II	61	57	7	30	30-150
Endosulfan sulfate	63	55	13	30	30~150
Methoxychlor	73	70	4	30	30-150
Hexachlorobenzene	117	69	52	30	30-150
Surrogate(s)					
2,4,5,6-Tetrachloro-m-xylene	60	56	7		30-150
2,4,5,6-Tetrachloro-m-xylene	70	55 ·	24		30-150
Decachlorobiphenyl	56	57	2.		30-150
Decachlorobiphenyl	58	60	3		30-150

i

.

Laboratory Job Number: L0604684

.

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
	ple(s)-01,	03-04,06-0)7,10,12		
Total Metals by MCP 6000/7000	series	- Linh	and the second		
Antimony, Total	ND	mg/kg	2.0	60 6010B	0406 17:45 0407 11:57 RW
Arsenic, Total	ND	mg/kg	0.40	60 6010B	0406 17:45 0407 11:57 RW
Barium, Total	ND	mg/kg	0.40	60 6010B	0406 17:45 0407 11:57 RW
Beryllium, Total	ND	mg/kg	0.20	60 6010B	0406 17:45 0407 11:57 RW
Cadmium, Total	ND	mg/kg	0.40	60 6010B	0406 17:45 0407 11:57 RW
Chromium, Total	NÐ	mg/kg	0.40	60 6010B	0406 17:45 0407 11:57 RW
Lead, Total	ND	mg/kg	2.0	60 6010B	0406 17:45 0407 11:57 RW
Nickel, Total	ND	mg/kg	1.0	60 6010B	0406 17:45 0407 11:57 RW
Selenium, Total	ND	_mg/kg	2.0	60 6010B	0406 17:45 0407 11:57 RW
Silver, Total	ND	mg/kg	0.40	60 6010B	0406 17:45 0407 11:57 RW
Challium, Total	ND	mg/kg	2.0	60 6010B	0406 17:45 0407 11:57 RW
/anadium, Total	ND	mg/kg	0.40	60 6010B	0406 17:45 0407 11:57 RW
Cinc, Total	2.0	mg∕kg	2.0	60 6010B	0406 17:45 0407 11:57 RW
Blank Analysi	S. F. W. E.	- /-> 00 1	1. (0000.00	100.34	
Blank Analysi olychlorinated Biphenylseby		<u>te(s)_09-1</u>	1 (WG235	a mention and the set of the set	0407 00:30 0410 23:05 .55
oriouroringcocorbieulissoi.			and when a source of	04-0002	0407/00/30/0410/20103 /33
urrogate(s)	Recovery		QC Cri	iteria	
4,5,6-Tetrachloro-m-xylene	79.0	8	30-150)	
Decachlorobiphenyl	61.0	0 ¹⁰	30-150)	
Blank, Analysi Polychlorinated Biphenyls by	MCP, 8082			64 0082	0407 .Do: 30 0410 .23:05 ss
Aroclor 1016	ND	ug/kg	33.3		
Aroclor 1221	NÐ	ug/kg	33.3		
roclor 1232	ND	ug/kg	33.3		
roclor 1242	ND	ug/kg	33.3		
roclor 1248	ND	ug/kg	33.3		
roclor 1254 .	ND	ug/kg	33.3		
roclor 1260	ND	ug/kg	33.3		
urrogate(s)	Recovery		QC Cri	teria	
,4,5,6-Tetrachloro-m-xylene	79.0	R	30-150		
-	69.0	8	30-150		
ecachlorobiphenyl					
				and the second se	
Blank Analysis for sam	ple(s)_01,(03-04,06-0	7,10,12-		and the second s
Blank Analysis for sam	ple(s)_01,(MCP/8081A	03-04,06-0	7,10,12	15_/(WG235185-	1) 0406 23:50 0411 22:24 JB
Blank Analysis för sam rganochlorine Pesticides by	MCP/8081A	<u>03-04,06-0</u>		64 8081A	and the second s
Blank Analysis for sam Drganochlorine Pesticides by Surrogate(s)	MCP/8081A	2 <u>3-04,06-0</u>	QC Cri	64 <u>8081A</u>	and the second s
Blank Analysis for sam ganochlorine Pesticides by Surrogate(s) 4,5,6-Tetrachloro-m-xylene	MCP/8081A	3-04,06-0		.teria	and the second s
Blank Analysis for sam Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	MCP 8081A Recovery 67.0 68.0	8 8	QC Cri 30-150 30-150	.teria	0406 23:50 0411 22:24 JB
Blank Analysis for sam Organochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Blank Analysis for sam	MCP 8081A Recovery 67.0 68.0 ple(s) 01.(% % 03-04,06-0	QC Cri 30-150 30-150 7,10,12-	teria) 15 (WG235185-	0406 23:50 0411 22:24 JB
organochlorine_Pesticides-by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	MCP 8081A Recovery 67.0 68.0 ple(s) 01.(% % 03-04,06-0	QC Cri 30-150 30-150 7,10,12-	.teria	0406 23:50 0411 22:24 JB

05080616:28 Page 52 of 59

۰.

Laboratory Job Number: L0604684

•

.

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
ان که مکان از این مربق میشود. است. ا					
)					
Lindane	ND	ug/kg	2.67		<u> </u>
Alpha-BHC	ND	ug/kg ug/kg	3.33		
Beta-BHC	ND	ug/kg ug/kg	3.33		
leptachlor	ND	ug/kg	3.33		
Aldrin	ND	ug/kg	3.33		
Heptachlor epoxide	ND	ug/kg	3.33		
Endrin	ND	ug/kg	3.33		
Endrin ketone	ND ·	ug/kg	3.33		
Dieldrin	ND	ug/kg	3.33		
4, 4'-DDE	ND	ug/kg	3.33		
4, 4'-DDD	ND	ug/kg	3.33		
4, 4'-DDT	ND	ug/kg	3.33		
Endosulfan I	ND	ug/kg	3.33		
Endosulfan II	ND	ug/kg	3.33		
Endosulfan sulfate	ND	ug/kg	3.33		
Methoxychlor	ND	ug/kg	13.3		
Chlordane	ND	ug/kg	13.3		
Toxaphene	ND	ug/kg ug/kg	13.3		
Hexachlorobenzene	ND	ug/kg ug/kg	3.33		
lexaciiiorobenzene	ND	uy/ky			
Surrogate (s)	Recovery		_	iteria	
2,4,5,6-Tetrachloro-m-xylene	71.0	80	30-15	0	
Decachlorobiphenyl	66.0	80	30-15	0	
Blank Analysis f	or sample	(s)_01≑08.3	10-15 (W	6235816-11	
Extractable Petroleum Hydroca		(3) 01.00,		61 EPH-04-1	0411 19:30 0412 13:21 BN
C9-C18 Aliphatics	ND	mq/kq	6.67	· · · · · · · · · · · · · · · · · · ·	
C19-C36 Aliphatics	ND	mg/kg	6.67		
C11-C22 Aromatics	ND	mg/kg	6.67		
C11-C22 Aromatics, Adjusted	ND	mg/kg	6.67		
Naphthalene	ND	mg/kg mg/kg	0.333		
2-Methylnaphthalene	ND	mg/kg mg/kg	0.333		
Acenaphthylene	ND	mg/kg	0.333		
Acenaphthene	ND	mg/kg	0.333		x
fluorene	ND	mg/kg	0.333		
Phenanthrene	ND	mg/kg	0.333		
Anthracene	ND	mg/kg	0.333		
Fluoranthene	ND	mg/kg	0.333		
			0.333		
Pyrene	ND	mg/kg			
Benzo(a)anthracene	ND	mg/kg	0.333		
Chrysene	ND	mg/kg	0.333		
Benzo(b)fluoranthene	ND	mg/kg	0.333		
	ND	mg/kg	0.333		
Benzo(k)fluoranthene			A		
Benzo(k)fluoranthene Benzo(a)pyrene	ND	mg/kg	0.333		
			0.333 0.333 0.333		

-

05080616:28

.

8 Page 53 of 59

Continued

Laboratory Job Number: L0604684

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP ANA	L
Blank Analy	vsis for sample	(s) 01-08,	10-15 (W	G235816-1)		
Extractable Petroleum Hy					0411 19:30 0412 1	3:21 BN
Benzo(ghi)perylene	ND	mg/kg	0.333			
Surrogate(s)	Recovery		QC Cr	iteria		
Chloro-Octadecane	68.0	8	40-14	0		
o-Terphenyl	82.0	8	40-14	0		
2-Fluorobiphenyl	91.0	鲁	40-14	0		
2-Bromonaphthalene	92.0	2	40-14	0		

05080616:28 Page 54 of 59

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

- 30. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 60. Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- Method for the Determination of Extractable Petroleum Hydrocarbons (EPH). Massachusetts Department of Environmental Protection, DEA/ORS/BWSC. May 2004, Revision 1.1.
- 64. Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.
METHOD Method number by which analysis was performed.
ID Initials of the analyst.
ND Not detected in comparison to the reported detection limit.
NI Not Ignitable.
ug/cart Micrograms per Cartridge.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

05080616:28 Page 55 of 59

Laboratory Job Number: L0604684

Were project specific reporting limits specified?

. .

YES

۰.

Cooler Information

Cooler	Custody	Seal
А	Absent	
B	Absent	

Container Information

Container ID	Container T	ура	Cooler	ън	Temp	Pres	Seal	Analysis
L0604684-01A	Amber 250ml	unpreserved	A	N/A	2.4C	Y	Absent	EPH-DELUX-04
.0604684-018	Amber 250ml	unpreserved	А	N/A	2.4C	¥	Absent	MCP-8081-04
0604684-01C	Amber 250ml	unpreserved	А	N/A	2.4C	¥	Absent	MCP-AG-6010T, MCP-AS-6010T, MCP-BA-
								60107, MCP-BE-60107, MCP-CD-60107, MCP-
								CR-6010T, MCP-NI-6010T, MCP-PB-6010T,
								MCP-SB-6010T, MCP-SE-6010T, MCP-TL-
								6010T, MCP-V-6010T, MCP-ZN-6010T, PREPT,
								TS
.0604684-02A	Amber 250ml	unpreserved	в	N/A	2.0C	Y	Absent	EPH-DELUX-04, TS
.0604684-03A	Amber 250ml	unpreserved	λ	N/A	2.4C	Y	Absent	EPH-DELUX-04
0604684-03B	Amber 250ml	unpreserved	A	N/A	2.4C	Y	Absent	MCP-8081-04
0604684-03C	Amber 250ml	unpreserved	A	N/A	2.4C	Y	Absent	MCP-AG-6010T, MCP-AS-6010T, MCP-BA-
								6010T, MCP-BE-6010T, MCP-CD-6010T, MCP-
								CR-6010T, MCP-NI-6010T, MCP-PB-6010T,
								MCP-SB-6010T, MCP-SE-6010T, MCP-TL-
								6010T, MCP-V-6010T, MCP-ZN-6010T, PREPT,
								TS
0604684-04A	Amber 250ml	unpreserved	A	N/A	2.4C	Y	Absent	EPH-DELUX-04
0604684-04B	Amber 250ml	unpreserved	А	N/A	2.4C	Y	Absent	MCP-8081-04
0604684-04C	Amber 250ml	unpreserved	A	N/A	2.4C	Y	Absent	MCP-AG-6010T, MCP-AS-6010T, MCP-BA-
								6010T, MCP-BE-6010T, MCP-CD-6010T, MCP-
								CR-6010T, MCP-NI-6010T, MCP-PB-6010T,
								MCP-SB-6010T, MCP-SE-6010T, MCP-TL-
								6010T, MCP-V-6010T, MCP-ZN-6010T, PREPT,
								TS

05080616:28

Page 56 of 59

Laboratory Job Number: L0604684

Continued

Container ID	Container Type	Cooler	рĦ	Топр	Pres	Seal	Analysis
.0604684-05A	Amber 250ml unpreserved	A	N/A	2.4C	Y Y	Absent	EPH-DELUX-04, TS
0604684-06A	Amber 250ml unpreserved	A	N/A	2.4C	Y	Absent ·	EPH-DELUX-04
.0604684-06В	Amber 250ml unpreserved	А	N/A	2.4C	Y	Absent	MCP-8081-04
.0604684-06C	Amber 250ml unpreserved	A	N/A	2.4C	Y	Absent	MCP-AG-6010T, MCP-AS-6010T, MCP-BA-
							6010T, MCP-BE-6010T, MCP-CD-6010T, MCP-
							CR-6010T, MCP-NI-6010T, MCP-PB-6010T,
							MCP-SB-6010T, MCP-SE-6010T, MCP-TL-
							6010T, MCP-V-6010T, MCP-ZN-6010T, PREPT
							TS
.0604684-07A	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	EPH-DELUX-04
0604684-07B	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	MCP-8081-04
0604684-07C	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	MCP-AG-6010T, MCP-AS-6010T, MCP-BA-
							6010T, MCP-BE-6010T, MCP-CD-6010T, MCP-
							CR-6010T, MCP-NI-6010T, MCP-PB-6010T,
							MCP-SB-6010T, MCP-SE-6010T, MCP-TL-
							6010T, MCP-V-6010T, MCP-ZN-6010T, PREPT
							TS
.0604684-07D	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	EPH-DELUX-04
.0604684-07E	Amber 250ml unpreserved	в	N/A	2.0C	¥	Absent	MCP-8081-04
0604684-07F	Amber 250ml unpreserved	в	N/A	2.0C	¥	Absent	MCP-AG-6010T, MCP-AS-6010T, MCP-BA-
							6010T, MCP-BE-6010T, MCP-CD-6010T, MCP-
							CR-6010T, MCP-NI-6010T, MCP-PB-6010T,
							MCP-SB-6010T, MCP-SE-6010T, MCP-TL-
							6010T, MCP-V-6010T, MCP-2N-6010T, PREPT
							TS
0604684-08A	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	EPH-DELUX-04, TS
0604684-09A	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	MCP-8082-04, TS
0604684-10A	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	EPH-DELUX-04
0604684-10B	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	MCP-8081-04
0604684-10C	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	MCP-AG-6010T, MCP-AS-6010T, MCP-BA-
							6010T, MCP-BE-6010T, MCP-CD-6010T, MCP-

05080616:28 Page

Page 57 of 59

Laboratory Job Number: L0604684

Continued

Container ID	Container Type	Cooler	. ₽H	Temp	Pres	Seal	Analysis
							CR-60107, MCP-NI-60107, MCP-PB-60107,
							MCP-SB-6010T, MCP-SE-6010T, MCP-TL-
							6010T, MCP-V-6010T, MCP-ZN-6010T, PREPT TS
0504684-100	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	MCP-8082~04
	Amber 250ml unpreserved	в		2.00	ı Y	Absent	EPH-DELUX-04, TS
	Amber 250ml unpreserved	В		2.00	Ŷ	Absent	MCP-8082-04
	Amber 250ml unpreserved	в		2.00	Ŷ	Absent	MCP-8082-04
•	Amber 250ml unpreserved	в		2.00	Y	Absent	EPH-DELUX-04
	Amber 250ml unpreserved	, B		2.00	Ŷ	Absent	MCP-8081-04
	Amber 250ml unpreserved	. э		z.0C	Y	Absent	MCP-BG81-D4 MCP-AG-6010T, MCP-AS-6010T, MCP-BA-
0004003-120	Alber 250ml unpreserved	5	Ø/ A	2.00	I	Absent	6010T, MCP-BE-6010T, MCP-CD-6010T, MCP-
							CR-6010T, MCP-NI-6010T, MCP-PB-6010T,
							MCP-SB-6010T, MCP-SE-6010T, MCP-TL-
							6010T, MCP-V-6010T, MCP-ZN-6010T, PREP1 TS
0604684-13A	Amber 250ml unpreserved	в	N/A	2.00	Y	Absent	EPH-DELUX-04
	Amber 250ml unpreserved	в		2.00	Ŷ	Absent	MCP-8081-04
	Amber 250ml unpreserved	В		Z.0C	Y	Absent	MCP-AG-6010T, MCP-AS-6010T, MCP-BA-
					-		6010T, MCP-BE-6010T, MCP-CD-6010T, MCP-
							CR-6010T, MCP-NI-6010T, MCP-PB-6010T,
							MCP-SB-6010T, MCP-SE-6010T, MCP-TL-
							6010T, MCP-V-6010T, MCP-ZN-6010T, PREPT
							TS
0604684-14A	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	EPH-DELUX-04
0604684-14B	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	MCP-8081-04
0604684-14C	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	MCP-AG-6010T, MCP-AS-6010T, MCP-BA-
							6010T, MCP-BE-6010T, MCP-CD-6010T, MCP-
							CR-6010T, MCP-NI-6010T, MCP-PB-6010T,
							MCP-SB-6010T, MCP-SE-6010T, MCP-TL-
							6010T, MCP-V-6010T, MCP-ZN-6010T, PREPT
							TS
0604684-15A	Amber 250ml unpreserved	в	N/A	2.0C	Y	Absent	EPH-DELUX-04
0604694-159	Amber 250ml unpreserved	в	N1 / R	2.0C	Y	Absent	MCP-8081-04

05080616;28

Ņ

28 Page 58 of 59 P

Laboratory Job Number: L0604684

Continued

Container ID	Container Type	Cooler	PH	Тетр	Pres	Seal	Analysis
L0604684-15C	Amber 250ml unpreserved	В	N/A	2.00	Y	Absent	MCP-AG-6010T, MCP-AS-6010T, MCP-BA-
							6010T, MCP-BE-6010T, MCP-CD-6010T, MCP-
							CR-6010T, MCP-NI-6010T, MCP-PB-6010T,
							MCP-SB-6010T, MCP-SE-6010T, MCP-TL-
							6010T, MCP-V-6010T, MCP-2N-6010T, PREPT
							TS

Container Comments

Container ID Comments

۰.

. . .

05080616:28 Page 59 of 59

. .

.

	:	· · · · · · · · · · · · · · · · · · ·		•
VIDHA	CHAIN OF (CUSTODY PACE OF 3	- Date Rec'd In Lab: 4/5	ALPHA Job #: 2060 7687
		Project Information	Report Information - Data Deliverables	Billing Information
TEL: 503-898-9220 TEL: 0 FAX: 508-898-9193 FAX: 0	TEL: 508-822-9300 FAX:: 508-822-3288	Project Name: Forner BiM Railrond	~	Same as Client info PO #:
t Info		Project Location: Newbury/Minber ypart, MP	A ADEX I Add'I Deliverables	
Client TRC En	Environmental Corp. Pr	Project # 5263 7-0010 -00000	State /Fed Program	
Address: 116 Ja	· · · ·	Project Manager: Frank Calandra	MCP/Brown	UW-ZOWANTO CLAPP
Lowell.	14 4	ALPHA Quote #:	MAMCP PRESUMPTIVE CERTAINTY CTR	TIVE CERTAINTY CTREASONABLE CONFIDENCE PROTOCOLS
₽ 0 - 1	1995	Turn-Around Time	Yes Q No Are MCP Analytical Methods Required?	Are MCP Analytical Methods Required? Are CT RCP (Reasonable Confidence Protocols) Required?
19	123-1775 - X	Standard DRUSH (only confirmed if pre-accorded)		
nall tca		ite Due: 4//2 Time:		SAMPLEHANDLING T
Other Project Speci	Other Project Specific Requirements/Comments/Detection Limits:	s/Detection _imits;	5	Filtration
For questions	is regarding analyses	s or detection limits	ide Y	eeded) do
please contac	act Frank Calandra	a or Liz Denly at IKC	H	Lab to do
ALFHA Lab ID (Lab Use Only)	Sample ID	Collection Sample Sampler's Date Time Matrix Initials	E,	Sample Specific Comments s
10-18040	B-1 (0-3')	4/3/00 15 5012 MAO		
-02	B-1 (3-10')			
-23-	<u>B-X (0-3')</u>	0440		
40-	<u>B-2 (0-3)</u>	1005	XXX	3
R	B-2 (3-10')		X	
De la comercia de la	<u><u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u>	2011		3
107	<u>(, 2 - 0) h- ST</u>	1220		MS/DUP-Erit+Merments
202	(0)-2) 1-9			
	B-5 (HAOHHOR/C	(2) \forall 1350 \forall \forall	XXXX	<u>-</u>
PLEASE ANSWER QUESTIONS ABOVE	JESTIONS ABOVE!	Container Type Preservative	$\stackrel{\circ}{\rightarrow} \begin{vmatrix} A \\ A \end{vmatrix} \begin{vmatrix} A \\ A \end{vmatrix} \begin{vmatrix} A \\ A \end{vmatrix} \begin{vmatrix} A \\ A \end{vmatrix}$	Please print clearly, legibly and completely. Samples can not be
MA MCP or	OT RCP?	Relinquished By: Date/Time	Received By:	Ρ.
FORM 100.07-07 (rev. 10-0CT-05)	. 5			

PLEASE ANSWERQUE IS YOUR PROMA MCP OF 1	4-15	21-12	71-1- 11- 68a1/2	ALPHA Lab ID (Lab Use Only)	Other Project Specific For quistions please contac	Email: fcqlqnd	Phone: 978-970- Fax: 978-453-	71 - 11 - 12	RL	lio	Neohia
PLEASE ANSWER QUESTIONS ABOVE IS YOUR PROJECT MA MCP or CT RCP?	-10	B-7 (0-3)	B-6 (0-3'		vecific Requirements/C vs regarding an itact Frank (a	all: fcalg ndra@trcselutions.con These samples have been previously analyzed by Alpha	10-5600	MA 01852	Environmental Cor	RAYNHAM,MA TEL: 508-822-9300 FAX: 508-822-3288	CHAIN
Relinguished By:	2 414106	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Colle Date	Other Project Specific Requirements/Comments/Detection Limits: For quistions regarding analyses or defection please contact Frank Calladra or Liz Denl	Alpha Date Due: 4/1	Turn-Around Time	ALPHA Quote #:	<i>\</i>	Project Information Project Name: Former BrM Project Location: Abubury (1)Ur	CHAIN OF CUSTODY
Container Type Preservative Date/Time 4/5/66/10:52	905 V V	1610	140 0441	ime Sample (s: on limits only at TRC.	/ Time:		Frank Chanar	Project #: 52037-0010-00000	Project Information Project Name: Former BrM Reilrowd Project Location: At where Will where the American MA	1 PAGE 2 OF 2
AAAA AAAA Received By: Mark S		× × × × × ×		E Pec	ANAL H Delux ticidas P Metals Bs		Yes INO Are MO	MCP/Brownerelds	ory Require d Program	Report information - Data	Date Rec'd in Lab:
Date/Tire Date/Tire 4/5/06 105 4/5 17:00						//////	Are MCP Analytical Methods Required? Are CT RCP (Reasonable Confidence Protocols) Required?	<i>S-1, (</i> ERTAINTY	ments/Report Limits		N/S/
Please print clearly, legibly and completely. Samples can not be logged in and turnaround time ciock will not start until any ambiguittes are subject to Alpha's Payment Terms. See reverse side.			MS/MSD - PCB, 01/4	(Plase specify back) Sample Specific Comments	C Done A Not needed Lab to do Preservation Lab to do	Filtration	ed? se Protocols} Required?	CTREASONABLE CONFIDENCE PROTOCOLS	Jo3,	Billing Information	ALPHA Job #: 60604

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: TRC Environmental Corporation	Laboratory Job Number: L0604958
Address: Boott Mills South 116 John Street Lowell, MA 01852	Date Received: 07-APR-2006
Attn: Mr. Frank Calandra	Date Reported: 02-MAY-2006
Project Number: 52037-0010-00000	Delivery Method: Alpha
Site: FORMER B&M RAILROAD	

The following questions pertain only to MCP Analytical Methods

An affirmative response to questions A,B,C & D is required for "Presumptive Certainty" status

- A. Were all samples received by the laboratory in a condition consistent with those YES described on their Chain-of-Custody documentation for the data set?
- B. Were all QA/QC procedures required for the specified analytical method(s) included YES in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?
- C. Does the analytical data included in this report meet all the requirements for YES "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?
- D. VPH and EPH methods only: Was the VPH or EPH method run without significant YES modifications, as specified in Section 11.3?

A response to questions E and F is required for "Presumptive Certainty" status

- E. Were all QC performance standards and recommendations for the specified method(s) NO achieved?
- F. Were results for all analyte-list compounds/elements for the specified method(s) YES reported?

Any answers of NO to the above questions are addressed in the case narrative.

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by: Technical Director

05020615:14 Page 1 of 16

ALPHA ANALYTICAL LABORATORIES

Laboratory Job Number: L0604958 Date Reported: 02-MAY-2006

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L0604958-01	B-9 (0-3)	NEWBURYPORT, MA
L0604958-02	B-9 (3-10)	NEWBURYPORT, MA

05020615:14 Page 2 of 16

ALPHA ANALYTICAL LABORATORIES NARRATIVE REPORT

Laboratory Job Number: L0604958

Report Submission

This report is re-issued to include the extraction Method for the analysis of EPH.

EPH

WG235509:

Extraction method 3545

In reference to question E:

The WG235509 LCS/LCSD RPD for Fluorene is above the acceptance criteria for the method.

Pesticides

WG235514

05020615:14

Pagé 3 of 16

Extraction method: 3545

Cleanup method: 3620B

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: Sample Matrix:	L0604958-01 B-9 (0-3) SOIL	Date Collected: 07-APR-2006 09:00 Date Received : 07-APR-2006 Date Reported : 02-MAY-2006
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 4-Amber

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	92	qi	0.10	30 2540G	0410 13:38 PD
Total_Metals_by_MCP.6000/7000	series			60 6010B	
Antimony, Total	ND	mg/kg	2.2	60 6010B	0410 16:00 0411 08:23 RW
Arsenic, Total	27	mg∕kg	0.43	60 6010B	0410 16:00 0411 08:23 RW
Barium, Total	17	mg/kg	0.43	60 6010B	0410 16:00 0411 08:23 RW
Beryllium, Total	ND	mg/kg	0.22	60 6010B	0410 16:00 0411 08:23 RW
Cadmium, Total	ND	mg/kg	0.43	60 6010B	0410 16:00 0411 08:23 RW
Chromium, Total	16	mg/kg	0.43	60 6010B	0410 16:00 0411 08:23 RW
Lead, Total	9.9	mg/kg	2.2	60 6010B	0410 16:00 0411 08:23 RW
Nickel, Total	15	mg/kg	1.1	60 6010B	0410 16:00 0411 08:23 RW
Selenium, Total	ND	mg/kg	2.2	60 6010B	0410 16:00 0411 08:23 RW
Silver, Total	ND	mg/kg	0.43	60 6010B	0410 16:00 0411 08:23 RW
Thallium, Total	ND	mg/kg	2.2	60 6010B	0410 16:00 0411 08:23 RW
Vanadium, Total	13	mg/kg	0.43	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total	25	mg/kg	2.2	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total Organochlorine Pesticides by Surrogate(s)	25	mg/kg		60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total <u>Organochlorine Pesticides by</u> Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene	25 MCP 8081A	mg/kg	2.2	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total <u>Organochlorine Pesticides by</u> Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene	25 MCP <u>8081A</u> Recovery	mg/kg	2.2 QC Crit	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by	25 MCP <u>8081A</u> Recovery 43.0 53.0	mg/kg	2.2 QC Crit 30-150	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by	25 MCP <u>8081A</u> Recovery 43.0 53.0	mg/kg % %	2.2 QC Crit 30-150	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC	25 MCP 8081A Recovery 43.0 53.0 MCP 8081A	mg/kg % %	2.2 QC Crii 30-150 30-150	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by Delta-BHC Lindane	25 MCP 8081A Recovery 43.0 53.0 MGP 8081A ND	mg/kg % % ug/kg	2.2 QC Crii 30-150 30-150 3.62	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total <u>Organochlorine Pesticides by</u> Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl <u>Organochlorine Pesticides by</u> Delta-BHC Lindane Alpha-BHC	25 MCP 8081A Recovery 43.0 53.0 MGP 8081A ND ND	mg/kg % % ug/kg ug/kg	2.2 QC Crii 30-150 30-150 3.62 2.90	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total Organochlorine Pesticides by	25 MCP 8081A Recovery 43.0 53.0 MGP 8081A ND ND ND	mg/kg % % ug/kg ug/kg ug/kg	2.2 QC Crit 30-150 30-150 3.62 2.90 3.62	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total <u>Organochlorine Pesticides by</u> Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl <u>Organochlorine Pesticides by</u> Delta-BHC Lindane Alpha-BHC Beta-BHC	25 MCP 8081A Recovery 43.0 53.0 MCP 8081A ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg	2.2 QC Crit 30-150 30-150 3.62 2.90 3.62 3.62 3.62	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin	25 MCP 8081A Recovery 43.0 53.0 MCP 8081A ND ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.2 QC Crit 30-150 30-150 3.62 2.90 3.62 3.62 3.62 3.62 3.62	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total <u>Organochlorine Pesticides by</u> Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl <u>Organochlorine Pesticides by</u> Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide	25 MCP 8081A Recovery 43.0 53.0 MCP 8081A ND ND ND ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.2 QC Crit 30-150 30-150 3.62 2.90 3.62 3.62 3.62 3.62 3.62 3.62	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin	25 MCP 8081A Recovery 43.0 53.0 MGP 8081A ND ND ND ND ND ND ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.2 QC Crit 30-150 30-150 3.62 2.90 3.62 3.62 3.62 3.62 3.62 3.62 3.62 3.62	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total <u>Organochlorine Pesticides by</u> Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl <u>Organochlorine Pesticides by</u> Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone	25 MCP 8081A Recovery 43.0 53.0 MGP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.2 QC Crit 30-150 30-150 3.62 2.90 3.62 3.62 3.62 3.62 3.62 3.62 3.62 3.62	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin	25 MCP 8081A Recovery 43.0 53.0 MGP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.2 QC Crit 30-150 30-150 3.62 2.90 3.62 3.62 3.62 3.62 3.62 3.62 3.62 3.62	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Drganochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor Aldrin Heptachlor epoxide Endrin Endrin ketone Dieldrin 1,4'-DDE	25 MCP 8081A Recovery 43.0 53.0 MGP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	<pre>mg/kg % % ug/kg ug/kg</pre>	2.2 QC Crit 30-150 30-150 3.62 2.90 3.62 3.62 3.62 3.62 3.62 3.62 3.62 3.62	60 6010B	0410 16:00 0411 08:23 RW
Zinc, Total Drganochlorine Pesticides by Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl Organochlorine Pesticides by Delta-BHC Lindane Alpha-BHC Beta-BHC Heptachlor	25 MCP 8081A Recovery 43.0 53.0 MCP 8081A ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg % % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2.2 QC Crit 30-150 30-150 3.62 2.90 3.62 3.62 3.62 3.62 3.62 3.62 3.62 3.62	60 6010B	0410 16:00 0411 08:23 RW

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020615:14 Page 4 of 16

Laboratory Sample Number: L0604958-01

B-9 (0-3)

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT PREP	e Anal	ID
Organochlorine Pesticides by	MCP_8081A	cont d	<u> </u>	4 * 64 8081A	0410 19 15 0	413 00;2	3 JB
Endosulfan II	ND	ug/kg	3.62				
Endosulfan sulfate	ND	ug/kg	3.62				
Methoxychlor	ND	ug/kg	14.5				
Chlordane	ND	ug/kg	14.5				
Toxaphene	ND	ug/kg	14.5				
Hexachlorobenzene	ND	ug/kg	3.62				
Surrogate(s)	Recovery		QC Cri	teria			
2,4,5,6-Tetrachloro-m-xylene	44.0	40	30-150)			
Decachlorobiphenyl	48.0	8	30-150)			

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020615:14 Page 5 of 16

Laboratory Sample Number: L0604958-01

B-9 (0-3)

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP AI	ID NAL
Extractable Petroleum Hydroc	arbons				0410-18:00-0413	17:21 BN
State Sta	ality Contr	ol Informa	ation	To Konel		
Condition of sample received	· ·		Satisfa	ctory		
Sample temperature upon rece			Receive	d on Ice		
Sample extraction method:	-		Extract	ed Per the Met	hod	
Were all QA/QC procedures RE	QUIRED by t	he method	followed	?		YES
Were all performance/accepta	-				chieved?	NQ
1. One or more of the RPD			-	-		
Were significant modification					11.3?	NO
The normal acceptance range						
and o-Terphenyl, is 40-140%.			2			
The normal acceptance range	for the fra	ctionatio	n surroga	tes, 2-Fluorob	iphenyl	
and 2-Bromonaphthalene, is 4				,		
						na ana ang ang ang ang ang ang ang ang a
C9-C18 Aliphatics	ND	mg/kg	7.25		ر خيريان و يعنيه هار المياريون وروسي	
C19-C36 Aliphatics	ND	mg/kg	7.25			
C11-C22 Aromatics	ND	mg/kg	7.25			
C11-C22 Aromatics, Adjusted	ND	mg/kg	7.25			
Naphthalene	ND	mg/kg	0.362			
2-Methylnaphthalene	ND	mg/kg	0.362			
Acenaphthylene	ND	mg/kg	0.362			
Acenaphthene	ND	mg/kg	0.362			
Fluorene	ND	mg/kg	0.362			
Phenanthrene			0.362			
	ND	mg/kg				
Anthracene	ND	mg/kg	0.362			
Fluoranthene	ND	mg/kg	0.362			
Pyrene	ND	ang∕kg −u/bu	0.362			
Benzo(a)anthracene	ND	mg/kg	0.362			
Chrysene	ND	mg/kg	0.362			
Benzo(b)fluoranthene	ND	mg/kg	0.362			
Benzo(k)fluoranthene	ND	mg/kg	0.362			
Benzo (a) pyrene	ND	mg/kg	0.362			
Indeno(1,2,3-cd)Pyrene	ND	mg/kg	0.362			
Dibenzo(a,h)anthracene	ND	mg/kg	0.362			
Benzo(ghi)perylene	ND	mg/kg	0.362			
Surrogate(s)	Recovery		QC Cri	teria		
Chloro-Octadecane	43.0	윰	40-140			
o-Terphenyl	68.0	s s	40-140			
	87.0	ş	40-140			
2-Fluorobiphenyl	87.0					

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020615:14 Page 6 of 16

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0604958-02	Date Collected:	07-APR-2006 09:30
	B-9 (3-10)	Date Received :	07-APR-2006
Sample Matrix:	SOIL	Date Reported :	02-MAY-2006
•			
Condition of Sample:	Satisfactory	Field Prep: 1	None

Number & Type of Containers: 1-Amber

.

PARAMETER	RESULT	UNITS	RDL 1	REF METHOD	DATE ID PREP ANAL
Solids, Total	95	뭉	0.10	30 2540G	0410 13:38 PD

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020615:14 Page 7 of 16

Laboratory Sample Number: L0604958-02

B-9 (3-10) PARAMETER RESULT UNITS RDL REF METHOD DATE ID PREP ANAL Extractable Petroleum Hydrocarbons Ouality Control Information 1 Condition of sample received: Satisfactory Sample temperature upon receipt: Received on Ice Sample extraction method: Extracted Per the Method Were all QA/QC procedures REQUIRED by the method followed? YES Were all performance/acceptance standards for the required procedures achieved? NO 1. One or more of the RPD values for the LCSD was greater than 25%. Were significant modifications made to the method as specified in Sect 11.3? NO The normal acceptance range for the extraction surrogates, Chloro-octadecane and o-Terphenyl, is 40-140%. The normal acceptance range for the fractionation surrogates, 2-Fluorobiphenyl and 2-Bromonaphthalene, is 40-140%. 7.02 ND mg∕kg C9-C18 Aliphatics C19-C36 Aliphatics ND mg/kg 7.02 C11-C22 Aromatics ND 7.02 mg/kg C11-C22 Aromatics, Adjusted ND mg/kg 7.02 Naphthalene ND mg/kg 0.351 ND 2-Methylnaphthalene mg/kg 0.351 Acenaphthylene ND mg/kg 0.351 Acenaphthene ND mg/kg 0.351 Fluorene ND mg/kg 0.351 Phenanthrene ND mg/kg 0.351 Anthracene ND mg/kg 0.351 Fluoranthene ND mg/kg 0.351 Pyrene ND mg/kg 0.351 Benzo(a)anthracene ND mg/kg 0.351 ND Chrysene mg/kg 0.351 NÐ Benzo(b) fluoranthene mg/kg 0.351 Benzo(k) fluoranthene ND mg/kg 0.351 Benzo (a) pyrene ND mg/kg 0.351 Indeno (1, 2, 3-cd) Pyrene NÐ mg/kg 0.351 Dibenzo(a,h)anthracene ND mg/kg 0.351 Benzo(ghi)perylene ND mg/kg 0.351 Surrogate(s) QC Criteria Recovery Chloro-Octadecane 8 59.0 40-140 o-Terphenyl 63.0 £ 40-140 2-Fluorobiphenyl 75.0 ક 40-140 2-Bromonaphthalene 74.0 옿 40-140

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020615:14 Page 8 of 16

Laboratory Job Number: L0604958

Parameter .	Value 1	Value 2	Units	RPD	RPD Limits	
Solids, Total	Total for same 95	95	१ <u>. (150604958</u> १	0 0	20	
		·				
			`. =			
			-			
,						
•						
•						

05020615:14 Page 9 of 16

.

Laboratory Job Number: L0604958

.

Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
Total Metals by MCE: 6000/7000	series for s	ample(s) 01	(WG235521	-2, WG235521-3)	3
Antimony, Total	81	81	0	30	75-125
Arsenic, Total	89	86	3	30	75-125
Barium, Total	98	94	4	30	75-125
Beryllium, Total	89	87	2	30	75-125
Cadmium, Total	89	81	9	30	75-125
Chromium, Total	97	97	0	30	75-125
Lead, Total	81	81	0	30	75-125
Nickel, Total	84	82	2	30	75-125
Selenium, Total	96	91	5	30	75-125
Silver, Total	91	84	8	30	75-125
Fhallium, Total	94	85	10	30	75-125
Vanadium, Total	87	82	6	30	75-125
Linc, Total	85	85	0	30	75-125
inc, iotai	00	65	0	50	75-125
Organochlorine-Pesticides by MC	P 8081A for	sample(s) 0	1 (WG23551	4 <u>+2</u> , WG235514-3) <u></u>
Delta-BHC	69	62	10	30	40-140
Lindane	64	57	12	30	40-140
lpha-BHC	65	58	12	30	40-140
Beta-BHC	65	59	10	30	40-140
leptachlor	66	59	12	30	40-140
ldrin	64	56	13	30	40-140
leptachlor epoxide	64	58	11	30	40-140
Indrin	73	67	9	30	40-140
Indrin ketone	64	59	8	30	40-140
Dieldrin	67	61	9	30	40-140
4,4'-DDE	64	58	9	30	40-140
1,4'-DDD	65	59	10	30	40-140
1,4'-DDT	72	66	9	30	40-140
Endosulfan I	62	56	11	30	40-140
Indosulfan II	67	62	8	30	40-140
Indosulfan sulfate	70	66	7	30	40-140
fethoxychlor	75	70	7	30	40-140
Jexachlorobenzene	65	58	12	30	40-140
	05	96	12	20	40-140
Surrogate(s)					
,4,5,6-Tetrachloro-m-xylene	.65	58	11		30-150
2,4,5,6-Tetrachloro-m-xylene	71 .	55	25		30-150
Decachlorobiphenyl	55	52	6		30-150
Decachlorobiphenyl	53	49	8		30-150
			·		· · · · · · · · · · · · · · · · · · ·
xtractable Petroleum Hydrocarbo					
9-C18 Aliphatics	56	59	5	25	40-140
19-C36 Aliphatics	65	72	10	25	40-140
11-C22 Aromatics	69	88	24	25	40-140
laphthalene	59	73	21	25	40-140
-Methylnaphthalene	60	. 74	21	.25	40-140
cenaphthylene	62	78	23	25	40-140
cenaphthene	63	80	24	25	40-140

.

05020615:14 Page 10 of 16

Laboratory Job Number: L0604958

c	on	ti	.nu	led

Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
	CUMPANE ANS	1- (-) 01 02	1110025500	0 800055500 2	
Extractable Petroleum Hydrocarb	70 70	1e (s) 01-02 94	29	<u>-2, mG255509-5</u> 25	40-140
Fluorene	67	94 8 4	29	25	40-140
Phenanthrene	•	85	23	25	40-140
Anthracene	68 68	83 84	22	25	40-140
Fluoranthene		84 82	21	25	40-140
Pyrene	66 66	82 81	22	25	40-140
Benzo (a) anthracene		81 83	20	25	40-140
Chrysene	67			25	
Benzo(b)fluoranthene	68	83	20	25	40-140
Benzo(k)fluoranthene	66	82	22		40-140 40-140
Benzo(a)pyrene	64	78	20	25	
Indeno(1,2,3-cd)Pyrene	63	78	21	25	40-140
Dibenzo(a,h)anthracene	64	78	20	25	40-140
Benzo(ghi)perylene	66	82	22	25	40-140
Nonane (C9)	43	44	2	25	30-140
Decane (C10)	54	56	4	25	40-140
Oodecane (C12)	56	58	4	25	40~140
Cetradecane (C14)	57	62	8	25	40-140
lexadecane (C16)	58	63	8	25	40-140
Octadecane (C18)	58	64	10	25	40-140
Nonadecane (C19)	60	67	11	25	40-140
Eicosane (C20)	62	68	9	25	40-140
Docosane (C22)	65	71	9	25	40-140
Tetracosane (C24)	64	71	10	25	40-140
lexacosane (C26)	65	71	9	25	40-140
Octacosane (C28)	65	72	10	25	40-140
Friacontane (C30)	65	72	10	25	40-140
lexatriacontane (C36)	70	77	10	25	40-140
Surrogate(s)					
Chloro-Octadecane	44	45	2		40-140
o-Terphenyl	68	83	20		40-140
2-Fluorobiphenyl	74	86	15		40-140
2-Bromonaphthalene	72	86	18		40-140
Naphthalene Breakthrough 2-Methylnaphthalene Breakthr	0	0	NC		
ough	0	0	NC		

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE FRACTIONATION CHECK

Laboratory Job Number: L0604958

Phenanthrene 72 40-140 Anthracene 77 40-140 Fluoranthene 75 40-140 Benzo (a) anthracene 74 40-140 Chrysene 88 40-140 Benzo (k) fluoranthene 72 40-140 Benzo (k) fluoranthene 74 40-140 Benzo (k) fluoranthene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Doccane (C10) 62 40-140 Doccane (C11) 62 40-140 Doccane (C12) 64 40-140 Octadecane (C16) 64 40-140 Nonadecane (C20) 72 40-140 Doccosane (C21) 72 40-140 <th>Parameter</th> <th>% Recovery</th> <th>QC Criteria</th> <th></th>	Parameter	% Recovery	QC Criteria	
C9-C18 Aliphatics 62 40-140 C19-C36 Aliphatics 71 40-140 C19-C36 Aliphatics 80 40-140 C19-C36 Aliphatics 80 40-140 Naphthalene 74 40-140 Naphthaltene 74 40-140 Acenaphthylene 69 40-140 Acenaphthylene 72 40-140 Keenaphthene 72 40-140 Pluoranthene 72 40-140 Phenanthrene 72 40-140 Athtracene 77 40-140 Pyrene 75 40-140 Benzo (a)anthracene 74 40-140 Benzo (a) pyrene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Benzo (a) pyrene 73 40-140 Dodecane (C10) 62 40-140 Dodecane (Fractionation Check S	tandard Recoveries fo	or Lot FISH52618	
C19-C36 Aliphatics 71 40-140 C11-C22 Aromatics 80 40-140 Anaphthalene 74 40-140 2-Methylnaphthalene 70 40-140 Acenaphthene 70 40-140 Acenaphthene 72 40-140 Acenaphthene 72 40-140 Fluorene 72 40-140 Anthracene 77 40-140 Phenanthrene 75 40-140 Benzo(a)anthracene 74 40-140 Benzo(a)anthracene 74 40-140 Benzo(b)fluoranthene 72 40-140 Benzo(b)fluoranthene 73 40-140 Dibenzo(a, h) anthracene 73 40-140 Docane (C10) 62 40-140 Docane (C12) 65 40-140 Docane (C12) 65 40-140 Docane (C13) 64 40-140 Docane (C16) 64 40-140 Docane (C19) 65 40-140 Docane (C19) 65 40-140 Docane (C19) 67 40-140 Docane (C10) 62 40-140 Docane (C10) 62 40-140 Docane (C10) 64 40-140 Docane (C10) 67 40-140 Docane (C20) 71 40-140 Docane (C20) 71 40-140 Docane (C20) 72 40-140 Surrogate (S) Surrogate (S) Surrogate (S) Surrogate (S) Surrogate (S) Chloro-Octadecane 57 40-140 Docane (C30) 73 40-140 Docane (C20) 74 40-140 Docane (C21) 75 40-140 Docane (C22) 75 75 740-140 Docane (C23) 75 740-140 Docane (C24) 72 40-140 Docane (C25) 75 740-140 Docane (C26) 75 740-140 Docane (C27) 75 740-140 Docane (C28) 75 740-140 Docane (C29) 75 740-140 Docane (C29) 75 740-140 Docane (C20) 75 75 740-140 D				
C11-C22 Aromatics 80 40-140 Naphthalene 74 40-140 Naphthalene 70 40-140 Acenaphtylene 69 40-140 Acenaphthene 72 40-140 Acenaphthene 72 40-140 Fluorene 72 40-140 Phenanthrene 72 40-140 Anthracene 77 40-140 Pyrene 75 40-140 Benzo (a) anthracene 74 40-140 Chrysene 88 40-140 Benzo (a) anthracene 74 40-140 Benzo (b) fluoranthene 74 40-140 Benzo (a) pyrene 73 40-140 Benzo (a) pyrene 73 40-140 Benzo (a) pyrene 73 40-140 Benzo (h) fluoranthene 74 40-140 Benzo (h) fluoranthene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Docane (C10) 62 40-140 Docane (C11) 63 40-140 Docane (C12) 64 40-140 Docane (C20) 67 40-140 Beraco (C14) 63 <td></td> <td>71</td> <td>40-140</td> <td></td>		71	40-140	
Naphthalene 74 40-140 2-Methylnaphthalene 70 40-140 Acenaphtylene 72 40-140 Phenanthrene 72 40-140 Anthracene 77 40-140 Pyrene 75 40-140 Benzo(a)anthracene 74 40-140 Benzo(b)fluoranthene 72 40-140 Benzo(k)fluoranthene 72 40-140 Benzo(k)fluoranthene 74 40-140 Benzo(k)fluoranthene 72 40-140 Benzo(k)fluoranthene 72 40-140 Benzo(k)fluoranthene 73 40-140 Dibenzo(k,h)anthracene 73 40-140 Dibenzo(k,h)anthracene 73 40-140 Docane (C10) 62 40-140 Docane (C10) 63 40-140 Docane (C10) 64 40-140 Octadecane (C16)		80	40-140	
2-Methylnaphthalene 70 40-140 Acenaphthylene 69 40-140 Acenaphthene 72 40-140 Fluorene 72 40-140 Phenanthrene 72 40-140 Anthracene 77 40-140 Pyrene 75 40-140 Benzo (a) anthracene 74 40-140 Chrysene 88 40-140 Benzo (a) anthracene 74 40-140 Benzo (b) fluoranthene 72 40-140 Benzo (a) pyrene 72 40-140 Benzo (a) pyrene 73 40-140 Benzo (a) pyrene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Benzo (b) fluoranthene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Docane (C10) 62 40-140 Docane (C10) 62 40-140 Docane (C11) 63 40-140 Docane (C12) 64 40-140 Docane (C13) 64 40-140 Docane (C24) 72 <td>•</td> <td>74</td> <td>40-140</td> <td></td>	•	74	40-140	
Acenaphthylene 69 40-140 Acenaphthene 72 40-140 Phenanthrene 72 40-140 Phenanthrene 72 40-140 Phenanthrene 72 40-140 Phenanthrene 72 40-140 Anthracene 77 40-140 Pyrene 75 40-140 Benzo (a) anthracene 74 40-140 Benzo (a) pyrene 72 40-140 Benzo (b) fluoranthene 72 40-140 Benzo (b) pyrene 73 40-140 Benzo (k) pyrene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Benzo (h) pyrene 73 40-140 Dodecane (C10) 62 40-140 Dodecane (C11) 63 40-140 Doctadecane (C14) 63 40-140 Doctadecane (C15) 64 40-140 Doctadecane (C16) 64 40-140 Doctadecane (C16) 64 40-140 Doctadecane (C20) 71 40-140 Doctadecane (C24) <t< td=""><td>-</td><td>70</td><td>40-140</td><td></td></t<>	-	70	40-140	
Acenaphthene 72 40-140 Fluorene 72 40-140 Phenanthrene 72 40-140 Anthracene 77 40-140 Pyrene 75 40-140 Benzo (a) anthracene 74 40-140 Chrysene 88 40-140 Benzo (b) fluoranthene 72 40-140 Benzo (a) pyrene 73 40-140 Benzo (a) pyrene 74 40-140 Benzo (a) pyrene 72 40-140 Benzo (a) pyrene 73 40-140 Benzo (a) pyrene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Docane (C10) 62 40-140 Dodecane (C12) 65 40-140 Dodecane (C14) 63 40-140 Dotadecane (C16) 64 40-140 Docade (C19) 64 40-140 Docade (C20) 67 40-140 Docade (C20) 67 40-140 Docade (C21) 72 <td< td=""><td></td><td>69</td><td>40-140</td><td></td></td<>		69	40-140	
Fluorene 72 40-140 Phenanthrene 72 40-140 Athtracene 77 40-140 Fluoranthene 75 40-140 Pyrene 74 40-140 Benzo (a) anthracene 74 40-140 Chrysene 88 40-140 Benzo (a) pyrene 72 40-140 Benzo (a) pyrene 74 40-140 Benzo (a) pyrene 73 40-140 Benzo (a) pyrene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Benzo (a) pyrene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Dicane (C10) 62 40-140 Docane (C12) 65 40-140 Doctadecane (C14) 63 40-140 Nonade (C16) 64 40-140 Doctadecane (C16) 64 40-140 Doctadecane (C16) 64 40-140 Doctadecane (C20) 71 40-140 Doctadecane (C20) 72 40-140 Doctadecane (C26) 72 <td></td> <td>72</td> <td>40-140</td> <td></td>		72	40-140	
Anthracene 77 40-140 Flucranthene 75 40-140 Pyrene 75 40-140 Benzo (a) anthracene 74 40-140 Chrysene 88 40-140 Benzo (b) fluoranthene 72 40-140 Benzo (a) pyrene 73 40-140 Benzo (a) pyrene 73 40-140 Benzo (a) pyrene 72 40-140 Benzo (a) pyrene 73 40-140 Benzo (a) pyrene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Benzo (ch) perylene 73 40-140 Nonane (C9) 57 30-140 Dodecane (C10) 62 40-140 Dodecane (C12) 65 40-140 Dotacane (C14) 63 40-140 Hexadecane (C16) 64 40-140 Octadecane (C18) 64 40-140 Doceane (C20) 67 40-140 Doceane (C21) 72 40-140 Eicosane (C20) 67 40-140 Doceane (C21) 72 40-140 Doceane (C22) 71 40-140 Berzosane (C24) 72 40-140 Doctadecane (C26) 72 <td>Fluorene</td> <td>72</td> <td>40-140</td> <td></td>	Fluorene	72	40-140	
Flucranthene 75 40-140 Pyrene 75 40-140 Benzo (a) anthracene 74 40-140 Chrysene 88 40-140 Benzo (b) fluoranthene 72 40-140 Benzo (k) fluoranthene 74 40-140 Benzo (k) fluoranthene 74 40-140 Benzo (k) fluoranthene 72 40-140 Benzo (k) fluoranthene 72 40-140 Benzo (k) fluoranthene 73 40-140 Benzo (ghypene 73 40-140 Nonae (C9) 57 30-140 Decane (C10) 62 40-140 Decane (C14) 63 40-140 Nonadecane (C15) 64 40-140 Nonadecane (C16) 64 40-140 Nonadecane (C20) 67 40-140 Decosane (C21) 71 40-140 Rexacosane (C24) 72 40-140	Phenanthrene	72	40-140	
Pyrene 75 40-140 Benzo (a) anthracene 74 40-140 Chrysene 88 40-140 Benzo (b) fluoranthene 72 40-140 Benzo (a) pyrene 73 40-140 Benzo (a) pyrene 73 40-140 Indeno (1, 2, 3-cd) Pyrene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Benzo (ghi) perylene 73 40-140 Docane (C10) 62 40-140 Docane (C10) 65 40-140 Docane (C14) 63 40-140 Benzo (c16) 64 40-140 Doctaacene (C18) 64 40-140 Nonade (C20) 67 40-140 Doctaacene (C21) 71 40-140 Doctaacene (C21) 64 40-140 Doctaacene (C21) 71 40-140 Benzo (S21) 71 40-140 Doctaacene (C24) 72 40-140 Rexacosane (C24) 72 40-140 <	Anthracene	77	40-140	
Benzo (a) anthracene 74 40-140 Chrysene 88 40-140 Benzo (b) fluoranthene 72 40-140 Benzo (c) fluoranthene 74 40-140 Benzo (a) pyrene 73 40-140 Benzo (a) pyrene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Benzo (h) perylene 73 40-140 Nonane (C9) 57 30-140 Decane (C10) 62 40-140 Dodecane (C12) 65 40-140 Octadecane (C14) 63 40-140 Nonade cane (C16) 64 40-140 Nonadecane (C18) 64 40-140 Nonadecane (C19) 64 40-140 Nonadecane (C20) 67 40-140 Docosane (C21) 71 40-140 Rexacosane (C24) 72 40-140 Rexacosane (C24) 72 40-140 Rexacosane (C26) 72 40-140 Rexacosane (C26) 72 40-140 Rexacosane (C26) 72 40-140 Rexatr	Fluoranthene	75	40-140	
Benzo (a) anthracene 74 40-140 Chrysene 88 40-140 Benzo (b) fluoranthene 72 40-140 Benzo (k) fluoranthene 74 40-140 Benzo (a) pyrene 73 40-140 Benzo (a) pyrene 73 40-140 Dibenzo (a, h) anthracene 73 40-140 Benzo (h) perylene 73 40-140 Nonane (C9) 57 30-140 Decane (C10) 62 40-140 Dodecane (C12) 65 40-140 Obdecane (C14) 63 40-140 Nonade cane (C15) 64 40-140 Nonadecane (C16) 64 40-140 Nonadecane (C18) 64 40-140 Nonadecane (C20) 67 40-140 Docosane (C21) 71 40-140 Rexacosane (C24) 72 40-140 Rexacosane (C26) 72 40-140 Docosane (C23) 73 40-140 Rexacosane (C26) 72 40-140	Pvrene	75	40-140	
Chrysene 88 40-140 Benzo (b) fluoranthene 72 40-140 Benzo (a) pyrene 73 40-140 Benzo (a) pyrene 73 40-140 Indeno (1, 2, 3-cd) Pyrene 72 40-140 Dibenzo (a, h) anthracene 73 40-140 Benzo (a) pyrene 73 40-140 Nonane (C9) 57 30-140 Decane (C10) 62 40-140 Dodecane (C12) 65 40-140 Dodecane (C14) 63 40-140 Nonadecane (C15) 64 40-140 Octadecane (C16) 64 40-140 Doctade (C20) 67 40-140 Docosane (C20) 71 40-140 Docosane (C20) 71 40-140 Decasosane (C20) 72 40-140 Decasosane (C26) 72 40-140 Decasosane (C26) 72 40-140 Decasosane (C26) 73 40-140 Decasosane (C26) 73 40-140 Decasosane (C26) 73 40-140 Rexatriacontane	-	74	40-140	
Benzo (b) fluoranthene 72 40-140 Benzo (x) fluoranthene 74 40-140 Benzo (a) pyrene 73 40-140 Indeno (1, 2, 3-cd) Pyrene 72 40-140 Dibenzo (a, h) anthracene 73 40-140 Benzo (ghi) perylene 73 40-140 Nonane (C9) 57 30-140 Docane (C10) 62 40-140 Dodecane (C12) 65 40-140 Tetradecane (C14) 63 40-140 Nonade cane (C15) 64 40-140 Octadecane (C16) 64 40-140 Docosane (C20) 67 40-140 Ecosane (C20) 67 40-140 Doctaosane (C24) 72 40-140 Rexacosane (C26) 72 40-140 Doctaosane (C23) 71 40-140 Doctaosane (C26) 72 40-140 Doctaosane (C23) 73 40-140 Doctaocsane (C26) 72 40-140 Doctaocsane (C23) 73 40-140 Surrogate (s) 76 40-140		88	40-140	
Benzo (k) fluoranthene 74 40-140 Benzo (a) pyrene 73 40-140 Indeno (1,2,3-cd) Pyrene 72 40-140 Dibenzo (a,h) anthracene 73 40-140 Benzo (jhi) perylene 73 40-140 Nonane (C9) 57 30-140 Decane (C10) 62 40-140 Dodecane (C12) 65 40-140 Tetradecane (C14) 63 40-140 Nonade (29) 64 40-140 Octadecane (C18) 64 40-140 Nonadecane (C20) 67 40-140 Docosane (C20) 67 40-140 Doctaosane (C24) 72 40-140 Hexacosane (C26) 72 40-140 Octacosane (C26) 72 40-140 Doctacosane (C26) 73 40-140 Surrogate (s) 76 40-140 Surrogate (s) 76 40-140 Chloro-Octadecane 57 40-140 Octacosane (C36) 78 40-140 Surrogate (s) 78 40-140 Chloro-Octa	-	72	40-140	
Benzo (a) pyrene 73 40-140 Indeno (1, 2, 3-cd) Pyrene 72 40-140 Dibenzo (a, h) anthracene 73 40-140 Benzo (ghi) perylene 73 40-140 Nonane (C9) 57 30-140 Decane (C10) 62 40-140 Dodecane (C12) 65 40-140 Tetradecane (C14) 63 40-140 Nonadecane (C16) 64 40-140 Octadecane (C18) 64 40-140 Nonadecane (C29) 64 40-140 Docosane (C20) 67 40-140 Docosane (C22) 71 40-140 Doctasers (C26) 72 40-140 Doctasers (C26) 72 40-140 Doctasers (C26) 72 40-140 Doctasers (C26) 73 40-140 Surrogate (s) 73 40-140 Surrogate (s) 76 40-140 Chloro-Octadecane 57 40-140 O-Terphenyl 78 40-140 2-Fluorobiphenyl 72 40-140	Benzo(k)fluoranthene	74	40-140	
Indeno (1, 2, 3-cd) Pyrene 72 40-140 Dibenzo (a, h) anthracene 73 40-140 Benzo (ghi) perylene 73 40-140 Nonane (C9) 57 30-140 Decane (C10) 62 40-140 Dodecane (C12) 65 40-140 Tetradecane (C14) 63 40-140 Nonade (C16) 64 40-140 Octadecane (C18) 64 40-140 Nonadecane (C19) 64 40-140 Octadecane (C20) 67 40-140 Docosane (C22) 71 40-140 Docosane (C24) 72 40-140 Rexacosane (C24) 72 40-140 Doctacosane (C26) 72 40-140 Octacosane (C28) 73 40-140 Decane (C30) 73 40-140 Surrogate (s) 76 40-140 Chloro-Octadecane 57 40-140 Octacosane (C36) 76 40-140 Surrogate (s) 76 40-140 Chloro-Octadecane 57 40-140 Octacosane		73	40-140	
Dibenzo(a, h) anthracene 73 40-140 Benzo(ghi) perylene 73 40-140 Nonane (C9) 57 30-140 Decane (C10) 62 40-140 Dodecane (C12) 65 40-140 Tetradecane (C14) 63 40-140 Hexadecane (C16) 64 40-140 Octadecane (C18) 64 40-140 Nonadecane (C19) 64 40-140 Docosane (C20) 67 40-140 Docosane (C22) 71 40-140 Rexacosane (C24) 72 40-140 Rexacosane (C26) 72 40-140 Doctacosane (C28) 73 40-140 Rexacosane (C28) 73 40-140 Octacosane (C28) 73 40-140 Surrogate(s) 76 40-140 Surrogate(s) 78 40-140 2-Fluorobipheny1 72 40-140		72	40-140	
Benzo (ghi) perylene 73 40-140 Nonane (C9) 57 30-140 Decane (C10) 62 40-140 Dodecane (C12) 65 40-140 Tetradecane (C14) 63 40-140 Monadecane (C16) 64 40-140 Octadecane (C18) 64 40-140 Nonadecane (C19) 64 40-140 Eicosane (C20) 67 40-140 Docosane (C22) 71 40-140 Doctacosane (C24) 72 40-140 Hexacosane (C26) 72 40-140 Doctacosane (C28) 73 40-140 Surrogate (S) 76 40-140 Surrogate (S) 78 40-140 Chloro-Octadecane 57 40-140 2-Fluorobiphenyl 72 40-140		73	40-140	
Nonane (C9) 57 30-140 Decane (C10) 62 40-140 Dodecane (C12) 65 40-140 Tetradecane (C14) 63 40-140 Mexadecane (C16) 64 40-140 Octadecane (C18) 64 40-140 Nonadecane (C19) 64 40-140 Eicosane (C20) 67 40-140 Doccasne (C22) 71 40-140 Tetracosane (C24) 72 40-140 Mexacosane (C26) 72 40-140 Octacosane (C28) 73 40-140 Surrogate (S) 76 40-140 Surrogate (s) 57 40-140 Chloro-Octadecane 57 40-140 2-Fluorobiphenyl 72 40-140			40-140	
Decane (C10) 62 40-140 Dodecane (C12) 65 40-140 Tetradecane (C14) 63 40-140 Mexadecane (C16) 64 40-140 Octadecane (C18) 64 40-140 Nonadecane (C19) 64 40-140 Eicosane (C20) 67 40-140 Docosane (C22) 71 40-140 Rexacosane (C24) 72 40-140 Nocacosane (C26) 72 40-140 Doctacosane (C28) 73 40-140 Triacontane (C30) 73 40-140 Surrogate (s) 76 40-140 Surrogate (s) 77 40-140 Chloro-Octadecane 57 40-140 2-Fluorobiphenyl 72 40-140		57	30-140	
Dodecane (C12) 65 40-140 Tetradecane (C14) 63 40-140 Hexadecane (C16) 64 40-140 Octadecane (C18) 64 40-140 Nonadecane (C19) 64 40-140 Eicosane (C20) 67 40-140 Docosane (C22) 71 40-140 Tetracosane (C24) 72 40-140 Neacosane (C26) 72 40-140 Octacosane (C28) 73 40-140 Triacontane (C30) 73 40-140 Surrogate(s) 76 40-140 Surrogate(s) 77 40-140 Chloro-Octadecane 57 40-140 Partiacontane (C36) 78 40-140			40-140	
Tetradecane (C14) 63 40-140 Hexadecane (C16) 64 40-140 Octadecane (C18) 64 40-140 Nonadecane (C19) 64 40-140 Eicosane (C20) 67 40-140 Docosane (C22) 71 40-140 Tetracosane (C24) 72 40-140 Nexacosane (C26) 72 40-140 Octacosane (C28) 73 40-140 Triacontane (C30) 73 40-140 Hexatriacontane (C36) 76 40-140 Surrogate(s) 71 40-140 Chloro-Octadecane 57 40-140 2-Fluorobiphenyl 72 40-140			40-140	
Hexadecane (C16) 64 40-140 Octadecane (C18) 64 40-140 Nonadecane (C19) 64 40-140 Eicosane (C20) 67 40-140 Docosane (C22) 71 40-140 Tetracosane (C24) 72 40-140 Nexacosane (C26) 72 40-140 Octacosane (C28) 73 40-140 Triacontane (C30) 73 40-140 Mexatriacontane (C36) 76 40-140 Surrogate(s) 71 40-140 Chloro-Octadecane 57 40-140 o-Terphenyl 78 40-140 2-Fluorobiphenyl 72 40-140			40-140	
Octadecane (C18) 64 40-140 Nonadecane (C19) 64 40-140 Eicosane (C20) 67 40-140 Docosane (C22) 71 40-140 Tetracosane (C24) 72 40-140 Mexacosane (C26) 72 40-140 Octacosane (C28) 73 40-140 Triacontane (C30) 73 40-140 Hexatriacontane (C36) 76 40-140 Surrogate(s) 76 40-140 Chloro-Octadecane 57 40-140 2-Fluorobiphenyl 72 40-140		64		
Nonadecane (C19) 64 40-140 Eicosane (C20) 67 40-140 Docosane (C22) 71 40-140 Tetracosane (C24) 72 40-140 Mexacosane (C26) 72 40-140 Octacosane (C28) 73 40-140 Triacontane (C30) 73 40-140 Hexatriacontane (C36) 76 40-140 Surrogate (s) 57 40-140 Chloro-Octadecane 57 40-140 o-Terphenyl 78 40-140 2-Fluorobiphenyl 72 40-140		64		
Eicosane (C20) 67 40-140 Docosane (C22) 71 40-140 Tetracosane (C24) 72 40-140 Mexacosane (C26) 72 40-140 Octacosane (C28) 73 40-140 Triacontane (C30) 73 40-140 Hexatriacontane (C36) 76 40-140 Surrogate (s) 76 40-140 Chloro-Octadecane 57 40-140 o-Terphenyl 78 40-140 2-Fluorobiphenyl 72 40-140		64		
Docosane (C22) 71 40-140 Tetracosane (C24) 72 40-140 Mexacosane (C26) 72 40-140 Octacosane (C28) 73 40-140 Triacontane (C30) 73 40-140 Hexatriacontane (C36) 76 40-140 Surrogate(s) 7 40-140 Chloro-Octadecane 57 40-140 o-Terphenyl 78 40-140 2-Fluorobiphenyl 72 40-140		67	•	
Tetracosane (C24) 72 40-140 Mexacosane (C26) 72 40-140 Octacosane (C28) 73 40-140 Triacontane (C30) 73 40-140 Hexatriacontane (C36) 76 40-140 Surrogate (s) 7 40-140 Chloro-Octadecane 57 40-140 o-Terphenyl 78 40-140 2-Fluorobiphenyl 72 40-140		71		
Hexacosane (C26) 72 40-140 Octacosane (C28) 73 40-140 Triacontane (C30) 73 40-140 Hexatriacontane (C36) 76 40-140 Surrogate (s) 7 40-140 Chloro-Octadecane 57 40-140 o-Terphenyl 78 40-140 2-Fluorobiphenyl 72 40-140		72		
Octacosane (C28) 73 40-140 Triacontane (C30) 73 40-140 Hexatriacontane (C36) 76 40-140 Surrogate (s) 7 40-140 Chloro-Octadecane 57 40-140 o-Terphenyl 78 40-140 2-Fluorobiphenyl 72 40-140		72		
Triacontane (C30) 73 40-140 Hexatriacontane (C36) 76 40-140 Surrogate (s) 75 40-140 Chloro-Octadecane 57 40-140 o-Terphenyl 78 40-140 2-Fluorobiphenyl 72 40-140				
Hexatriacontane (C36) 76 40-140 Surrogate(s) 57 40-140 Chloro-Octadecane 57 40-140 o-Terphenyl 78 40-140 2-Fluorobiphenyl 72 40-140				
Chloro-Octadecane 57 40-140 o-Terphenyl 78 40-140 2-Fluorobiphenyl 72 40-140	Hexatriacontane (C36)	-		
Chloro-Octadecane 57 40-140 o-Terphenyl 78 40-140 2-Fluorobiphenyl 72 40-140	Surrogate (s)			
2-Fluorobiphenyl 72 40-140	Chloro-Octadecane	57	40-140	
2-Fluorobiphenyl 72 40-140	o-Terphenyl	78	40-140	
		72	40-140	
	2-Bromonaphthalene			

05020615:14 Page 12 of 16

Laboratory Job Number: L0604958

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA		ID
					PREP	ANAL	
Blank Anal	vsis for s	ample(s) 0	- (WG235	521-11 2.4	and the second	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Total*Metals by MCP 6000/700	0 series		1. 2. 2.	60.60108	The second second		tine .
Antimony, Total	ND	mg/kg	2.0	60 6010B	0410 16:00	0411 08.1	1 814
Arsenic, Total	ND	mg/kg	0.40	60 6010B	0410 16:00		
Barium, Total	ND	mg/kg	0.40	60 6010B	0410 16:00		
Beryllium, Total	ND	mg/kg	0.20	60 6010B	0410 16:00		
Cadmium, Total	ND	mg/kg	0.40	60 6010B	0410 16:00		
Chromium, Total	ND	mg/kg	0.40	60 6010B	0410 16:00		
Lead, Total	ND	mg/kg	2.0	60 6010B	0410 16:00		
Nickel, Total	ND	mg/kg	1.0	60 6010B	0410 16:00		
Selenium, Total	ND	mg/kg	2.0	60 6010B	0410 16:00		
Silver, Total	ND	mg/kg	0.40	60 6010B	0410 16:00		
Thallium, Total	ND	mg/kg	2.0	60 6010B	0410 16:00		
Vanadium, Total	ND	mg/kg	0.40	60 6010B	0410 16:00		
Zinc, Total	ND	mg/kg	2.0	60 6010B	0410 16:00		
aine, iocai	RU	ilig/ xg	2.0	60 6010B	0410 10:00	0411 08:11	
Blank Analy	vsis for sa	mple(s) 01	(WG2355	514-1)			
Organochlorine Pesticides_by				64 8081A	4 0410 19:13	0412 21:05	ЛВ
Delta-BHC	ND	ug/kg	3.33		COMPANY CLUB III		
Lindane	NÐ	ug/kg	2.67				
Alpha-BHC	ND	ug/kq	3.33				
Beta-BHC	ND	ug/kg	3.33				
Heptachlor	ND	ug/kg	3.33				
Aldrin	ND .	ug/kg	3.33				
Heptachlor epoxide	ND	ug/kg	3.33				
Endrin	NÐ	ug/kg	3.33				
Endrin ketone	ND	ug/kg ug/kg	3.33				
Dieldrin	ND	ug/kg ug/kg	3.33				
4, 4'-DDE	ND		3.33				
1,4'-DDD	ND	ug/kg	3.33				
4,4'-DDT	ND	ug/kg					
		ug/kg	3.33				
Endosulfan I Endosulfan II	ND	ug/kg	. 3.33				
Endosulfan II	ND	ug/kg	.3.33				
Endosulfan sulfate	ND	ug/kg	3.33				
Methoxychlor	ND	uġ/kg	13.3				
Chlordane	ND	ug/kg	13.3				
loxaphene	ND	ug/kg	13.3				
Hexachlorobenzene	ND	ug/kg	3.33				
Surrogate(s)	Recovery		QC Cri	teria			
	-		—				
2,4,5,6-Tetrachloro-m-xylene	72.0	d'o	30-150				

Blank Analysis for sample(s) 01 (WG235514-1). Organochlorine Pesticides by MCP 8081A

٢

۰.

Laboratory Job Number: L0604958

	Cont	inued				
PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL	
	-					
Plank hall	Dic Far an	mplo(a) 0	1. (110-2251	14-1)-1-0		
Organochlorine Pesticides by						2 21.05 70
Surrogate (s)	Recovery		QC Cr			a 21.00 00.
2,4,5,6-Tetrachloro-m-xylene	68.0	z	30-150			
Decachlorobiphenyl	65.0	8	30-150			
Blank-Analysi	s for same	1e(s) 01-(າວີ ໃພດວີຈ	509-1125-0		
Extractable Petroleum Hydroca				,61 EPH-04-1	0410 18:00 041	2 15:14 BN
C9-C18 Aliphatics	ND	mq/kq	6.67	and the second second second		
C19-C36 Aliphatics	NÐ	mg/kg	6.67			
C11-C22 Aromatics	ND	mg/kg	6.67			
C11-C22 Aromatics, Adjusted	ND	mg/kg	6.67			
Naphthalene	ND	mg/kg	0.333			
2-Methylnaphthalene	ND	mg/kg	0.333			
Acenaphthylene	ND	mg/kg	0.333			
Acenaphthene	ND	mg/kg	0.333			
Fluorene	ND	mg/kg	0.333			
Phenanthrene	ND	mg/kg	0.333			
Anthracene	ND	mq/kq	0.333			
Fluoranthene	ND	mg/kg	D.333			
Pyrene	ND	mg/kg	0.333			
- Benzo (a) anthracene	ND	mg/kg	0.333			
Chrysene	ND	mg/kg	0.333			
Benzo(b)fluoranthene	ND	mg/kg	0.333			
Benzo(k)fluoranthene	ND	mg/kg	0.333			
Benzo(a)pyrene	ND	mg/kg	0.333			
Indeno (1, 2, 3-cd) Pyrene	ND	mg/kg	0.333			
Dibenzo(a,h)anthracene	ND	mg/kg	0.333			
Benzo(ghi)perylene	ND	mg/kg	0.333			
Surrogate(s)	Recovery		QC Cri	teria		
Chloro-Octadecane	49.0	윰	40-140			
o-Terphenyl	70.0	. 010	40-140			
2-Fluorobiphenyl	86.0	ą	40-140			
2-Bromonaphthalene	83.0	8	40-140			

05020615:14 Page 14 of 16

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

- 30. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 60. Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 61. Method for the Determination of Extractable Petroleum Hydrocarbons (EPH). Massachusetts Department of Environmental Protection, DEA/ORS/BWSC. May 2004, Revision 1.1.
- 64. Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found. METHOD Method number by which analysis was performed. ID Initials of the analyst. ND Not detected in comparison to the reported detection limit. NI Not Ignitable. ug/cart Micrograms per Cartridge.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

05020615:14 Page 15 of 16

Laboratory Job Number: L0604958

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal	Cooler	Custody	Seal
---------------------	--------	---------	------

A Absent

Container Information

Container ID	Container Type	Cooler	рН	Тетр	Pres	Seal	Analysia
L0604958-01A	Amber 250ml unpreserved	Α	NA	1.6C	Y	Absent	EPH-DELUX-04
L0604958-01B	Amber 250ml unpreserved	А	NA	1.6C	Y	Absent	MCP-8081-04
L0604958-01 C	Amber 250ml unpreserved	А	NA	1.6C	Y	Absent	MCP-AG-6010T, MCP-AS-6010T, MCP-BA-
							6010T, MCP-BE-6010T, MCP-CD-6010T, MCP-
							CR-6010T, MCP-NI-6010T, MCP-PB-6010T,
							MCP-SB-6010T, MCP-SE-6010T, MCP-TL-
		`					6010T, MCP-V-6010T, MCP-2N-6010T, PREPT,
							TS
L0604958-01D	Amber 250ml unpreserved	А	NA	1.6C	Y	Absent	MCP-AG-6010T, MCP-AS-6010T, MCP-BA-
							6010T, MCP-BE-6010T, MCP-C0-6010T, MCP-
							CR-6010T, MCP-NI-6010T, MCP-PB-6010T,
							MCP-SB-6010T, MCP-SE-6010T, MCP-TL-
							6010T, MCP-V-6010T, MCP-ZN-6010T, PREPT,
							TS '
L0604958-02A	Amber 250ml unpreserved	A	NA	1.6C	Y	Absent	EPH-DELUX-04, TS

Container Comments

Container ID Comments

05020615:14 Page 16 of 16

.

	Chain-of-Custody Record	VIER AND PRESERVATIVE		eld samples been	19 = 19 =	╶╢	VOLUME / CONTAINER TYPES	z 19 law gen 2			03, glanded 1 1 1 1						Send results to: Lig Demly	Cooler temperature:		Lunie 4.7-06, 1240	Date/Time	ature) 4/2 1/3 1/5	2
PHA JOD & JOE VIA	Boott Mills South, Foot of John Street • Lovell, Massachusetts 01652 Telephone 978-970-5600 • Fax 978-453-1995	Shipping Carrier 🗂 FED EX 🛛 🕇 COURIER Date Shipped	Airbilt No.	MCP Work Only: Have the appropriate number of field tamples been collected for this program?	und Time (Circle One)	Day 3 Day	COMPOSITE MATRIX OR GRAB	Composed Soil 802	his tradies	towposed but 8	13 NOV MARANAN NOV 81						C.		- (978-(56-3571) WWW gueroung	1240	me Received By: (Signature)	1715 Received By:(Signature)	
ALPH		8 g M Reulwood Liny	06	Al pha	Satum 1		DATE/TIME SAMPLED	006 / 90120140	-) 6 / 	1 00 10 Ha		1	1	1	~	MENTS Standard Trunavound time.	Slout willing	Liz Denley (978-156-3	04/07/06 1240	Date/Time	AZI C	
	Customer-Focused Solutions	Project Name Furmula Project No.: 5203	Sampling Date(s): 04	Laboratory Name:	Ŵ		SAMPLE (D	8-9 (0-3)	0	0-1	6	lemp plann		-			COMMENTS Standa	Temprellur E	Please Call	A law	Reinquaned By (Sgrature)	Reinquished By: (Signature)	

.

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: TRC Environmental Corporation	Laboratory Job Number: L0605167
Address: Boott Mills South 116 John Street Lowell, MA 01852	Date Received: 12-APR-2006
Attn: Mr. Frank Calandra	Date Reported: 02-MAY-2006
Project Number: 52037	Delivery Method: Client
Site: NEWBURYPORT	

The following questions pertain only to MCP Analytical Methods

An affirmative response to questions A,B,C & D is required for "Presumptive Certainty" status

- A. Were all samples received by the laboratory in a condition consistent with those YES described on their Chain-of-Custody documentation for the data set?
- B. Were all QA/QC procedures required for the specified analytical method(s) included YES in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?
- C. Does the analytical data included in this report meet all the requirements for YES "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?
- D. VPH and EPH methods only: Was the VPH or EPH method run without significant YES modifications, as specified in Section 11.3?

A response to questions E and F is required for "Presumptive Certainty" status

- E. Were all QC performance standards and recommendations for the specified method(s) NO achieved?
- F. Were results for all analyte-list compounds/elements for the specified method(s) YES reported?

Any answers of NO to the above questions are addressed in the case narrative.

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by: Technical Director

05020617:37 Page 1 of 32

ALPHA ANALYTICAL LABORATORIES

Laboratory Job Number: L0605167 Date Reported: 02-MAY-2006

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L0605167-01	MW-9	NEWBURYPORT, MA
L0605167-02	MW-10	NEWBURYPORT, MA
L0605167-03	MW-2	NEWBURYPORT, MA
L0605167-04	MW-1	NEWBURYPORT, MA
L0605167-05	MW-4	NEWBURYPORT, MA

05020617:37 Page 2 of 32

.

ALPHA ANALYTICAL LABORATORIES NARRATIVE REPORT

Laboratory Job Number: L0605167

Report Submission

This report replaces the report issued April 19, 2006. The report has been amended to include the corrected Metals data on L0605167-02, as well as the report issued on April 21, 2006 to amend the EPH narrative section of the report.

MCP Related Narratives

EPH

WG235911:

Extraction method 3510C

In reference to question E:

The surrogate percent recovery for 1-chloro-octadecane on -02 is below method acceptance criteria possibly due to sample matrix. The sample was re-fractionated with confirming the low surrogate recovery for 1-chloro-octadecane. Both sets of data are reported.

One or more percent recoveries for matrix spike are outside the acceptance criteria for the method (decane, l-chloro-octadecane). Since the LCS percent recoveries are within method acceptance criteria, the exceedences are most likely due to matrix interference.

Volatile Organics

05020617:37

Page 3 of 32

In reference to question E:

The WG236307-4,5 LCS, LCSD have low % recoveries for Dichlorodifluoromethane and Chloromethane (in the LCSD), both difficult analytes.

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

 Laboratory Sample Number:
 L0605167-01
 Date Collected:
 12-APR-2006
 10:15

 MW-9
 Date Received:
 12-APR-2006

 Sample Matrix:
 WATER
 Date Reported:
 02-MAY-2006

 Condition of Sample:
 Satisfactory
 Field Prep:
 NONE

Number & Type of Containers: 2-Amber, 2-Plastic

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT	NE E	ID
					PREP	ANAL	

Total Metals by MCP. 6000/7000 series

Antimony, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 18:53 BM
Arsenic, Total	0.0163	mg/l	0.0005	64 6020A	0413 20:00 0414 18:53 BM
Barium, Total	0.0395	mg/l	0.0005	64 6020A	0413 20:00 0414 18:53 BM
Beryllium, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 18:53 BM
Cadmium, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 18:53 BM
Chromium, Total	0.0142	mg/l	0.0005	64 6020A	0413 20:00 0414 18:53 BM
Lead, Total	0.0061	mg/l	0.0005	64 6020A	0413 20:00 0414 18:53 BM
Nickel, Total	0.0212	mg/l	0.0005	64 6020A	0413 20:00 0414 18:53 BM
Selenium, Total	ND	mg/l	0.001	64 6020A	0413 20:00 0414 18:53 BM
Silver, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 18:53 BM
Thallium, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 18:53 BM
Vanadium, Total	0.0102	mg/l	0.0005	64 6020A	0413 20:00 0414 18:53 BM
Zinc, Total	0.0209	mg/l	0.0050	64 6020A	0413 20:00 0414 18:53 BM

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020617:37 Page 4 of 32

Laboratory Sample Number: L0605167-01

MW-9

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT PREP	e Anal	IÐ
Extractable ³ Petroleum Hydroca	arbonš <u></u>			., 2_61 EPH-04-1	0413 10:30)419 09:3	3 BN
Qua	lity Cont	rol Înform	ation	14. A			
Condition of sample received:			Satisf	actory			
Aqueous preservative:				tory Provided H	Preserved	Contai:	ner
Sample temperature upon recei	ipt:			ed on Ice			
Sample extraction method:	L = 1		Extrac	ted Per the Met	hod		
Were all QA/QC procedures REQ	UIRED by	the method	followe	d?		Y	ES
Were all performance/acceptar 1. One or more of the MS/N	ice standa	rds for th	e requir	ed procedures a	chieved?	N	C
Were significant modification					11.3?	N	0
The normal acceptance range f			•				-
and o-Terphenyl, is 40-140%.	_		,		• • •		
The normal acceptance range f	or the fra	actionatio	n surrog	ates, 2-Fluorob	phenyl		
and 2-Bromonaphthalene, is 40)-140%.		,				
			· · · · · · · · ·		Sec. +		
C9-C18 Aliphatics	ND	ug/l	100				
C19-C36 Aliphatics	ND	ug/l	100				
Cl1-C22 Aromatics	ND	ug/l	100				
Cl1-C22 Aromatics, Adjusted	ND	ug/l	100				
Naphthalene	ND	ug/l	10.0				
2-Methylnaphthalene	ND	ug/1	. 10.0				
Acenaphthylene	ND	ug/l	10.0				
Acenaphthene	ND	ug/l	10.0				
Fluorene	ND	ug/l	10.0				
Phenanthrene	ND	ug/1	10.0				
Anthracene	ND	ug/l	10.0				
Fluoranthene	ND	ug/l	10.0				
Pyrene	ND	ug/l	10.0				
Benzo (a) anthracene	ND	ug/l	10.0				
Chrysene	ND	ug/l	10.0				
Benzo(b)fluoranthene	ND	ug/l	10.0				
Benzo(k)fluoranthene	ND	ug/l	10.0				
Benzo (a) pyrene	ND	ug/l	10.0				
Indeno (1,2,3-cd) Pyrene	ND	ug/l	10.0				
Dibenzo(a,h)anthracene	ND	ug/l	10.0				
Benzo(ghi)perylene	ND	ug/l	10.0				
Surrogate(s)	Recovery		QC Cr:	iteria			
Chloro-Octadecane	44.0	9 5	40-140)			
o-Terphenyl	68.0	箸	40-140)			
2-Fluorobiphenyl	72.0	96	40-140				
2-Bromonaphthalene	71.0	몽	40-140				

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020617:37 Page 5 of 32

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	MW-10		Dat	te Received	: 12-APR-2006 12:15 : 12-APR-2006
Sample Matrix:	WATER		Dat	te Reported	: 02-MAY-2006
Condition of Sample:	Satisfactory		Fie	ald Prep:	NONE
Number & Type of Containe	rs: 4-Amber,9-	Plastic,2	-Vial		
PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Total Cyanide by MCP 9014			1.2012	and a start of the	
Cyanide, Total	0.167	mg/l	0.005	64 9014	0413 09:45 0413 18:54 DD
Total_Metals_by_MCP_60007	7000 series		ليستية : 2 يونية : السينية : 2 يونية :		
Antimony, Total	ND	mg/l	0.0005	64 6020A	0417 19:30 0419 00:06 BM
Arsenic, Total	0.0071	mg/l	0.0005	64 6020A	0417 19:30 0419 00:06 BM
Barium, Total	0.8272	mg/l	0.0005	64 6020A	0417 19:30 0419 00:06 BM
Beryllium, Total	ND	mg/l	0.0005	64 6020A	0417 19:30 0419 00:06 BM
Cadmium, Total	0.0006	mg/l	0.0005	64 6020A	0417 19:30 0419 00:06 BM
Chromium, Total	0.0031	mg/l	0.0005	64 6020A	0417 19:30 0419 00:06 BM
Lead, Total	0.0020	mg/l	0.0005	64 6020A	0417 19:30 0419 00:06 BM
Nickel, Total	0.6998	mg/].	0.0005	64 6020A	0417 19:30 0419 00:06 BM
Selenium, Total	ND	mg/l	0.001	64 6020A	0417 19:30 0419 00:06 BM
Silver, Total	ND	mg/l	0.0005	64 6020A	0417 19:30 0419 00:06 BM
Thallium, Total	ND	mg/l	0.0005	64 6020A	0417 19:30 0419 00:06 BM
Vanadium, Total	ND	mg/l	0.0005	64 6020A	0417 19:30 0419 00:06 BM
Zinc, Total	0.0335	mg/l	0.0050	64 6020A	0417 19:30 0419 00:06 BM
Volatile Organics by MCP	8260B	angan at sa share ya		60.82608	0417 16:57 PD
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	4.6	ug/l	0.75		
Chloroform	0.88	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75 .		
Tetrachloroethene	0.73	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	3.8	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		·
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020617:37 Page 6 of 32

Laboratory Sample Number: L0605167-02

MW-10

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
· · · · · · · · · · · · · · · · · · ·					
Volatile Organics by MCP 826	0B icont d'	S	1	60 8260B	0417 16:57 PD
Benzene	13	ug/l	0.50		
Toluene	1.6	ug/l	0.75		
Ethylbenzene	9.6	ug/l	0.50		
Chloromethane	ND	ug/l	2.5	·	
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	7.8	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50	· ·	
trans-1,2-Dichloroetheme	ND	ug/l	0.75		
Irichloroethene	17	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	4.8	ug/l	1.0		
o-Xylene	1.2	ug/l	1.0		
cis-1,2-Dichloroethene	14	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Styrene	ND	ug/l	1.0		
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/1	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5		
Tetrahydrofuran	ND	ug/l	10.		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	*	2.0		
	ND	ug/l	2.5		
1,3-Dichloropropane		ug/l			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzenė	ND	ug/l	2.5		
n-Butylbenzene	5.5	ug/l	0.50		
sec-Butylbenzene	1.8	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND .	ug/l	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	0.60		
Isopropylbenzene	3.2	ug/l	0.50		
o-Isopropyltoluene	1.8	ug/l	0.50		•
laphthalene	9.3	ug/l	2.5		
n-Propylbenzene	8.8	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
l,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	4.0	ug/l	2.5		
l,2,4-Trimethylbenzene	23	ug/l	2.5		
Ethyl ether	ND	ug/l	2.5		

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020617:37 Page 7 of 32

Laboratory Sample Number: L0605167-02 MW-10

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT	E	ID
					PREP	ANAL	
Volatile Organics by MCP 826	0B cont'd			60. 82608		417.16:5	7 90
Isopropyl Ether	ND	ug/l	2.0				1 'ant 10 1 and 1
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0				
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0				
1,4-Dioxane	ND	ug/l	250				
Surrogate(s)	Recovery		QC Cr	iteria			
1,2-Dichloroethane-d4	102	%	70-13	0			
Toluene-d8	100	ક	70-13	0			
4-Bromofluorobenzene	100	8	70-13	0			
Dibromofluoromethane	104	æ	70-13	0			

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020617:37 Page 8 of 32

Laboratory Sample Number: L0605167-02

MW-10

PARAMETER	RESULT	UNITS	RDL	REF METHOD	date Prep ana	ID L
Extractable_Petroleum_Hydroc	arbons			61_EPH-04-1	0413 10:30:0418 15	11 BN
Qu	ality?Conti	ol.Informa	ation 🗸		A A A A A A A A A A A A A A A A A A A	
Condition of sample received	:		Satisfa			
Aqueous preservative:				-	Preserved Conta	ainer
Sample temperature upon rece	ipt:			d on Ice		
Sample extraction method:				ed Per the Me	thod	
Were all QA/QC procedures RE						YES
Nere all performance/accepta 1. One or more of the ext	raction sur	rogate rea	coveries	were less that		NO
2. One or more of the MS/					11 22	210
Nere significant modification			-			NO
The normal acceptance range	for the ext	raction su	urrogates	, Chloro-octa	decane	
and o-Terphenyl, is 40-140%.						
The normal acceptance range		actionation	n surroga	tes, 2-Fluoro	biphenyl	
and 2-Bromonaphthalene, is 4	0-140%				3-44 (St. 1997)	
	www.example.com	اللي المتوركية التروية المراجعة الم		A State State in the second	and interest total	2
C9-C18 Aliphatics	ND	ug/l	100			
C19-C36 Aliphatics	ND	ug/l	100			
C11-C22 Aromatics	ND	ug/l	100			
C11-C22 Aromatics, Adjusted	ND	ug/l	100			
Naphthalene	ND	ug/l	10.0			
2-Methylnaphthalene	ND	ug/l	10.0			
Acenaphthylene	ND	ug/l	10.0			
Acenaphthene	ND	ug/l	10.0			
fluorene	ND	ug/l	10.0			
Phenanthrene	ND	ug/l	10.0			
Anthracene	ND	ug/l	10.0			
luoranthene	ND	ug/l	10.0			
Pyrene .	ND	ug/l	10.0			
Benzo(a) anthracene	ND	υg/l '	10.0			
Chrysene	ND .	ug/l	10.0			
Benzo(b)fluoranthene	ND	ug/l	10.0			
Benzo(k)fluoranthene	ND	ug/l	10.0			
Benzo (a) pyrene	ND	ug/l	10.0			
Indeno (1, 2, 3-cd) Pyrene	ND	ug/l	10.0			
Dibenzo(a,h)anthracene	ND ·	ug/l	10.0	:		
Senzo(ghi)perylene	ND	ug/l	10.0			
Surrogate(s)	Recovery		QC Crit	ceria		
Chloro-Octadecane	36.0	8	40-140			
o-Terphenyl	66.0	8	40-140			
P-Fluorobiphenyl	73.0	옹	40-140	•		•
		•	40 140			
-Bromonaphthalene	70.0	8	40-140			

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020617:37 Page 9 of 32

Laboratory Sample Number: L0605167-02

MW-10

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	
					PREP	ANAL,
Sxfractable_Petroleum_Hydroc	arbons		the second second	61_EPH-04-1	0413_10:30_04	19_10:39 BN
Qu	ality.Contr	ol Inform	ation - 2	and the set of the		
Condition of sample received	:		Satisf	actory		
Aqueous preservative:			Labora	tory Provided F	reserved C	ontainer
Sample temperature upon rece:	ipt:		Receiv	ed on Ice		
Sample extraction method:			Extrac	ted Per the Met	hod	
Were all QA/QC procedures RE(YES
Were all performance/accepta	nce standar	ds for th	e requir	ed procedures a	chieved?	NO
1. One or more of the ext	raction sur	rogate re	coveries	were less than	40%.	
2. One or more of the MS/N	MSD recover	ies was l	ess than	40%.		
Were significant modification	ns made to	the metho	d as spe	cified in Sect	11.3?	NO
The normal acceptance range :	for the ext	raction s	urrogate	s, Chloro-octad	lecane	
and o-Terphenyl, is 40-140%.						
The normal acceptance range :	for the fra	ctionatio	n surrog	ates, 2-Fluorob	iphenyl	
and 2-Bromonaphthalene, is 40						
	And the second		- No			
C9-C18 Aliphatics	NÐ	ug/l	100			
C19-C36 Aliphatics	ND	ug/l	100			
C11-C22 Aromatics	ND	ug/l	100			
C11-C22 Aromatics, Adjusted	ND	ug/l	100			
Naphthalene	ND	ug/l	10.0			
2-Methylnaphthalene	ND	ug/l	10.0			
Acenaphthylene	ND	ug/l	10.0			
Acenaphthene	ND	ug/l	10.0			
Fluorene	NÐ	ug/1	10.0			
Phenanthrene	NÐ	ug/l	10.0			
Anthracene	NĎ	ug/l	10.0			
Fluoranthene	ND	ug/l	10.0			
Ругеле	ND	ug/l	10.0			
Benzo(a)anthracene	ND	ug/l	10.0			
Chrysene	ND	ug/l	10.0			
Benzo(b)fluoranthene	ND	ug/l	10.0			
Benzo(k)fluoranthene	ND	ug/l	10.0			
Benzo (a) pyrene	ND	ug/1	10.0			
Indeno (1, 2, 3-cd) Pyrene	ND	ug/l	10.0			
Dibenzo(a,h)anthracene	ND	ug/1	10.0			
Benzo(ghi)perylene	ND	ug/1	10.0			
- - .			OC Cr	lteria		
	Recovery		- YA (11)	LOOLIG		
Surrogate(s)	Recovery 33.0	×	40-140			
Surrogate(s) Chloro-Octadecane		ક	-)		
Surrogate(s) Chloro-Octadecane o-Terphenyl 2-Fluorobiphenyl	33.0		40-140))		

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020617:37 Page 10 of 32

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0605167-03 MW-2	Date Collected: Date Received :	12-APR-2006 14:15 12-APR-2006
Sample Matrix:	WATER	Date Reported :	
Condition of Sample:	Satisfactory	Field Prep:	NONE

Number & Type of Containers: 2-Amber, 2-Plastic

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP ANAL	

Total Metals by MCP 6000/7000 series · ---

Antimony, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:26 BM
Arsenic, Total	0.0294	mg/l	0.0005	64 6020A	0413 20:00 0414 19:26 BM
Barium, Total	0.0568	mg/l	0.0005	64 6020A	0413 20:00 0414 19:26 BM
Beryllium, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:26 BM
Cadmium, Total	ND	mq/l	0.0005	64 6020A	0413 20:00 0414 19:26 BM
Chromium, Total	0.0005	mg/l	0.0005	64 6020A	0413 20:00 0414 19:26 BM
Lead, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:26 BM
Nickel, Total	0.0074	mg/l	0.0005	64 6020A	0413 20:00 0414 19:26 BM
Selenium, Total	ND	mg/l	0.001	64 6020A	0413 20:00 0414 19:26 BM
Silver, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:26 BM
Thallium, Total	ND.	mg/l	0.0005	64 6020A	0413 20:00 0414 19:26 BM
Vanadium, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:26 BM
Zinc, Total	0.0524	mg/l	0.0050	64 6020A	0413 20:00 0414 19:26 BM

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020617:37 Page 11 of 32

Laboratory Sample Number: L0605167-03

MW-2

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Extractable, Petroleum Hydroca	rbons			61_EPH-04-1	0413 10:30 0419 10:0)5 <u>_</u> BN
-Out	lity_Cont	rol Informa	tion y			
Condition of sample received:	l .		Satisf	actory		
Aqueous preservative:			Labora	tory Provided P	reserved Contai	ner
Sample temperature upon recei	.pt:		Receiv	ed on Ice		
Sample extraction method:				ted Per the Met	hod	
Were all QA/QC procedures RE(QUIRED by t	the method	followe	d?	У	ES
Were all performance/acceptar	nce standa	rds for the	e requir	ed procedures a	chieved? N	10
1. One or more of the MS/N						
Were significant modification						Ю
The normal acceptance range i	or the ext	raction su	rrogate	s, Chloro-octad	ecane ·	
and o-Terphenyl, is 40-140%.						
The normal acceptance range f		actionation	n surrog	ates, 2-Fluorob	iphenyl	
and 2-Bromonaphthalene, is 40				en i un en original aparte agricoration		-
and the second of the first water water in the second of the		ي ۽ اندي . مستند هو سن خي مينيند	دي د مېږي ايند. م مصر ايمان ايا وله			
C9-C18 Aliphatics	ND	ug/l	100			
C19-C36 Aliphatics	ND	ug/l	100			
C11-C22 Aromatics	ND	ug/l	100			
C11-C22 Aromatics, Adjusted	ND	ug/l	100			
Naphthalené	ND	ug/l	10.0			
2-Methylnaphthalene	ND	ug/l	10.0			
Acenaphthylene	ND	ug/l	10.0			
Acenaphthene	ND	ug/l	10.0			
Fluorene	ND	ug/l	10.0			
Phenanthrene	ND	ug/l	10.0			
Anthracene	ND	ug/l	10.0			
Fluoranthene	ND	ug/l	10.0			
Pyrene	ND	ug/l	10.0			
Beπzo (a) anthracene	ND	ug/l	10.0			
Chrysene	ND	ug/l	10.0			
Benzo(b)fluoranthene	ND	ug/l	10.0			
Benzo(k)fluoranthene	ND	ug/l	10.0			
Benzo (a) pyrene	ND	ug/l ·	10.0			
Indeno(1,2,3-cd)Pyrene	ND	ug/l	10.0			
Dibenzo(a,h)anthracene	ND	ug/l	10.0			
Benzo(ghi)perylene	ND	ug/l	10.0			
Surrogate(s)	Recovery			iteria		
Chloro-Octadecane	53.0	£	40-14	0		
o-Terphenyl	75.0	8	40-14	0 .		
2-Fluorobiphenyl .	76.0	ala	40-14	о С		
2-Bromonaphthalene	76.0	8	40-14	0		

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020617:37 Page 12 of 32

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0605167-04	Date Collected: 12-APR-2006 15:10
	MW-1	Date Received : 12-APR-2006
Sample Matrix:	WATER	Date Reported : 02-MAY-2006
Condition of Sample:	Satisfactory	Field Frep: NONE

Number & Type of Containers: 2-Amber, 2-Plastic

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Total Metals by MCP 6	000/7000 séries			ng to a galanti and a galanti	
Antimony, Total	0.0008	mg/1	0.0005	64 6020A	0413 20:00 0414 19:32 BM
Arsenic, Total	0.0037	mg/l	0.0005	64 6020A	0413 20:00 0414 19:32 BM
Barium, Total	0.0773	mg/l	0.0005	64 6020A	0413 20:00 0414 19:32 BM
Beryllium, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:32 BM
Cadmium, Total	ND .	mg/l	0.0005	64 6020A	0413 20:00 0414 19:32 BM
Chromium, Total	0.0019	mg/l	0.0005	64 6020A	0413 20:00 0414 19:32 BM
Lead, Total	0.0012	mg/l	0.0005	64 6020A	0413 20:00 0414 19:32 BM
Nickel, Total	0.0063	mg/l	0.0005	64 6020A	0413 20:00 0414 19:32 BM
Selenium, Total	0.006	mg/l	0.001	64 6020A	0413 20:00 0414 19:32 BM
Silver, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:32 BM
Thallium, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:32 BM
Vanadium, Total	0.0012	mg/l	0.0005	64 6020A	0413 20:00 0414 19:32 BM
Zinc, Total	0.1386	mg/l	0.0050	64 6020A	0413 20:00 0414 19:32 BM

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020617:37 Page 13 of 32

Laboratory Sample Number: L0605167-04

MW ~ 1

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Extractable Petroleum Hydroca	rbons			161 EPH-04-1	0413_10:30 0418:16:4	19 BN 1
Qua	lity-Contr	ol Inform	ation	مر میں میں اور میں میں میں میں میں میں اور اور میں	5	
Condition of sample received:			Satisf	actory		
Aqueous preservative:		•	Labora	cory Provided P	reserved Contai	ner
Sample temperature upon recei	pt:			ed on Ice		
Sample extraction method:				ted Per the Metl		
Were all QA/QC procedures REC						ES
Were all performance/acceptar					chieved? N	10
1. One or more of the MS/M						
Were significant modificatior						10
The normal acceptance range f	or the ext	raction s	urrogate	s, Chloro-octade	ecane	
and o-Terphenyl, is 40-140%.				_		
The normal acceptance range f		ctionatio	n surroga	ates, 2-Fluorob	iphenyl	
and 2-Bromonaphthalene, is 40	-140%.			anan an	andrandam in generalised in season soon	~~~ <u>~</u> ~
			<u></u>		Same Startes	the and
C9-C18 Aliphatics	ND	ug/l	100			
C19-C36 Aliphatics	ND	ug/l	100			
C11-C22 Aromatics	ND	ug/1	100			
Cll-C22 Aromatics, Adjusted	ND	ug/l	100			
Naphthalene	ND	ug/l	10.0			
2-Methylnaphthalene	ND	ug/l	10.0			
Acenaphthylene	ND	ug/l	10.0			
Acenaphthene	ND	ug/l	10.0			
Fluorene	ND	ug/l	10.0			
Phenanthrene	ND	ug/l	10.0			
Anthracene	ND	ug/l	10.0			
Fluoranthene	ND	ug/l	10.0			
Pyrene	ND	ug/l	10.0			
Benzo(a)anthracene	ND	ug/l	10.0			
Chrysene	ND	ug/l	10.0			
Benzo(b)fluoranthene	ND	ug/1	10.0			
Benzo(k)fluoranthene	ND	ug/l	10.0			
Benzo(a)pyrene	ND	ug/l	10.0			
Indeno (1, 2, 3-cd) Pyrene	ND	ug/l	10.0			
Dibenzo(a,h)anthracene	ND	ug/l	10.0			
Benzo(ghi)perylene	ND	ug/l	10.0			
Surrogate(s)	Recovery		QC Cri	teria		
Chloro-Octadecane	53.0	z	40-140)		
o-Terphenyl	72.0	8	40-140	}		
2-Fluorobiphenyl	75.0	%	40-140)		
- IIIOIOO-Phon()-						

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020617:37 Page 14 of 32

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0605167-05 *	Date Collected: 12-APR-2006 17:00 Date Received : 12-APR-2006
Sample Matrix:	WATER	Date Reported : 02-MAY-2006
Condition of Sample:	Satisfactory	Field Prep: NONE

Number & Type of Containers: 2-Amber, 2-Plastic

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	E ID)
					PREP	ANAL	

in the second second second second second Total Metals by MCP 6000/7000 series

Antimony, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:37 BM
Arsenic, Total	0.0015	mg/l	0.0005	64 6020A	0413 20:00 0414 19:37 BM
Barium, Total	0.0182	mg/l	0.0005	64 6020A	0413 20:00 0414 19:37 BM
Beryllium, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:37 BM
Cadmium, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:37 BM
Chromium, Total	0.0009	mg/l	0.0005	64 6020A	0413 20:00 0414 19:37 BM
Lead, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:37 BM
Nickel, Total	0.0095	mg/l	0.0005	64 6020A	0413 20:00 0414 19:37 BM
Selenium, Total	0.002	mg/l	0.001	64 6020A	0413 20:00 0414 19:37 BM
Silver, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:37 BM
Thallium, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 19:37 BM
Vanadium, Total	ND	mg/1	0.0005	64 6020A	0413 20:00 0414 19:37 BM
Zinc, Total	ND .	mg/l	0.0050	64 6020A	0413 20:00 0414 19:37 BM

Comments: Complete list of References and Glossary of Terms found in Addendum I

05020617:37 Page 15 of 32

Laboratory Sample Number: L0605167-05

MW-4

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Extractable_Petroleum_Hydroc	arbons	144 - 4 - 1 - 5 - 5 - 5	E I A		0413 10:30 0418,17:2	2 'BN-
Qu	ality Cont	rol Inform	ation	- it is a set		
Condition of sample received	:		Satisf	-		
Aqueous preservative:			Labora	tory Provided P	reserved Contai	.ner
Sample temperature upon rece	ipt:		Receive	ed on Ice		
Sample extraction method:				ted Per the Met	hod	
Were all QA/QC procedures RE						ES
Were all performance/accepta:					chieved? N	10
1. One or more of the MS/						
Were significant modification						10
The normal acceptance range	for the ex	traction s	urrogates	s, Chloro-octad	ecane	
and o-Terphenyl, is 40-140%.						
The normal acceptance range :		actionatio	n surroga	ates, 2-Fluorob.	iphenyl	
and 2-Bromonaphthalene, is 4						
		فيترج والمستنسبة	S		and a second sec	
C9-C18 Aliphatics	ND	ug/l	100			
Cl9-C36 Aliphatics	ND	ug/l	100			
Cll-C22 Aromatics	ND	ug/l	100			
C11-C22 Aromatics, Adjusted	ND	ug/l	100			
Naphthalene	ND	ug/l	10.0			
2-Methylnaphthalene	ND	ug/l	10.0			
Acenaphthylene	NÐ	ug/l	10.0			
Acenaphthene	ND	ug/l	10.0			
Fluorene	NÐ	ug/l	10.0			
Phenanthrene	ND	ug/l	10.0			
Anthracene	ND	ug/l	10.0			
Fluoranthene	ND	ug/l	10.0			
Pyrene	ND	ug/l	10.0			
Benzo(a)anthracene	ND	ug/l	10.0			
Chrysene	ND	ug/l	10.0			
Benzo(b)fluoranthene	ND	ug/l	10.0			
Benzo(k)fluoranthene	ND	ug/l	10.0			
Benzo (a) pyrene	ND	ug/l	10.0			
Indeno(1,2,3-cd)Pyrene	ND	ug/l	10.0			
Dibenzo(a,h)anthracene	NÐ	ug/l	10.0			
Benzo(ghi)perylene	ND	ug/l	10.0			
Surrogate(s)	Recovery		QC Cri	iteria		
Chloro-Octadecane	47.0	d'o	40-140			
	72.0	÷	40-140)		
o-Terphenyl		-				
o-Terphenyl 2-Fluorobiphenyl 2-Bromonaphthalene	77.0	de de	40-140	;		

Comments: Complete list of References and Glossary of Terms found in Addendum I

Ċ

۰.

05020617:37 Page 16 of 32

Laboratory Job Number: L0605167

1

Parameter	Value 1	Value 2	Units	RPD	RPD Li	nits
Total Cyanide 1	W.MCP 9014	for sample(s) 02 (L06	05167-02	_WG23588	3-6)
Cyanide, Total	0.167	0.170	mg/1	2	20	
			مەر مەربىيە بىرى بىلىسىيە بىلە 			
Total Metals by MCP 6						236360-4)
Antimony, Total	ND	ND	mg/l '	NC	20	
Arsenic, Total	0.0071	0.0074	mg/l	3	20	
Barium, Total	0.8272	0.8322	mg/l	1 ·	20	
Beryllium, Total	ND	ND	mg/l	NC	20	
Cadmium, Total	0.0006	0.0006	mg/l	8	20	
Chromium, Total	0.0031	0.0039	mg/l	25	20	
Lead, Total	0.0020	0.0021	mg/l	5	20	
Nickel, Total	0.6998	0.7433	mg/l	6	20	
Selenium, Total	ND	ND	mg/l	NC	20	
Silver, Total	NÐ	ND	mg/l	NC	20	
Thallium, Total	ND	ND	mg/l	NC	20	
Vanadium, Total	ND	0.0005	mg/l	NC	20	
Zinc, Total	0.0335	0.0386	mg/l	14	20	
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	ND ND ND ND ND ND	ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l	NC NC NC NC NC NC	50 50 50 50 50 50	
Anthracene	ND	ND	ug/l	NC	50	
Fluoranthene	ND	ND	ug/l	NC	50	
Pyrene	ND	ND	ug/l	NC	50	
Benzo (a) anthracene	ND	ND	ug/l	NC	50	
Chrysene	ND	ND	ug/l	NC	50	
Benzo(b)fluoranthene	ND	ND	ug/l	NC	50	
Benzo(k) fluoranthene	ND	ND	ug/l	NC	50	
Benzo(a) pyrene	ND	ND	ug/l	NC	50	
Indeno (1, 2, 3-cd) Pyrene	ND	ND	ug/l	NC	50	
Dibenzo(a,h) anthracene	ND	ND	ug/l	NC	50	
Benzo(ghi)perylene	ND	ND	ug/l	NC	50	
Surrogate (s)	Podo	very				QC Criteri
Chloro-Octadecane	36.0	44.0	9 <u>6</u>			40-140
	20.0					40-140
	66 0	63 0	8			40-140
o-Terphenyl 2-Fluorobiphenyl	66.0 73.0	63.0 74.0	90 91			40-140 40-140

05020617:37 Page 17 of 32

Laboratory Job Number: L0605167

Parameter	* Recovery	QC Criteria
Total Cyanide, by MCP 9014 SPIKE f	or sample (s) 02 (10605167-02, WG235888-4)
Cyanide, Total	100	75-125
Fotal Metals by MCP 6000/7000 series		
Antimony, Total	100	75-125
Arsenic, Total	100	75-125
Barium, Total	99	75-125
Beryllium, Total	100	75-125
Cadmium, Total	103	75-125
Chromium, Total	99	75-125
Lead, Total	102	75-125
Nickel, Total	124	75-125
Selenium, Total	97	75-125
Silver, Total	96	75-125
Thallium, Total	97	75-125
Vanadium, Total	102	75-125
Zinc, Total	100	75-125
Extractable Petroleum Hydrocarbons S	PIKE for sample (s	-01-05 (L0605167-02, WG235911-4)
C9-C18 Aliphatics	43	40-140
C19-C36 Aliphatics	58	40-140
C11-C22 Aromatics	82	40-140
Naphthalene	71	40-140
2-Methylnaphthalene	68	40-140
Acenaphthylene	67	40-140
Acenaphthene	71	40-140
fluorene	71	40-140
Phenanthrene	75	40-140
Anthracene	76	40-140
fluoranthene	77	40-140
Pyrene	79	40-140
Benzo(a)anthracene	80	40-140
Chrysene	82	40-140
Benzo(b)fluoranthene	83	40-140
Benzo (k) fluoranthene	81	40-140
Senzo (a) pyrene	78	40-140
Indeno (1, 2, 3-cd) Pyrene	80	40-140
Dibenzo (a, h) anthracene	80	40-140
	83	40-140
Benzo(ghi)perylene	32	30-140
Nonane (C9)	32 37	40-140
Decane (C10)		
Dodecane (C12)	43	40-140
Tetradecane (C14)	46	40-140
Hexadecane (C16)	50	40-140
Octadecane (C18)	51	40-140
Nonadecane (C19)	54	40-140
Sicosane (C20)	56	40-140
Docosane (C22)	58	40-140
Cetracosane (C24)	59	40-140

05020617:37 Page 18 of 32

Laboratory Job Number: L0605167

Continued

Parameter	% Recovery	QC Criteria
		· · · · · · · · · · · · · · · · · · ·
Extractable Petroleum Hydrocarb	<u>ôns SPIKE for sample(s</u>) 01-05-(E0605167-02) WG235911-4)
Hexacosane (C26)	60	40-140
Octacosane (C28)	60	40-140
Triacontane (C30)	60	40-140
Hexatriacontane (C36)	65	40-140
Surrogate(s)		
Chloro-Octadecane	37	40-140
o-Terphenyl	94	40-140
2-Fluorobiphenyl	74	40-140
2-Bromonaphthalene	74	40-140

05020617:37 Page 19 of 32

Laboratory Job Number: L0605167

Total* Cyanide. by MCP. 9014 for sCyanide, Total10Fotal Metals by MCP:6000/7000 series.Antimony, Total94Arsenic, Total94Barium, Total95Beryllium, Total92Cadmium, Total92Cadmium, Total93Lead, Total98Nickel, Total98Selenium, Total98Selenium, Total98Silver, Total96Thallium, Total97Zinc, Total98Total Metals by MCP.6000/7000 seriesAntimony, Total98Eryllium, Total98Selenium, Total98Cadmium, Total98Cadmium, Total98Beryllium, Total98Beryllium, Total98Cadmium, Total98Selenium, Total98Selenium, Total10Lead, Total10Nickel, Total94Silver, Total99Thallium, Total91	2 10 for sample (93 94 95 92 2 10 98 98 97	6 4 <u>5) 01,03-05</u> 1 0 0 4 2 1	20	80-120 36128-5) 80-120 80-120 80-120 80-120 80-120
Cyanide, Total10Total Metals by MCP:6000/7000 series, Antimony, Total94Arsenic, Total94Barium, Total95Beryllium, Total92Cadmium, Total92Cadmium, Total98Nickel, Total98Selenium, Total92Silver, Total93Vanadium, Total93Zinc, Total96Total Metals by MCP-6000/7000 seriesAntimony, Total98Eryllium, Total98Cadmium, Total99Zinc, Total96Cadmium, Total98Eryllium, Total98Beryllium, Total98Beryllium, Total98Cadmium, Total98Cadmium, Total98Selenium, Total98Selenium, Total98Selenium, Total98Cadmium, Total99Thickel, Total10Nickel, Total94Silver, Total99Thallium, Total97	2 10 for sample (93 94 95 92 2 10 98 98 97	6 4 <u>5) 01,03-05</u> 1 0 0 4 2 1	20 . (WG236128-4, WG2 20 20 20 20 20	80-120 36128-5) 80-120 80-120 80-120 80-120 80-120
Antimony, Total94Arsenic, Total94Barium, Total95Beryllium, Total92Cadmium, Total92Cadmium, Total98Lead, Total98Nickel, Total92Silver, Total96Thallium, Total93Vanadium, Total93Zinc, Total96Arsenic, Total96Arsenic, Total97Barium, Total98Eryllium, Total98Cadmium, Total98Cadmium, Total98Beryllium, Total98Beryllium, Total98Cadmium, Total98Cadmium, Total98Scalium, Total98Cadmium, Total98Cadmium, Total98Cadmium, Total98Cadmium, Total98Cadmium, Total99Thallium, Total99Thallium, Total99Thallium, Total99Thallium, Total97	93 94 95 92 2 10 98 98 98 97	1 0 0 4 2 1	20 20 20 20 20	80-120 80-120 80-120 80-120 80-120
Arsenic, Total94Barium, Total95Beryllium, Total92Cadmium, Total10Chromium, Total99Lead, Total98Nickel, Total98Selenium, Total92Silver, Total96Thallium, Total93Vanadium, Total93Zinc, Total96Arsenic, Total96Arsenic, Total97Barium, Total98Eryllium, Total98Cadmium, Total98Cadmium, Total98Beryllium, Total98Cadmium, Total98Cadmium, Total98Selenium, Total98Selenium, Total98Selenium, Total98Selenium, Total98Selenium, Total99Thallium, Total94Silver, Total99Thallium, Total99Thallium, Total99Thallium, Total97	94 95 92 2 10 98 98 98	0 0 4 2 1	20 20 20	80-120 80-120 80-120
Barium, Total95Beryllium, Total92Cadmium, Total10Chromium, Total99Lead, Total98Nickel, Total98Selenium, Total92Silver, Total96Thallium, Total93Vanadium, Total93Zinc, Total96Arsenic, Total96Barium, Total97Barium, Total98Cadmium, Total98Cadmium, Total98Cadmium, Total98Beryllium, Total98Cadmium, Total98Cadmium, Total98Cadmium, Total98Cadmium, Total98Selenium, Total10Lead, Total10Nickel, Total94Silver, Total94Silver, Total94Silver, Total99Thallium, Total99Thallium, Total99	95 92 2 10 98 98 98	0 0 4 2 1	20 20	80-120 80-120
Beryllium, Total92Cadmium, Total10Chromium, Total99Lead, Total98Nickel, Total92Selenium, Total92Silver, Total96Thallium, Total93Vanadium, Total99Zinc, Total96Total Metals by MCP-6000/7000 seriesAntimony, Total98Eryllium, Total98Barium, Total98Beryllium, Total98Cadmium, Total98Cadmium, Total98Scadmium, Total98Selenium, Total98Cadmium, Total98Cadmium, Total98Selenium, Total99Silver, Total99Thallium, Total99Thallium, Total99Thallium, Total97	92 2 10 98 98 97	0 4 2 1	20	80-120
Cadmium, Total10Chromium, Total99Lead, Total98Nickel, Total92Selenium, Total92Silver, Total96Thallium, Total93Vanadium, Total93Zinc, Total98Total Metals by MCP-6000/7000 seriesAntimony, Total96Barium, Total98Eryllium, Total98Beryllium, Total98Cadmium, Total98Cadmium, Total98Selenium, Total98Selenium, Total98Cadmium, Total98Cadmium, Total10Lead, Total10Selenium, Total94Silver, Total99Thallium, Total99Thallium, Total97	2 10 98 98 97	4 2 1		
Chromium, Total99Lead, Total98Nickel, Total98Selenium, Total92Silver, Total96Thallium, Total93Vanadium, Total99Zinc, Total98LTotal Metals by MCP-6000/7000 seriesAntimony, Total96Arsenic, Total98Barium, Total98Cadmium, Total98Cadmium, Total10Chromium, Total10Lead, Total10Selenium, Total94Silver, Total94	98 98 97	1	20	
Lead, Total98Nickel, Total98Selenium, Total92Silver, Total96Thallium, Total93Vanadium, Total99Zinc, Total98Total Metals by MCP-6000/7000 seriesAntimony, Total96Arsenic, Total98Barium, Total98Beryllium, Total98Cadmium, Total98Cadmium, Total10Chromium, Total10Lead, Total10Selenium, Total94Silver, Total94Silver, Total94Silver, Total94Silver, Total94Silver, Total94Silver, Total94Silver, Total97Thallium, Total97	98 97	—		80-120
Nickel, Total98Selenium, Total92Silver, Total96Thallium, Total93Vanadium, Total93Zinc, Total98Total Metals by MCP-6000/7000 seriesAntimony, Total96Arsenic, Total98Barium, Total98Beryllium, Total98Cadmium, Total98Cadmium, Total10Chromium, Total10Lead, Total10Selenium, Total94Silver, Total94	97	^	20	80-120
Selenium, Total92Silver, Total96Thallium, Total93Vanadium, Total99Zinc, Total98LTotal Metals by MCP_6000/7000 seriesAntimony, Total96Arsenic, Total94Barium, Total98Cadmium, Total98Cadmium, Total98Cadmium, Total10Chromium, Total10Lead, Total10Selenium, Total94Silver, Total99Thallium, Total99		0	20	80-120
Silver, Total96Thallium, Total93Vanadium, Total99Zinc, Total98	94	1	20	80-120
Silver, Total96Thallium, Total93Vanadium, Total99Zinc, Total98Total, Metals by MCP.6000/7000 seriesAntimony, Total96Arsenic, Total94Barium, Total98Beryllium, Total98Cadmium, Total10Chromium, Total10Lead, Total10Selenium, Total94Silver, Total94		2	20	80-120
Thallium, Total93Vanadium, Total99Zinc, Total98Itotal Metals by MCP.6000/7000 seriesAntimony, Total96Arsenic, Total94Barium, Total98Cadmium, Total98Cadmium, Total10Chromium, Total10Lead, Total10Selenium, Total94Silver, Total94	98	2	20	80-120
Vanadium, Total99Zinc, Total98Itotal, Metals by MCP.6000/7000 seriesAntimony, Total96Arsenic, Total94Barium, Total98Cadmium, Total98Cadmium, Total10Chromium, Total10Lead, Total10Selenium, Total94Silver, Total94Silver, Total97	94	1	. 20	80-120
Zinc, Total98Interpret StressIntimony, TotalAntimony, TotalArsenic, TotalBarium, TotalBeryllium, TotalCadmium, TotalCadmium, TotalInterpret StressInterpret StressSelenium, TotalSelenium, TotalSilver, StalSilver, TotalSilver, StalSilver, StalStalStalStalStalStalStalStalStal <td< td=""><td></td><td></td><td>20</td><td>80-120</td></td<>			20	80-120
Antimony, Total96Arsenic, Total94Barium, Total98Beryllium, Total98Cadmium, Total10Chromium, Total10Lead, Total10Nickel, Total10Selenium, Total94Silver, Total97			20	80-120
Antimony, Total96Arsenic, Total94Barium, Total98Beryllium, Total98Cadmium, Total10Chromium, Total10Lead, Total10Nickel, Total10Selenium, Total94Silver, Total99Thallium, Total97	for sample	(s) 02 (WG2)	36360-2; WG236360	-3)
Arsenic, Total94Barium, Total98Beryllium, Total98Cadmium, Total10Chromium, Total10Lead, Total10Nickel, Total10Selenium, Total94Silver, Total99Thallium, Total97			20	80-120
Barium, Total98Beryllium, Total98Cadmium, Total10Chromium, Total10Lead, Total10Nickel, Total10Selenium, Total94Silver, Total99Thallium, Total97	91		20	80-120
Beryllium, Total98Cadmium, Total10Chromium, Total10Lead, Total10Nickel, Total10Selenium, Total94Silver, Total99Thallium, Total97			20	80-120
Cadmium, Total10Chromium, Total10Lead, Total10Nickel, Total10Selenium, Total94Silver, Total99Thallium, Total97			20	80-120
Chromium, Total10Lead, Total10Nickel, Total10Selenium, Total94Silver, Total99Thallium, Total97			20	80-120
Lead, Total10Nickel, Total10Selenium, Total94Silver, Total99Thallium, Total97			20	80-120
Nickel, Total10Selenium, Total94Silver, Total99Thallium, Total97			20	80-120
Selenium, Total94Silver, Total99Thallium, Total97			20	80-120
Silver, Total99Thallium, Total97			20	80-120
Thallium, Total 97			20	80-120
• • • • • •			20	80-120
		5	20	80-120
Zinc, Total 10		3	-20	80-120
Volatile_Organics by MCP_8260B_fo	r samilé(s)	12 INC23631	17-4 WG236307-51	\$ -3F2
Methylene chloride 98			25	70-130
1,1-Dichloroethane 10		5	25	70-130
Chloroform 97		7	25	70-130
Carbon tetrachloride 10		ģ	25	70-130
1,2-Dichloropropane 10		5	25	70-130
Dibromochloromethane 96			25	70-130
1,1,2-Trichloroethane 10			25	70-130
Tetrachloroethene 11			25	70-130
Chlorobenzene 10		1 10 7	25	70-130
Trichlorofluoromethane 98		9	25	70-130
1,2-Dichloroethane 10			25	70-130
1,1,1-Trichloroethane 10		. 8	25	70-130
Bromodichloromethane 10		· 7	25	70-130
trans-1,3-Dichloropropene 96		5	25	70-130
cis-1,3-Dichloropropene 96	92	4	25	70-130

05020617:37 Page 20 of 32

Laboratory Job Number: L0605167

	Continue				
Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
Volatile Organics by MCP 8	260B for same] <u>ē(s)</u> -02.(W	G236307-4.	WG236307-51	
1,1-Dichloropropene	102	93	9	25	70-130
Bromoform	98 .	96	2	50	70-130
1,1,2,2-Tetrachloroethane	100	99	1	25	70-130
Benzene	104	96	8	25	70-130
Toluene	105	94	11	25	70-130
Ethylbenzene	105	96	9	25	70-130
Chloromethane	. 74	68	8	50	70-130
Bromomethane	95	89	7	50	70-130
Vinyl chloride	84	79	6	25	70-130
Chloroethane	89	80	11	25	70-130
1,1-Dichloroethene	95	87	9	25	70-130
trans-1,2-Dichloroethene	99	92	7	25	70-130
Trichloroethene	102	95	7	25	70-130
1,2-Dichlorobenzene	99	94	5	25	70-130
1,3-Dichlorobenzene	107	99	8	25	70-130
1,4-Dichlorobenzene	101	95	6	25	70-130
Methyl tert butyl ether	102	102	ŏ	25	70-130
p/m-Xylene	108	98	10	25	70-130
o-Xylene	100	91	9	25	70-130
cis-1,2-Dichloroethene	106	100	6	25	70-130
Dibromomethane	102	103	1	25	70-130
1,2,3-Trichloropropane	102	104	1	25	70-130
Styrene	97	90	7	25	70-130
Dichlorodifluoromethane	43	40	7	50	70-130
Acetone	95	98	3	50	
Carbon disulfide	80	98 74	8	25	70-130
2-Butanone	98	102	4	25 50	70-130
	93	96	3	50	70-130
4-Methyl-2-pentanone 2-Hexanone					70-130
Bromochloromethane	90 106	91 101	1 5	50 . 25	70-130
					70-130
Tetrahydrofuran	96	90	6	25	70-130
2,2-Dichloropropane	107	96	11	50	70-130
1,2-Dibromoethane	99	95	4	25	70-130
1,3-Dichloropropane	101	96	5	25	70-130
1,1,1,2-Tetrachloroethane	103	97	6	25	70-130
Bromobenzene	106	100	· 6	25	70-130
n-Butylbenzene	94	87	8	25	70-130
sec-Butylbenzene	100	92	8	25	70-130
tert-Butylbenzene	102	94	8	25	70-130
o-Chlorotoluene	104	96	8	25	70-130
p-Chlorotoluene	102	96	6	25	70-130
1,2-Dibromo-3-chloropropane	96	100	4	50	70-130
Hexachlorobutadiene	101	92	9	25	70-130
Isopropylbenzene	108	99 ,	9	25	70-130
p-Isopropyltoluene	103	94	9	25	70-130
Naphthalene	79	82	4	25	70-130
n-Propylbenzene	104	96	8	25	70-130

.

Continued

05020617:37

Page 21 of 32

Laboratory Job Number: L0605167

Continued

Parameter	LCS %	LCSD 🖁	RPD	RPD Limit	QC Limits
	260B_for.samp	le(s),02, (W	<u>5236307-4;</u>	WG236307-5)	A State Pro
1,2,3-Trichlorobenzene	89	90	1	25	70-130
1,2,4-Trichlorobenzene	87	85	2	25	70-130
1,3,5-Trimethylbenzene	104	94	10	25	70-130
1,2,4-Trimethylbenzene	103	94	9	25	70-130
Ethyl ether	103	103	0	25	70-130
Isopropyl Ether	96	92	4	25	70-130
Ethyl-Tert-Butyl-Ether	95	91	4	25	70-130
Tertiary-Amyl Methyl Ether	92	91	1 ·	25	70-130
1,4-Dioxane	77	90	16	50	70-130
Surrogate(s)					
1,2-Dichloroethane-d4	112	108	4		70-130
Toluene-d8	108	101	7		70-130
4-Bromofluorobenzene	102	97	5		70-130
Dibromofluoromethane	111	106	5		70-130
Extractable <u>Petroleum Hydrocar</u> i	oons, for samp	le(s) 01-05	(WG235911	-2; WG235911-3)	
C9-C18 Aliphatics	56	52	7	25	40-140
C19-C36 Aliphatics	68	67	1	25	40-140
C11-C22 Aromatics	72	78	8	25	40-140
Naphthalene	60	59	2	25	40-140
2-Methylnaphthalene	60	58	3	25	40-140
Acenaphthylene	61	60	2	25	40-140
Acenaphthene	63	63	0	25	40-140
Fluorene	64	65	2	25	40-140
Phenanthrene	68	72	6	25	40-140
Anthracene	69	74	7	25	40-140
Fluoranthene	70	76	8	25	40-140
Pyrene	71	77	8	25	40-140
Senzo(a)anthracene	73	79	8	25	40-140
Chrysene	75	81	8	25	40-140
Benzo(b)fluoranthene	77	83	8	25	40-140
Benzo(k) fluoranthene	75	81	8	25	40-140
Benzo (a) pyrene	72	78	8	25	40-140
Indeno (1, 2, 3-cd) Pyrene	75	80	6	25	40-140
Dibenzo (a, h) anthracene	75	80	· 6	25	40-140
Senzo(ghi)perylene	79	84 .	6	25	40-140
Nonane (C9)	44	40	10 .	25	30-140
Decane (C10)	51	40	8	25	40-140
Odecane (C12)	56	52	7	25	40-140
Cetradecane (C14)	59	55	7	25	40-140
lexadecane (C16)	64	59	8	25	40-140
Octadecane (C18)	65	61	6.	25	40-140
Nonadecane (C19)	65	63	3	25	40-140
Licosane (C20)	67	65	3	25	40-140
Docosane (C20)	69	65	.4	25	40-140 40-140
Tetracosane (C24)	69	67	3	25	40-1

١

05020617:37

7 Page 22 of 32

Continued

Laboratory Job Number: L0605167

Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
Extractable Petroleum_Hydrocarl	ons for sam	ole (s)° 01−0	5 .(WG235911	-2, wG235911-3)	
Hexacosane (C26)	68	68	0	25	40-140
Octacosane (C28)	67	68	1	25	40-140
Triacontane (C30)	66	69	4	25	40-140
Hexatriacontane (C36)	69	72	4	25	40-140
Surrogate(s)					
Chloro-Octadecane	51	45	13		40-140
o-Terphenyl	77	88	13		40-140
2-Fluorobiphenyl	70 [°]	67	4		40-140
2-Bromonaphthalene	69	69	0 .		40-140
% Naphthalene Breakthrough	0	0	NC		
<pre>% 2-Methylnaphthalene Breakthr</pre>					
ough	0	0	NC		

05020617:37

Page 23 of 32

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE FRACTIONATION CHECK

Laboratory Job Number: L0605167

Parameter	% Recovery	QC Criteria	
A Startination Check S	tandard Recoveries fo	TLot FISH52618	
C9-C18 Aliphatics	62	40-140	
C19-C36 Aliphatics	71	40-140	
C11-C22 Aromatics	80	40-140	
Naphthalene	74	40-140	
2-Methylnaphthalene	70	40-140	
Acenaphthylene	69	40-140	
Acenaphthene	72	40-140	
Fluorene	72	40-140	
Phenanthrene	72	40-140	
Anthracene	77	40-140	
Fluoranthene	75	40-140	
Pyrene	75	40-140	
Benzo(a)anthracene	74	40-140	
Chrysene	88	40-140	
Benzo(b) fluoranthene	72	40-140	
Benzo(k) fluoranthene	74	40-140	
	73	40-140	
Benzo (a) pyrene	· 72	40-140	
Indeno(1,2,3-cd)Pyrene	72	40-140	
Dibenzo(a, h) anthracene	73		
Benzo(ghi)perylene	57	40-140	
Nonane (C9)	•	30-140	
Decane (C10)	62	40-140	
Dodecane (C12)	65	40-140	
Tetradecane (C14)	63	40-140	
Hexadecane (C16)	64	40-140	
Octadecane (C18)	64	40-140	
Nonadecane (C19)	64	40-140	
Eicosane (C20)	67	40-140	
Docosane (C22)	71	40-140	
Tetracosane (C24)	72	40-140	
Hexacosane (C26)	72	40-140	1
Octacosane (C28)	, 73	40-140	
Triacontane (C30)	73	40-140	
Hexatriacontane (C36)	76	40-140	
Surrogate(s)			
Chloro-Octadecane	57	40-140	
o-Terphenyl	78	40-140	
2-Fluorobiphenyl	72	40-140	
2-Bromonaphthalene	72	40-140	

05020617:37

-

Page 24 of 32

Laboratory Job Number: L0605167

Splank: Analyzis for sample (s) 01,03-05 (WG236128-3). Antimony, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Arsenic, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Barium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Barium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Cadmim, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Chromium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Lead, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Lead, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Silver, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Thallium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Silver, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Thallium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 1	PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Retail Cyanide by MCP. 9014 ND mg/l 0.005 64 9014 0413 07:45 0413 18:43 Cyanide, Total ND mg/l 0.005 64 9014 0413 07:45 0413 18:43 Total Metale by MCP 6000/7000 series						
Cyanide, Total ND mg/l 0.005 64 9014 0413 09:45 0413 18:43 Total Metale by MCP 6000/7000 series Interval 1	Blank A	nalysis for s	ample(s) 0	2 (WG2358	88-1) 🦑 🏟 🗇	<u> 1998 - 98 - 199</u>
Blank Analysis for sample (s) 01,03-05 (MG236128-3). 1 Total Metals by MCP 6000/7000 series Antimony, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Arsenic, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Barium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Cadmium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Cadmium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Cadmium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Lead, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Selenium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Selenium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Selenium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Thallium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20						and the set is a set in the set
Total Metals by MCP. 6000/7000 series Antimony, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Arsenic, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Barium, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Cadmium, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Cadmium, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Lead, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Lead, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Sclenium, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Sclenium, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Vanadium, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Vanadium, Total ND mg/l 0.00055 64 6020A 6413 2	Cyanide, Total	ND	mg/l	0.005	64 9014	0413 09:45 0413 18:43 DD
Total Metals by MCP. 6000/7000 series 1 <th1< th=""> 1 1</th1<>	Blank Anal	ysis for samp	le(s) 01,0.	3-05 (WG2)	36128-3)	Sector Sector
Arsenic, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Barlum, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Barlum, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Cadmium, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Cadmium, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Chromium, Total ND mg/l 0.0005 64 6020A 6413 20:00 0414 18:20 Sclenium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Sclenium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Sclenium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:22 Arsenic, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:22 <td>Total Metals by MCP 6000/</td> <td>7000 series.</td> <td></td> <td></td> <td></td> <td>NETO ALL SAL</td>	Total Metals by MCP 6000/	7000 series.				NETO ALL SAL
Barium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Beryllium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Chromium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Chromium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Chromium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Nickel, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Selenium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Silver, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Vanadium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Vanadium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Vanadium, Total ND mg/l 0.0005 64 6020A 0413 19:20 0418 23:20 Sarsenic, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 <td>Antimony, Total</td> <td>ND</td> <td>mg/l</td> <td>0.0005</td> <td>64 6020A</td> <td>0413 20:00 0414 18:20 BM</td>	Antimony, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 18:20 BM
Barium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Beryllium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Chromium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Chromium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Lead, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Nickel, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Selenium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Silver, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Vanadium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020A 0413 19:00 0418 23:28 Barium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28	Arsenic, Total	ND	mg/l	0.0005	64 6020A	0413 20:00 0414 18:20 BM
Beryllium, Total ND mg/l 0.0005 64 6020A 6413 20:00 6414 18:20 Cadmium, Total ND mg/l 0.0005 64 6020A 6413 20:00 6414 18:20 Chromium, Total ND mg/l 0.0005 64 6020A 6413 20:00 6414 18:20 Lead, Total ND mg/l 0.0005 64 6020A 6413 20:00 6414 18:20 Selenium, Total ND mg/l 0.0005 64 6020A 6413 20:00 6414 18:20 Selenium, Total ND mg/l 0.0005 64 6020A 6413 20:00 6414 18:20 Selenium, Total ND mg/l 0.0005 64 6020A 6413 20:00 6414 18:20 Zanco, Total ND mg/l 0.0005 64 6020A 6417 19:30 6418 23:28 Antimony, Total		ND	-		64 6020A	0413 20:00 0414 18:20 BM
Cadmium, Total ND mg/l 0.0005 64 6020A 6413 20:00 644 18:20 Chromium, Total ND mg/l 0.0005 64 6020A 6413 20:00 644 18:20 Data ND mg/l 0.0005 64 6020A 6413 20:00 644 18:20 Nickel, Total ND mg/l 0.0015 64 6020A 6413 20:00 644 18:20 Selenium, Total ND mg/l 0.0005 64 6020A 6413 20:00 644 18:20 Thallium, Total ND mg/l 0.0005 64 6020A 6413 20:00 644 18:20 Zinc, Total ND mg/l 0.0005 64 6020A 6413 20:00 644 18:20 Antimony, Total ND mg/l 0.0005 64 6020A 6417 19:30 0418 23:28 14 Arsenic, Total ND mg/l 0.0005 64 6020A 6417 19:30 0418		ND				
Chromium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Lead, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Nickel, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Selenium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Selenium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Vanadium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Zanci, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Arisenic, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Cadmi						
Lead, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Nickel, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Selenium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Silver, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Thallium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Vanadium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0055 64 6020A 0413 20:00 0412 18:20 Antimony, Total ND mg/l 0.0055 64 6020A 0417 19:30 0418 23:22 Barium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:22 Barium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:22 Barium, Total <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Nickel, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Selenium, Total ND mg/l 0.0015 64 6020A 0413 20:00 0414 18:20 18:20 18:20 18:20 18:20 04:14 18:20 18:20 04:14 18:20 18:20 04:14 18:20 18:20 04:14 18:20 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td></td<>			-			
Selenium, Total ND mg/l 0.001 64 6020h 0413 20:00 0414 18:20 Silver, Total ND mg/l 0.0005 64 6020h 0413 20:00 0414 18:20 Thallium, Total ND mg/l 0.0005 64 6020h 0413 20:00 0414 18:20 Vanadium, Total ND mg/l 0.0005 64 6020h 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020h 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020h 0413 20:00 0414 18:20 Total ND mg/l 0.0005 64 6020h 0413 20:00 0414 18:20 Total ND mg/l 0.0005 64 6020h 0417 19:30 0418 23:28 Total ND mg/l 0.0005 64 6020h 0417 19:30 0418 23:28 Barium, Total ND mg/l 0.0005 64 6020h 0417 19:30 0418 23:28 Cadmium, Total ND mg/l 0.0005 64 6020h 0417 19:30 0418 23:28 Cadmium, Total ND mg						
Silver, Total ND mg/l 0.0005 64 6020A 9413 20:00 0414 18:20 Thallium, Total ND mg/l 0.0005 64 6020A 9413 20:00 0414 18:20 Vanadium, Total ND mg/l 0.0005 64 6020A 9413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020A 9413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020A 9413 20:00 9414 18:20 Matamony, Total ND mg/l 0.0005 64 6020A 9417 19:30 9418 23:28 14 Arsenic, Total ND mg/l 0.0005 64 6020A 9417 19:30 9418 23:28 16 Barium, Total ND mg/l 0.0005 64 6020A 9417 19:30 9418 23:28 16 Cadmium, Total ND mg/l 0.0005 64 6020A <			•			
Thallium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Vanadium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Antimony, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Arsenic, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Sarium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Sarium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Chromium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Scadmium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28						
Vanadium, Total ND mg/l 0.0005 64 6020A 0413 20:00 0414 18:20 Zinc, Total ND mg/l 0.0050 64 6020A 0413 20:00 0414 18:20 Blank Analysis for sample(s) 02 (WG236360-1) 0413 20:00 0414 18:20 0413 20:00 0414 18:20 Matimony, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Antimony, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Barium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Barium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Barium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Barium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Chromium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Chromium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Silver, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td></td<>			-			
ND mg/l 0.0050 64 6020A 0413 20:00 0414 18:20 Blank Analysis for sample(s) 02 (WG236360-1) Antimony, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Antimony, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Sarium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Sarium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Sarium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Chromium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Scada, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Scada, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Scada, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 <	-		-			
Blank Analysis for sample(s) 02 (MG236360-1). Notal Metals by MCP 6000/7000 series Antimony, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Antimony, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Antimony, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Arsenic, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Baryllium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Chromium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Chromium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Chromium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Selenium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Selenium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Selenium, Total ND mg/l 0.0005 64 6020A 0417 19:3						
Arsenic, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Barium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Beryllium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Barium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Sadmium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Sadmium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Seed, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Seed, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Seed, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Seelenium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Selenium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 10 Selenium, Total ND mg/l 0.00055 64 6020A 04					ನ್ನ ವಲ್ಲಿ ನಿರ್ದೇಶಗಳಲ್ಲಿ ಇನಕ್ರಿ	a ha an an an an an ann an an an an an an a
Barium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 0417 19:30 0418 23:28 0417 19:30 0418 23:28 0417 19:30 0418 23:28 0417 19:30 0418 23:28 0417 19:30 0418 23:28 0417 19:30 0418 23:28 0417 19:30 0418 23:28 0417 19:30 0418 23:28 0418 23:28 0417 19:30 0418 23:28 0417 19:30 0418 23:28 0			-			0417 19:30 0418 23:28 BM
Beryllium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Cadmium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Chromium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Chromium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Lead, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Lead, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Nickel, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Selenium, Total ND mg/l 0.001 64 6020A 0417 19:30 0418 23:28 1 Silver, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Silver, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Silver, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Zanadium, Total ND mg/l 0.00050 64 6020A 0417 19:30 04			+			0417 19:30 0418 23:28 BM
Cadmium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Chromium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Lead, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Lead, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Nickel, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Selenium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Selenium, Total ND mg/l 0.001 64 6020A 0417 19:30 0418 23:28 1 Selenium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Silver, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Vanadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Vanadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Vanadium, Total ND mg/l 0.00050 64 6020A 0417 19:30	-		-			0417 19:30 0418 23:28 BM
Chromium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 Lead, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 0 Nickel, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 0 Selenium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 0 Selenium, Total ND mg/l 0.001 64 6020A 0417 19:30 0418 23:28 0 Silver, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 0 Vanadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 0 Vanadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 0 Lolatile Organics, by MCP 8260B			2		64 6020A	0417 19:30 0418 23:28 BM
Lead, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 19 Nickel, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 19 Selenium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 19 Silver, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 19 Silver, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 19 Maadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 19 Janadium, Total ND mg/l 0.00055 64 6020A 0417 19:30 0418 23:28 19 Janadium, Total ND mg/l 0.00055 64 6020A 0417 19:30 0418 23:28 19 Valatium, Total N	-		-		64 6020A	0417 19:30 0418 23:28 BM
Nickel, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Selenium, Total ND mg/l 0.001 64 6020A 0417 19:30 0418 23:28 1 Silver, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Silver, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Thallium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Janadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Janadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Janadium, Total ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 1 Janadium, Total ND			-		64 6020A	0417 19:30 0418 23:28 BM
Selenium, Total ND mg/l 0.001 64 6020A 0417 19:30 0418 23:28 H Silver, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 H Thallium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 H Vanadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 H Vanadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 H Vanadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 H Vanadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 H Vanadium, Total ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 H Vanadium, Total ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 H Valatile Organics:by:MCP 8260B	Lead, Total	ND	mg/l		64 6020A	0417 19:30 0418 23:28 BM
Silver, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Thallium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Vanadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Vanadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Zinc, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Zinc, Total ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 1 Zinc, Total ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 1 Zinc, Total ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 1 Zolatiile Organics:by-MCP	Nickel, Total	ND	mg/l	0.0005	64 6020A	0417 19:30 0418 23:28 BM
ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 19:30 0418 23:28 10 Vanadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 19:30 0418 23:28 10 Zinc, Total ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 19:30 0418 23:28 10 Zinc, Total ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 19:30 0418 23:28 10 Zinc, Total ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 19:30 0418 23:28 10 Zinc, Total ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 19:30 19:30 0418 23:28 10 10:17 10:17 19:30 19:30 0418 23:28 10:17 10:17 10:17 10:17<	Selenium, Total	ND	mg/l	0.001	64 6020A ·	0417 19:30 0418 23:28 BM
Vanadium, Total ND mg/l 0.0005 64 6020A 0417 19:30 0418 23:28 1 Sinc, Total ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 1 Sinc, Total ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 1 Sinc, Total ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 1 Motor Blank Analysis for sample(s) 02. (WG236307-6) 5 5 5 1 10 19:30 0418 23:28 1 Motor Blank Analysis for sample(s) 02. (WG236307-6) 5 5 1 10 16:17/1 Motor ND ug/l 5.0 5 5 0417 16:17/1 Motor ND ug/l 0.75 5 0417 16:17/1 Chloroform ND		ND	mg/l	0.0005	64 6020A	0417 19:30 0418 23:28 BM
ND mg/l 0.0050 64 6020A 0417 19:30 0418 23:28 1 Blank Analysis for sample(s) 02. (WG236307-6) 0417 19:30 0418 23:28 1 Jolatile Organics by MCP 8260B 02. (WG236307-6) 0417 19:30 0418 23:28 1 Methylene chloride ND ug/l 5.0 J.1-Dichloroethane ND ug/l 0.75 Chloroform ND ug/l 0.75 Carbon tetrachloride ND ug/l 0.50 J.2-Dichloropropane ND ug/l 1.8	Thallium, Total	ND	mg/l	0.0005	64 6020A	0417 19:30 0418 23:28 BM
Blank Analysis for sample(s) 02. (WG236307-6) 0417 Volatile Organics by MCP 8260B 60 8260B 60 8260B Methylene chloride ND ug/l 5.0 .1-Dichloroethane ND ug/l 0.75 Chloroform ND ug/l 0.75 Carbon tetrachloride ND ug/l 0.50	/anadium, Total	ND	mg/l	0.0005	64 6020A	0417 19:30 0418 23:28 BM
Interview ND ug/l 5.0 Methylene chloride ND ug/l 5.0 Methylene chloride ND ug/l 0.175 Interview ND ug/l 0.75 Chloroform ND ug/l 0.75 Carbon tetrachloride ND ug/l 0.50	Sinc, Total	ND	mg/l	0.0050	64 6020A	0417 19:30 0418 23:28 BM
Methylene chlorideNDug/l5.01,1-DichloroethaneNDug/l0.75ChloroformNDug/l0.75Carbon tetrachlorideNDug/l0.501,2-DichloropropaneNDug/l1.8					and the second is second to provide the second second	
L,1-Dichloroethane ND ug/l 0.75 Chloroform ND ug/l 0.75 Carbon tetrachloride ND ug/l 0.50 L,2-Dichloropropane ND ug/l 1.8					60_8260B	0417 16:17/PD
Chloroform ND ug/l 0.75 Carbon tetrachloride ND ug/l 0.50 L,2-Dichloropropane ND ug/l 1.8	-		-			
Carbon tetrachloride ND ug/l 0.50 L,2-Dichloropropane ND ug/l 1.8	-	ND	-			
1,2-Dichloropropane ND ug/1 1.8	-					
		ND		0.50		
Dibromochloromethane ND ug/1 0.50	,2-Dichloropropane	ND	ug/l	1.8		
	Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane ND ug/1 0.75	1,1,2-Trichloroethane	ND	ug/l	0.75		

05020617:37 Page 25 of 32

Laboratory Job Number: L0605167

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
Blank Ana	lusis fores	amole(s), 03	2 (WG236	307-6)		- 23	1.115-1 7
Volatile Organics by MCP 82			(102.30	60_8260B	- dina -	978	חפר לי
Tetrachloroethene	ND	ug/l	0.50				
Chlorobenzene	ND	ug/l	0.50				
Trichlorofluoromethane	ND	ug/l	2.5				
1,2-Dichloroethane	ND	ug/1	0.50				
1,1,1-Trichloroethane	ND	ug/l	0.50				
Bromodichloromethane	ND	ug/l	0.50				
trans-1,3-Dichloropropene	ND	ug/1	0.50				
cis-1,3-Dichloropropene	ND	ug/l	0.50				
1,1-Dichloropropene	ND	ug/1	2.5				
Bromoform	ND	ug/1	2.0				
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50				
Benzene	ND	ug/1	0.50				
Toluene	ND	ug/1	0.75				
Ethylbenzene	ND	ug/1	0.50				
Chloromethane	ND	ug/1	2.5				
Bromomethane	ND	ug/1	1.0				
Vinyl chloride	ND	ug/l	1.0				
Chloroethane	ND .	ug/l	1.0				
1,1-Dichloroethene	ND	ug/1	0.50				
trans-1,2-Dichloroethene	ND	ug/l	0.75				
Trichloroethene	ND	ug/l	0.50				
1,2-Dichlorobenzene	ND.	ug/l	2.5				
1,3-Dichlorobenzene	ND	ug/l	2.5				
1,4-Dichlorobenzene	ND	ug/l	2.5				-
Methyl tert butyl ether	ND	ug/l	1.0				
o/m-Xylene	ND	ug/l	1.0				
o-Xylene	NÐ	ug/1	1.0				
cis-1,2-Dichloroethene	ND	ug/l	0.50				
Dibromomethane	ND	ug/l	5.0				
1,2,3-Trichloropropane	ND	ug/l	5.0				
Styrene	ND	ug/l	1.0				
Dichlorodifluoromethane	ND	ug/l	5.0				
Acetone	ND	ug/l	5.0				
Carbon disulfide	ND	ug/l	5.0				
2-Butanone	ND	ug/l	5.0				
4-Methyl-2-pentanone	ND	ug/l	5.0				
2-Hexanone	ND	ug/l	5.0				
Bromochloromethane	ND	ug/1	2.5				
Tetrahydrofuran	ND	ug/1	10.				
2,2-Dichloropropane	ND	ug/1	2.5				
L,2-Dibromoethane	ND	ug/1	2.0		•		
1,3-Dichloropropane	ND	ug/l	2.5				
1,1,1,2-Tetrachloroethane	ND	ug/1	0.50				
Bromobenzene	ND	uq/1	2.5				
n-Butylbenzene	ND	ug/1 ug/1	0.50				
sec-Butylbenzene	ND	ug/l	0.50				

05020617:37 Page 26 of 32

Laboratory Job Number: L0605167

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I		ID
					PREP	ANAL	
fBlank Anal	ele for e	ample (c) 0	2 '(WG236	307-61		ಲ್ಲಾ ಗ್ರಾಂ	
Volatile Organics by MCP 826				60_8260B		0417.16.1	ກີບມາດ. 7 PD.
tert-Butylbenzene	ND	ug/l	2.5		and were the sure and the sure of the sure		1.31.12.12.14
o-Chlorotoluene	ND	ug/l	2.5		•		
o-Chlorotoluene	ND	ug/l	2.5				
,2-Dibromo-3-chloropropane	ND	ug/l	2.5				
Hexachlorobutadiene	ND	ug/l	0.60		•		
Isopropylbenzene	ND	ug/1	0.50				
p-Isopropyltoluene	ND	ug/1	0.50				
Vaphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
L,2,3-Trichlorobenzene	ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
	ND	<u> </u>	2.5				
1,2,4-Trimethylbenzene		ug/l					
Sthyl ether	ND	ug/l	2.5				
[sopropyl Ether	ND	ug/l	2.0				
Sthyl-Tert-Butyl-Ether	ND	ug/l	2.0				
fertiary-Amyl Methyl Ether	ND	ug/l	2.0				
,4-Dioxane	ND	ug/l	250				
Surrogate(s)	Recovery		_	iteria			
L,2-Dichloroethane-d4	106	8	70-13	0			
Coluene-d8	102	26	70-13	0			
4-Bromofluorobenzene	103	8	70-13	0			
Dibromofluoromethane	114	F	70-13	0			
Blank Analys	s for same	ole(s) 01-0)5_(WG23	5911-1)			
xtractable Petroleum Hydroca				61_EPH=04-1	0413 10:30	0418 12:2	5 BN
C9-C18 Aliphatics	ND	ug/l	100				
C19-C36 Aliphatics	ND	ug/l	100				
Cl1-C22 Aromatics	ND	ug/l	100				
Cll-C22 Aromatics, Adjusted	ND	ug/l	100				
Japhthalene	ND	ug/l	10.0	• .			
2-Methylnaphthalene	ND	ug/1	10.0				
Acenaphthylene	ND	ug/l	10.0				
Acenaphthene	ND	ug/l	10.0				
		+					
	ND ·	1107/1					
fluorene	ND ·	ug/l	10.0				
luorene Phenanthrene	ND	ug/l	10.0				
Fluorene Phenanthrene Anthracene	ND ND	ug/l ug/l	10.0 10.0				
Fluorene Phenanthrene Anthracene Fluoranthene	ND ND ND	ug/l ug/l ug/l	10.0 10.0 10.0				
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	ND ND ND ND	ug/l ug/l ug/l ug/l	10.0 10.0 10.0 10.0				
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene	ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l	10.0 10.0 10.0 10.0 10.0				
Fluorene Phenanthrene Anthracene Pluoranthene Pyrene Benzo (a) anthracene Chrysene	ND ND ND ND ND	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10.0 10.0 10.0 10.0 10.0 10.0				
Fluorene Phenanthrene Inthracene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene	ND ND ND ND ND ND	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10.0 10.0 10.0 10.0 10.0 10.0 10.0		·		
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene	ND ND ND ND ND ND ND ND	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0				
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	ND ND ND ND ND ND	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10.0 10.0 10.0 10.0 10.0 10.0 10.0				

.

05020617:37 Page 27 of 32

Continued

Laboratory Job Number: L0605167

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP ANAL	
1 			والإستار وسندر والمسارية		and the second	
Blank Anal	ysis for sam	ole(s) 01-	05 (WG23	5911-1)		
Extractable Petroleum Hydr	ocarbons cont	t d		61+EPH-04-1	0413,10:30 0418 12	:25_BN
Dibenzo(a,h)anthracene	ND	ug/l	10.0			
Benzo(ghi)perylene	ND	ug/l	10.0			
Surrogate(s)	Recovery		QC Cri	iteria		
Chloro-Octadecane	52.0	8	40-140)		
o-Terphenyl	66.0	99	40-140)		
2-Fluorobiphenyl	71.0	8	40-140)		
2-Bromonaphthalene	71.0	8	40-140)		

05020617:37 Page 28 of 32

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

- 60. Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 61. Method for the Determination of Extractable Petroleum Hydrocarbons (EPH). Massachusetts Department of Environmental Protection, DEA/ORS/BWSC. May 2004, Revision 1.1.
- 64. Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.
METHOD Method number by which analysis was performed.
ID Initials of the analyst.
ND Not detected in comparison to the reported detection limit.
NI Not Ignitable.
ug/cart Micrograms per Cartridge.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

05020617:37 Page 29 of 32

Laboratory Job Number: L0605167

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent
в	Absent

Container Information

Container ID	Container Type	Cooler	рЯ	Temp	Pres	Seal	Analysis
L0605167-01A	Plastic 250ml HNO3 preserved	A	< 2	2.5 C	Y	Absent	MCP-AG-6020T, MCP-AS-6020T, MCP-BA-
							6020T, MCP-BE-6020T, MCP-CD-6020T, MCP-
							CR-6020T, MCP-CU-6020T, MCP-NI-6020T,
							MCP-PB-6020T, MCP-SB-6020T, MCP-SE-
							6020T, MCP-TL-6020T, MCP-V-6020T, MCP-
							ZN-6020T, PREPT
L0605167-01B	Plastic 250ml HNO3 preserved	A	< 2	2.5 C	Y	Absent	EPH-DELUX-04
L0605167-01C	Amber 1000ml HCl preserved	в	< 2	2.3 C	Y	Absent	EPH-DELUX-04
.0605167-01D	Amber 1000ml HCl preserved	в	< 2	2.3 C	Y	Absent	EPH-DELUX-04
L0605167-02A	Vial HCl preserved	A	N/A	2.5 Ç	Y	Absent	MCP-8260-04
L0605167-02B	Vial HCl preserved	A	N/A	2.5 C	Y	Absent	MCP-8260-04
L0605167-02C	Plastic 250ml NaOH preserved	А	> 1	22.5 C	Υ.	Absent	MCP-TCN9014-04
L0605167-02D	Plastic 250ml NaOH preserved	А	> 1	22.5 C	Y	Absent	MCP-TCN9014-04
L0605167-02E	Plastic 250ml NaOH preserved	А	> 1	22.5 C	Y	Absent	MCP-TCN9014-04
L0605167-02F	Plastic 250ml HNO3 preserved	A	< 2	2.5 C	Y	Absent	MCP-AG-6020T, MCP-AS-6020T, MCP-BA-
							6020T, MCP-BE-6020T, MCP-CD-6020T, MCP-
							CR-6020T, MCP-CU-6020T, MCP-NI-6020T,
							MCP-PB-6020T, MCP-SB-6020T, MCP-SE-
							6020T, MCP-TL-6020T, MCP-V-6020T, MCP-
							2N-6020T, PREPT
.0605167-02G	Plastic 250ml HNO3 preserved	A	< 2	2.5 C	Y	Absent	MCP-AG-6020T, MCP-AS-6020T, MCP-BA-
							6020T, MCP-BE-6020T, MCP-CD-6020T, MCP-
							CR-6020T, MCP-CU-6020T, MCP-NI-6020T,
							MCP-PB-6020T, MCP-SB-6020T, MCP-SE-
							6020T, MCP-TL-6020T, MCP-V-6020T, MCP-

05020617:37 Page 30 of 32

Laboratory Job Number: L0605167

Continued

ontainer ID	Container Type	Cooler	рн	Temp	Pres	Seal	Analysis
	· · · · · ·						ZN-6020T, PREPT
0605167-02H	Plastic 250ml HNO3 preses	ved A	< 2	2.5 C	Y	Absent	MCP-AG-6020T, MCP-AS-6020T, MCP-BA-
							6020T, MCP-BE-6020T, MCP-CD-6020T, MCP-
							CR-6020T, MCP-CU-6020T, MCP-NI-6020T,
							MCP-PB-6020T, MCP-SB-6020T, MCP-SE-
							6020T, MCP-TL-6020T, MCP-V-6020T, MCP-
							ZN-6020T, PREPT
0605167-02I	Plastic 250ml HNO3 preser	rved A	< 2	2.5 C	Y	Absent	EPH-DELUX-04
605167-02J	Plastic 250ml HNO3 prese	ved A	< 2	2.5 C	Y	Absent	EPH-DELUX-04
0605167 - 02K	Plastic 250ml HNO3 preser	ved A	< 2	2.5 C	Y	Absent	EPH-DELUX-04
0605167-025	Amber 1000ml HCl preserv	ved B	< 2	2.3 C	Y	Absent	EPH-DELUX-04
0605167-02M	Amber 1000ml HCl preserv	ved B	< 2	2.3 C	Y	Absent	EPH-DELUX-04
0605167-02N	Amber 1000ml HCl preserv	ved B	< 2	2.3 C	X	Absent	EPH-DELUX-04
0605167-020	Amber 1000ml SC1 preserv	ved B	< 2	2.3 C	Y	Absent	EPH-DELUX-04
605167-03A	Plastic 250ml HNO3 preser	rved A	< 2	2.5 C	Y	Absent	MCP-AG-6020T, MCP-AS-6020T, MCP-BA-
							6020T, MCP-BE-6020T, MCP-CD-6020T, MCP-
				•			CR-6020T, MCP-CU-6020T, MCP-NI-6020T,
							MCP-PB-60207, MCP-SB-6020T, MCP-SE-
							6020T, MCP-TL-6020T, MCP-V-6020T, MCP-
							ZN-6020T, PREPT
0605167-03B	Plastic 250ml HNO3 preser	ved A	< 2	2.5 C	Y	Absent	EPH-DELUX-04
0605167-03C	Amber 1000ml HCl preserv	red B	< 2	2.3 C	Y	Absent	EPH-DELUX-04
0605167-03D	Amber 1000ml HCl preserv	red B	< 2	2.3 C	Y	Absent	EPH-DELUX-04
0605167-04A	Plastic 250ml HNO3 preser	ved A	< 2	2.5 C	Y	Absent	MCP-AG-6020T, MCP-AS-6020T, MCP-BA-
							6020T, MCP-BE-6020T, MCP-CD-6020T, MCP-
							CR-6020T, MCP-CU-6020T, MCP-NI-6020T,
							MCP-PB-6020T, MCP-SB-6020T, MCP-SE-
							6020T, MCP-TL-6020T, MCP-V-6020T, MCP-
							ZN-6020T, PREPT
0605167-04в	Plastic 250ml HNO3 preser	ved A	< 2	2.5 C	¥	Absent	EPH-DELUX-04
0605167-04C	Amber 1000ml HC1 preserv	red B	< 2	2.3 C	Y	Absent	EPH-DELUX-04
0605167-04D	Amber 1000ml HCl preserv	ed B	< 2	2.3 C	Y	Absent	EPH-DELUX-04

Ċ

05020617:37

Page 31 of 32

Laboratory Job Number: L0605167

Continued

ontainer ID	Container Type	Cooler	рН	Temp	Pres	Seal .	Analysis
0605167 - 05A	Plastic 250ml HNO3 preserve	d A	< 2	2.5 C	Y	Absent	MCP-AG-6020T, MCP-AS-6020T, MCP-BA-
							6020T, MCP-BE-6020T, MCP-CD-6020T, MCP-
							CR-6020T, MCP-CU-6020T, MCP-NI-6020T,
							MCP-PB-6020T, MCP-SB-6020T, MCP-SE-
							6020T, MCP-TL-6020T, MCP-V-6020T, MCP-
							2N-6020T, PREPT
0605167-05B	Plastic 250ml HNO3 preserve	d A	< 2	2.5 C	Y	Absent	EPH-DELUX-04
0605167-05C	Amber 1000ml HCl preserved	В	< 2	2.3 C	Y	Absent	EPH-DELUX-04
605167-05D	Amber 1000ml HCl preserved	В	< 2	2.3 C	Y	Absent	EPH-DELUX-04

Container Comments

Container ID Comments

05020617:37 Page 32 of 32

	ALPHA Job #: LOGOSI67	Billing Information	O Same as Clerrt info PO #:				MABLECONFIDENCE PROTOCOLS	ed?	ce Protocols) Required?		/ Figration	eded do	Preservation	Sample Specific Comments S	3	-MS/DyP 13	.	3	3-			Please print clearty, legibly and completely. Samples can not be locced in and turneround time clock	irra will not start until any ambiguitles are resolved: All samples submitted are subject to Alpha's Payment Terms. See reverse side.	
	Date Rec'd in Late: 4 12 00 ALP	Report Information - Data Deliverables Billi	ÇI EMAİL	ADEx Deliverables	ements/Repo	State /Fed Program Criteria	PPRESUMPTIVE CERTAINTY (۶ ۲	Are CT R(574	Net of the second secon	092	9	\$\E\E\E\S\K\E\					X X X X			CBBEC WITC	Hangt Ferrence Hay 6 6 19:	
		Project Information	un Part	4, MA		Calandra		Turn-Around Time		Date Due: 1/1, / Time:			mcp meterls	Collection Sample Sampler's	(W) M-9 SI: 9 99/2//	2!!S	11/1/2	2;/(¢	V 17:00 V			Container Type Freservative	Retirence By: DateTime	
Ver,	CHAIN (WESTBORD, MA RAYNHAM, MA	0 0	atic	Client: TTRC	Address: 1/10 JOHAI STRET	1 OWELL, NOH. OLESZ	علم	Fax: 976-453-1995 xea	Email:	These samples have been previously analyzed by Alpha	MCP Methy Swim 244		ALPHA Lab ID (Lab Use Only) Sample ID	LOGOSTLOTON MW-9	01-MW	1	-MM HO	as MW-4				MAMCP or CT RCP?	

ABCA Submittal CCRT Newburyport

September 1, 2017

APPENDIX C – ABCA Cost Summary

Clipper City Rail Trail Newburyport, MA PCB Remedial Action Alternatives (3)

Last Updated

28-Aug-17

Venneulai	Action Alternatives (RAA) (2)										Add Maintenance
		Regulatory	Consulting			Soil Remediation	RCRA Cap	Confirmatory			and Inspections -
	Primary Actions	Compliance	and Plans (1)	Design	Specifications	(4) (14)	Construction	Sampling	AUL	Total (4)	Out Years
				, , , , , , , , , , , , , , , , , , ,	•	Direct contact					
		Low - due to				potential risk					
		leaving high				pathway					
		concentrations of PCBs in soil	Phase IV and		Minimal	interrupted by					Necessary twice pe
RAA #1		behind.	Phase V MCP		modification	asphalt. Asphalt					year minimum for 3
11/1/1 #1		Pavement acts	deliverables,		to existing	would not be					years, assumes full
	Cover with asphalt as originally	only as a minimal	and Soil	Current	specifications	considered					pavement
	planned for the CCRT designed	barrier	Management	-	for	permanent. Side					replacement in yea
	surface and no soil excavation		Plan	completed	construction	slopes will	None	Not Applicable	Necessary		15 and 30
			\$ 20,000		\$ 5,000	\$ 30,000	\$-	\$-	\$ 11,400	\$ 66,400	\$ 105,00
			TSCA Plan,								
			Phase IV and								
			Phase V MCP				Scrape				
			deliverables,				around duct				
		High	erosion			Soil removal to 1	bank. Jack				
RAA #2		0	control plan		New and	ppm to a depth	duct bank to				
	TSCA Soil Removal - Full Site -		and Soil		updated Specs	of 6 feet for 1200	excavate				
	Estimated 1200 tons of soil for		Management		for	tons of soil	below -				
	T&D as TSCA waste, plus backfill		Plan	None	construction	removed	Included	None	None		None
			\$ 22,000	\$ -	\$ 8,000	\$ 410,000		\$-	\$-	\$ 440,000	\$-
			TOCA DIA								
			TSCA Plan, Phase IV and								
			Phase V MCP								
			deliverables,			Targeted Hot					
		Moderate	erosion	RCRA/TSCA		Spot removal as					
RAA#3		moderate	control plan	Сар	New and	TSCA and Soil	Cap includes				
	Target Excavation for Hot spot		and Soil	engineered	updated Specs		area over the				
	and cap the remainder of the		Management	fill and	for	below 50 ppm in	Duct Bank and				
	site		Plan	barrier	construction	Hot Spot	Slope - 2 feet	None	Necessary		NA
			\$ 26,300	\$ 25,700	\$-	\$ 66,000	\$ 173,250	\$-	\$ 11,400	\$ 302,650	\$ 60,00
			7000 01								
			TSCA Plan,								
			Phase IV and Phase V MCP								
			deliverables.								
		Moderate	erosion	RCRA/TSCA							
		wouchate	control plan	Сар							
	Soil Removal under MCP except		and Soil	engineered		Soil removal to 2					
	for TSCA hot spot, cap over		Management	fill and	Revise Specs	feet, except near					
	utilities		Plan	barrier	for Cut & Fill	utilities	Over utilities	None	Necessary		Annual Inspection
	defineres		1 1011	barrier		utilities	Over utilities	None	recessury		/ annual mopeoelon

Notes (4)

1 Requires regulatory approval from USEPA and MassDEP under the Massachusetts Contingency Plan (MCP)

2 Additional investigation and remediation may be necessary off the trail due to where the contamination has come to be located which would increase costs

3 Assumes that the presence of metals or petroleum hydrocarbons from railroad operations does not cause additional remedial actions or disposal costs

4 Costs based on data collected to date and the extrapolation of data over a volume of soil. Additional data will help refine these numbers

5 Assumes that MassElectric has caused soil disturbance to a portion of the trail

6 Assumes that the presence of PCBs in soil is due to former Railroad operations and not the activities of MassElectric

7 TSCA Removal full site Is defined as the areas samples where PCBS are present over 1 ppm, assumes soil has been mixed, and that all soil in this area is subject to TSCA

8 "As Found" assumes that remedial actions can be designed based on actual concentrations found by sampling and not subject to TSCA if below 50 ppm

9 "Hot Spot Area" is the locations where PCB impacted soils are present equal to or over 50 ppm.

10 "High Density Sampling" refers for 40 CFR 761 Subpart N and Subpart O on a 1.5 meter grid and 3 inches deep

11 A RCRA Cap refers to the Resource Conservation Recovery Act (RCRA) cap design having a minimum thickness of 25 cm (10 inches). A concrete or asphalt cap shall have a minimum thickness of 15 cm (6 inches). and the requirements of 716.75(b)

12 Assumes MassDEP will allow remedial actions to be conducted as an IRA and not have to go through the 5 phases of the MCP comprehensive response actions

13 Assumes and outcome of a permanent solution under the MCP

14 Volumes are estimated based on a extrapolated area that has not been surveyed or defined by multiple samples and varying depths

60,000

RAA	Task	Units	LSP	Senior Technical reviewer	Senior Engineer	Project Engineer	Project Scientist	Staff Scientist	Drafting	Project Assistant	Other Direct Charges	Sub- Contractors	FRD	Total Hours	Total Costs	Rounded Costs
		Rates	\$ 187.00	\$ 153.00	\$ 161.00	\$ 131.00	\$ 117.00	\$ 93.00	\$ 85.00	\$ 65.00			8% Total Labor Costs			
	Consulting Plans	Hours	20		1		96		8	4				132		
	FIGIIS	Costs	\$ 3,740.00	\$ 612.00	\$-	\$-	\$ 11,232.00	\$-	\$ 680.00	\$ 260.00	\$ 50.00	\$-	\$ 1,325.92		\$ 17,899.92	\$ 18,000.00
	Specifications	Hours	2		6	24				2				34		
RAA #1	Modifications	Costs	\$ 374.00	\$-	\$ 966.00	\$ 3,144.00	\$-	\$-	\$-	\$ 130.00	\$-	\$-	\$ 369.12		\$ 4,983.12	\$ 5,000.00
	Paving	Paving										\$ 30,000.00			\$ 30,000.00	\$ 30,000.00
	Activity and	Hours	8		2	24				6				40		
	Use Limitation	Costs	\$ 1,496.00	\$ 306.00	\$-	\$ 3,144.00	\$-	\$-	\$-	\$ 390.00	\$ 75.00	\$ 5,500.00	\$ 426.88		\$ 11,337.88	\$ 11,400.00
																\$ 64,400.00
	Consulting	Hours	24	. (5		100	24	10	4				168		
	Plans	Costs	\$ 4,488.00	\$ 918.00	\$-	\$-	\$ 11,700.00	\$ 2,232.00	\$ 850.00	\$ 260.00	\$ 50.00	\$ -	\$ 1,639.84	100	\$ 22,137.84	\$ 22,000.00
		Hours	6	+	6	40		+ _/_000	7	2	7	Ŧ	+ _/	54	+,	+,
RAA #2		Costs	\$ 1,122.00	\$-	\$ 966.00			\$-	\$-	\$ 130.00	Ś -	\$-	\$ 596.64	_	\$ 8,054.64	\$ 8,000.00
		Hours	8			. ,		120						128	. ,	. ,
	Soil Removal	Costs	\$ 1,496.00	\$-	\$-	\$-	\$ -	\$ 11,160.00	\$-	\$-		\$ 396,000.00	\$ 1,012.48		\$ 409,668.48	\$ 410,000.00
	O&M 30 years											\$ -			. ,	
	-															\$ 440,000.00
	Consulting	Hours	20		5		160		8	4				198		
	Plans	Costs	\$ 3,740.00	\$ 918.00	-	Ś -	\$ 18,720.00	\$ -	\$ 680.00	\$ 260.00	\$ 50.00	\$-	\$ 1,949.44	150	\$ 26,317.44	\$ 26,300.00
	Сар	Hours	24		20	120			,	2	,		1 /	166		
RAA #3		Costs	\$ 4,488.00	\$-	\$ 3,220.00	\$ 15,720.00	\$ -	\$-	\$-	\$ 130.00	\$ 200.00	\$-	\$ 1,884.64		\$ 25,642.64	\$ 25,700.00
	•	Disposal										\$ 66,000.00			\$ 66,000.00	
		Hours	8		2	24				6				40		
	Use Limitation	Costs	\$ 1,496.00	\$ 306.00	\$-	\$ 3,144.00	\$-	\$-	\$-	\$ 390.00	\$ 75.00	\$ 5,500.00	\$ 426.88		\$ 11,337.88	\$ 11,400.00
	Cap Construction											\$ 173,250.00			\$ 173,250.00	\$ 173,250.00
																\$ 302,650.00
	Consulting	Hours	24		3		120		8	4				164		
	Plans	Costs	\$ 4,488.00			\$ -	\$ 14,040.00		-	\$ 260.00	\$ 50.00	Ś -	\$ 1,659.36	104	\$ 22.401.36	\$ 22,400.00
		Hours	10		6	50		Ύ	÷ 000.00	200.00	÷ 50.00	Υ	φ <u>1</u> ,000.00	68	÷ 22,401.30	<i>y 22,</i> 400.00
RAA #4		Costs	\$ 1,870.00		\$ 966.00			\$-	\$-	\$ 130.00	\$ 200.00	\$-	\$ 761.28		\$ 10,477.28	\$ 10,500.00
		Disposal	÷ 1,570.00	т Т	÷ 500.00	÷ 0,000.00	Ť	· ·	7	÷ 100.00	200.00	\$ 79,100.00			\$ 79,100.00	
		Hours	8		>	24				6		<i> </i>		40	<i>ϕ</i> , 3,100.00	<i>\(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
		Costs	\$ 1,496.00	\$ 306.00	Ś -	\$ 3,144.00		\$-	\$-	\$ 390.00	\$ 75.00	\$ 3,500.00	\$ 426.88		\$ 9,337.88	\$ 9,400.00
	Cap		÷ _,:::::::		τ 	÷ 0,11.00	т Т	т [.]	Ŧ	÷ 550.00	+	+ 0,000.00	- 120100		+ 2,007.00	
	Construction											\$ 51,975.00			\$ 51,975.00	\$ 52,000.00
																\$ 173,400.00

ABCA Submittal CCRT Newburyport

September 1, 2017

APPENDIX D - 2017 Lab Data Reports

Strategic Environmental Services, Inc.

 Corporate Headquarters
 CT Office

 362 Putnam Hill Road
 128 Wildcat Road

 Sutton, MA 01590
 Burlington, CT 06013

 (T): 508-757-7782 / (F-MA): 508-363-2346 / (F-CT): 860-673-2823

www.strategic-es.com

December 5, 2016

Dan Gilgun, Project Manager E.T. & L. Corporation 873 Great Road Stow, MA 01775

RE: Pre-Characterization Sampling Plan Analytical Results –Water Street Area Construction of the Clipper City Rail Trail (Phase II) in the Towns of Newbury and Newburyport MassDOT Contract No. 92335 SES Project No. 15-0754

Dear Mr. Gilgun,

Strategic Environmental Services, Inc. (SES) has prepared this letter to supply you with the analytical results from "pre-characterization" soil sampling in the portion of the above referenced project from north of Water Street in Newburyport. Based on the analytical results that are above certain reporting criteria of the Massachusetts Contingency Plan (MCP), we felt that the City of Newburyport should be made aware of these results immediately in order to perform their own assessment of any necessary regulatory actions.

The purpose of this pre-characterization was to determine the contamination profile of soils within this section of the project corridor, in order to determine reuse options and suitable disposal facilities prior to their excavation by E.T. & L. Corporation. Pre-characterization would allow soils to be "live loaded" for disposal, which is necessary due to a lack of stockpiling locations within the project limits.

This letter details results for the portion of the proposed trail that we describe as the "Water Street Industrial Area" (approximately Station 56+00 to 92+00; see the maps attached in Appendix A). The soil in this area was analyzed via two composite samples: "South-1", which was composed of soils sampled from Station 56+00 to 77+30, and "North-1", which was composed of soil sampled from approximately Station 77+30 to Station 91+15. Individual samples from the "South" section of the Water Street Industrial Area were sent to the lab for further analysis, due to concentrations of PCBs and arsenic in composite sample "South-1" above MA Comm-97 (landfill) disposal criterial.

Soil Sampling

On November 10, 2016, Patrick Hughes and Scott Brady, SES environmental professionals, sampled preselected locations along the proposed trail.

As described in the Pre-characterization sampling plan (dated September 9, 2016), two composite samples were collected for submittal for analysis. For the compositing of samples, the Water Street Industrial Area was subdivided into a "South" section (South-1 sample composed of soil from Station 56+ at Water Street to the property line that lies at approximately Station 77+30 and a "North" section (North-1 sample composed of soil from Station 77+30 to the end of the Project at Station 91+15).

"North" samples N-1 to N-13 were collected from the locations identified in Table 1and depicted on the Sample Location Maps in Appendix A (Note that the true locations are +/- 10 ft. along the trail).

South	Station	Depth (in):	TOV (ppm):	Description:
S-1	57+00	36	0	Dk bn, silty sand
S-2	59+00	36	0	Med dk bn sand w/ silt
S-3	61+00	36-48	0	Med bn sand/gravel w/ silt, coal ash, fill
S-4	63+00	36-48	0	Med bn sand w/ silt, occ fill
S-5	65+00	36-48	0	bn sand w/ silt and gravel; some jet black fill
S-6	67+00	36-48	0	med bn sand w/ gravel, silt, fill
S-7	68+30	36-48	1	med bn sand, occ silt, gravel
S-8	68+60	36-48	0	med bn sand, occ silt, gravel
S-9	69+00	36-48	0	It bn sand, occ silt, gravel
S-10	72+00	36-48	0	Blk slag, coal ash, fill
S-11	76+00	36-48	0	med bn sand, occ silt, gravel

11	ty Rull IIu		τον	5
North	Station	Depth	(ppm):	Description:
N-1	77+15	36-48	0	Sand w/ gravel, black fill, bricks
N-2	78+50	36-48	0	Med dk bn sand and silt, occ coal ash
N-3	79+50	36-48	0	Med dk bn sand w/ silt and occ fill
N-4	80+50	36-48	2	med dk bn sand and silt, w/ coal and coal ash
N-5	81+50	36-48	1	med dk bn sand and silt, w/ coal and coal ash
N-6	82+50	36-48	1	dk bn med sand and silt w/ coal and coal ash
N-7	82+90	36-48	1	dk bn sand and gravel w/ silt, It gy ash and shells
N-8	83+50	36-48	1	med dk bn sand w/ silt and boulders
N-9	84+00	36-48	0	dk bn sand w/ silt and gravel
N-10	86+00	36-48	1	dk bn sand w/ silt and gravel
N-11	87+00	36-48	4	dk bn sand w/ silt and gravel
N-12	90+00	12	0	med bn sand, occ silt, gravel
N-13	91+00	12	0	med bn sand, occ silt, gravel

 Table 1: Station locations, descriptions, and Total Organic Vapors (TOV) for individual samples comprising composite samples South-1 and North-1. Sample Locations further noted in the Location Maps shown in Appendix A. Samples S-7 and N-11 were packaged for VOC analysis.

Samples were collected by excavating a hole over 36 inches depth using an excavator or backhoe (the two samples to 12 inches were collected using a shovel). No groundwater was encountered during sampling. The excavated soil was visually examined in order to assess the general character of the soil, and then hand-sampled into a gallon zip lock bag, taking care to represent any heterogeneity present in the material. Each grab sample was then assessed for Total Organic Volatiles (TOV) using a Photoionization Detector (PID) and a Total Headspace Method. No petroleum or chemical odors were detected.

Following the collection of all the individual samples, material from samples S-7 and N-11, which had the highest TOV values, were packaged to test for VOCs. Each of the individual samples was well mixed and then the two composite samples (South-1 and North-1) were created by taking 12 oz. of material (4 scoops of soil with a 3 oz. disposable cup) from each individual sample collected from the respective "South" or "North" area.

Each composite sample was then well mixed and then the samples were then packaged, sealed, labeled, preserved, and transported along with the material packaged for VOC analyses under Chain of Custody (COC) protocol to New England Testing Laboratory at 59 Greenhill Street in West Warwick, RI for analysis. The composite samples were analyzed for SVOC's, TPH, Pesticides, PCB's, MCP 14 Metals, Reactivity, Conductivity, Ignitability, and pH, most of which are specified in Item 180.6 of the Special Provisions.

Analytical Results

A tabulated summary of the analytical results in comparison to the MCP RCS-1 and RCS-2 standards, as well as MA COMM-97 Disposal Criteria is attached as Appendix B. The laboratory reports are attached as Appendix C.

The North-1 sample contained concentrations of arsenic, lead, and benzo(a)pyrene above the RCS-1 standards but below the criteria of RCS-2. Residential properties are within 500 feet of the rail trail. The concentrations of all Contaminants of Concern in this sample are below MA COMM-97 Disposal Criteria for both lined and unlined landfills.

The South-1 sample contained concentrations of arsenic, lead, and Arochlor 1260 (a polycyclic biphenyl or PCB) above the RCS-1 standard, with Arsenic being above the RCS-2 standard as well. Arsenic, at 66 mg/kg, is above the Imminent Hazard Reporting Criteria (applies to concentrations in soil from 0-12 inches from surface). Arsenic and Arochlor 1260 in this sample are above the MA COMM-97 Disposal Criteria.

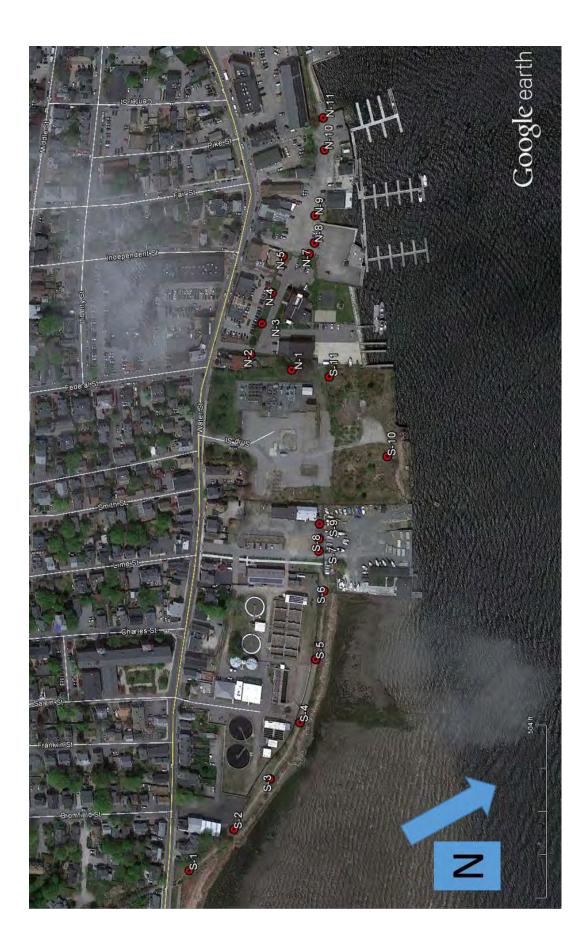
As a result of the MA COMM-97 results for South-1, the individual samples used to create the South-1 sample were tested for levels of arsenic and Arochlor 1260 in order to further delineate the sources of these Contaminants of Concern. A number of the individual "South" samples S-1 to S-11 contained Arsenic above RCS-1 reporting criteria, but below RCS-2 reporting criteria. Samples S-3, S-4, and S-5 contain levels of the PCB Arochlor 1260 above RCS-1 reporting criteria. Additionally, S-4, at 39,200 µg/kg (or 39 mg/kg) is above the RCS-2 and Imminent Hazard reporting criteria.

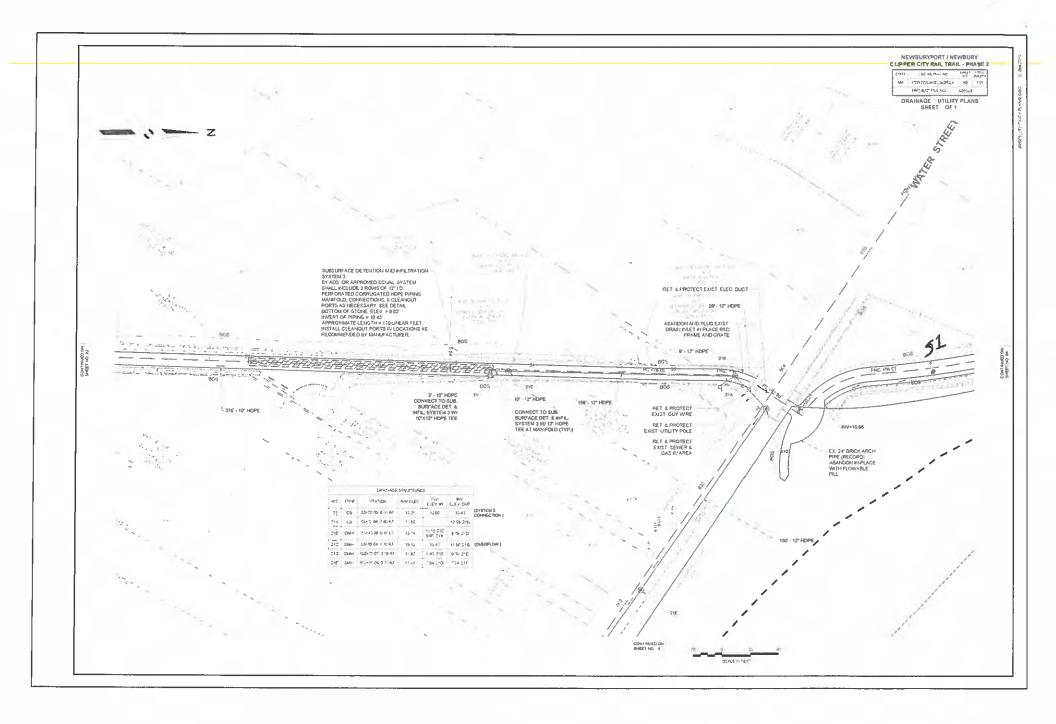
Conclusion

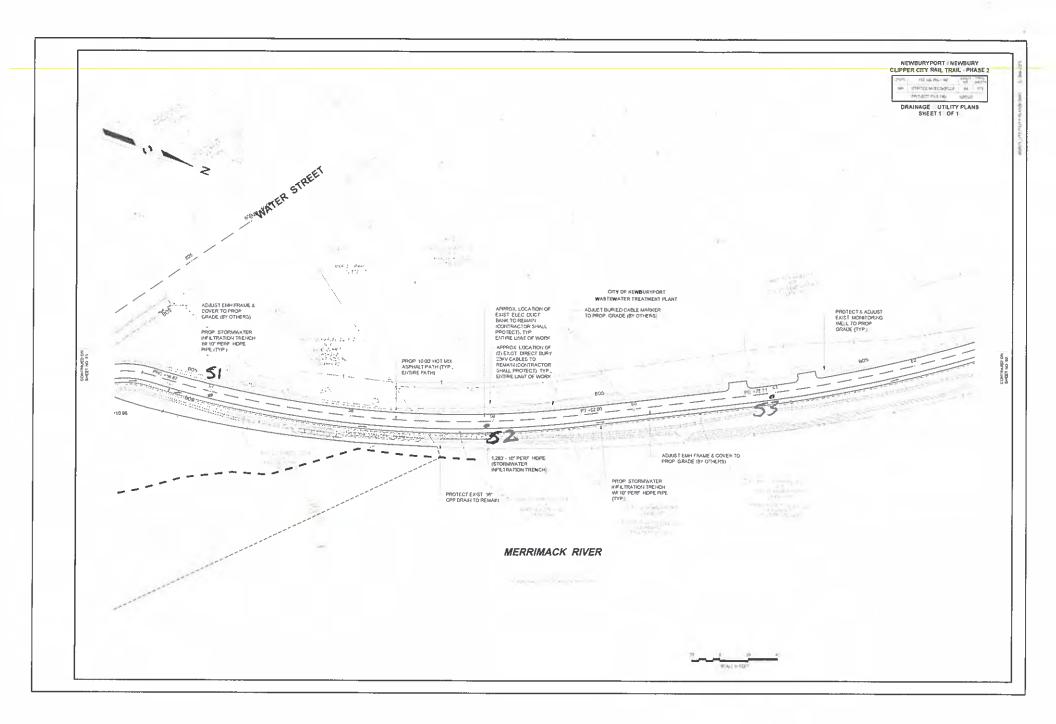
Soil samples taken in order to determine possible reuse/disposal options along the proposed path of the Clipper City Rail Trail in Newburyport have concentrations that exceed MCP reporting criteria for a number of Contaminants of Concern. We felt that the City of Newburyport should be aware of these exceedances in order to make their own assessment of the data and the applicability of MA DEP notification criteria.

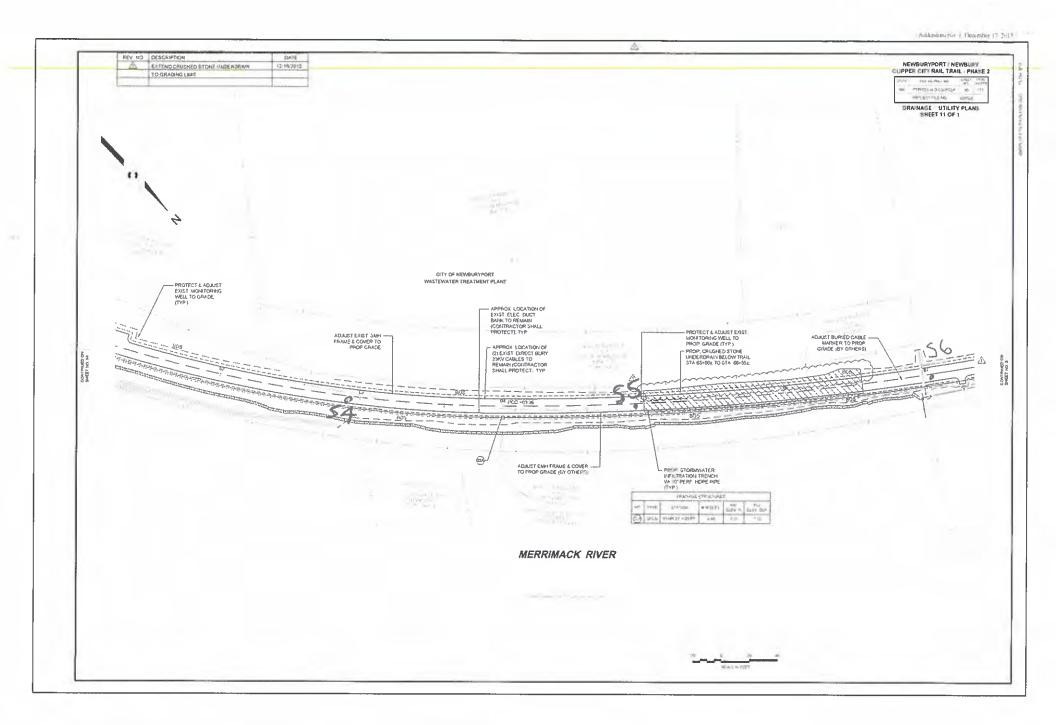
As the purpose of our sampling and analysis was for reuse/disposal characterization of soil to be excavated by E.T. & L. Corporation, the sampling protocol we used at each sampling station was a bulk characterization of soils all down to project depths (from surface to around 3-4 feet depth). MCP sampling protocols do not follow the same sampling criteria (for example Imminent Hazard Criteria dictate that contaminant concentrations reside in the upper 12 inches of soil). Strategic Environmental Services thus makes no judgment of the applicability of MCP reporting criteria to this analytical data.

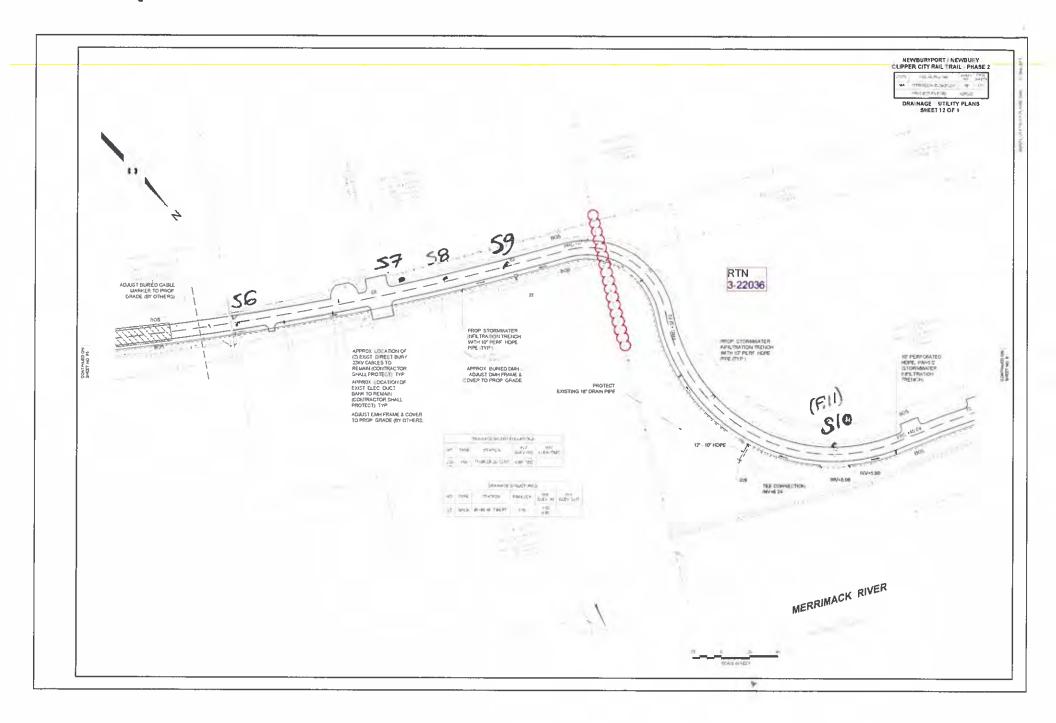
Soil Pre-Characterization Sampling ResultsDecember 5, 2016Clipper City Rail TrailSES Project # 15-0754Should you have any questions regarding this or any other matter, please do not hesitate to contactthe undersigned.

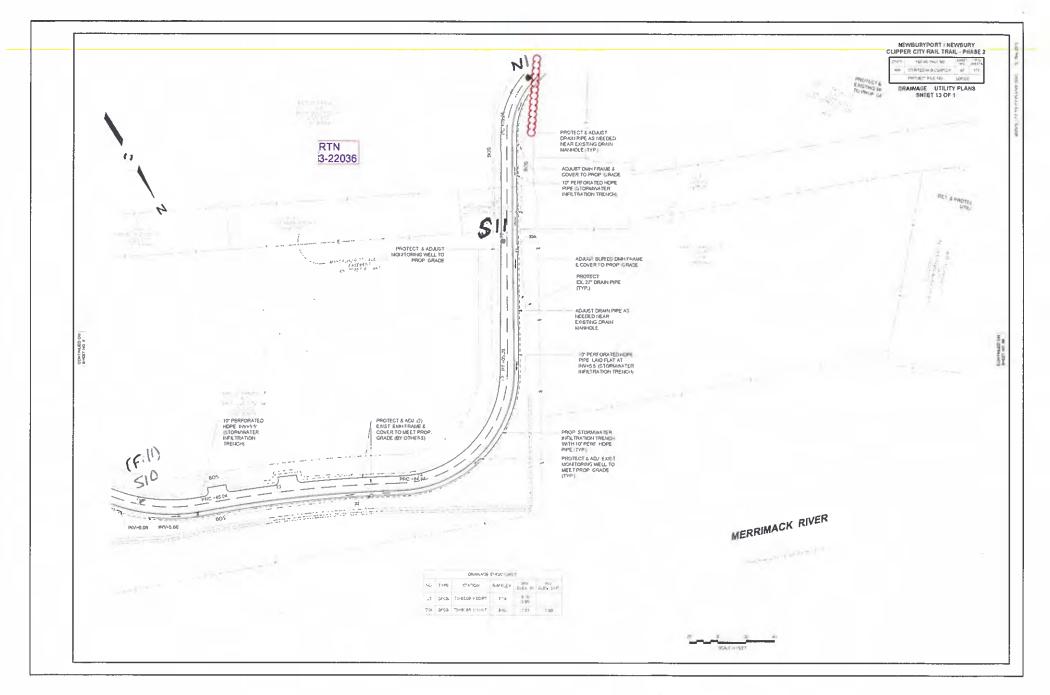

Sincerely,

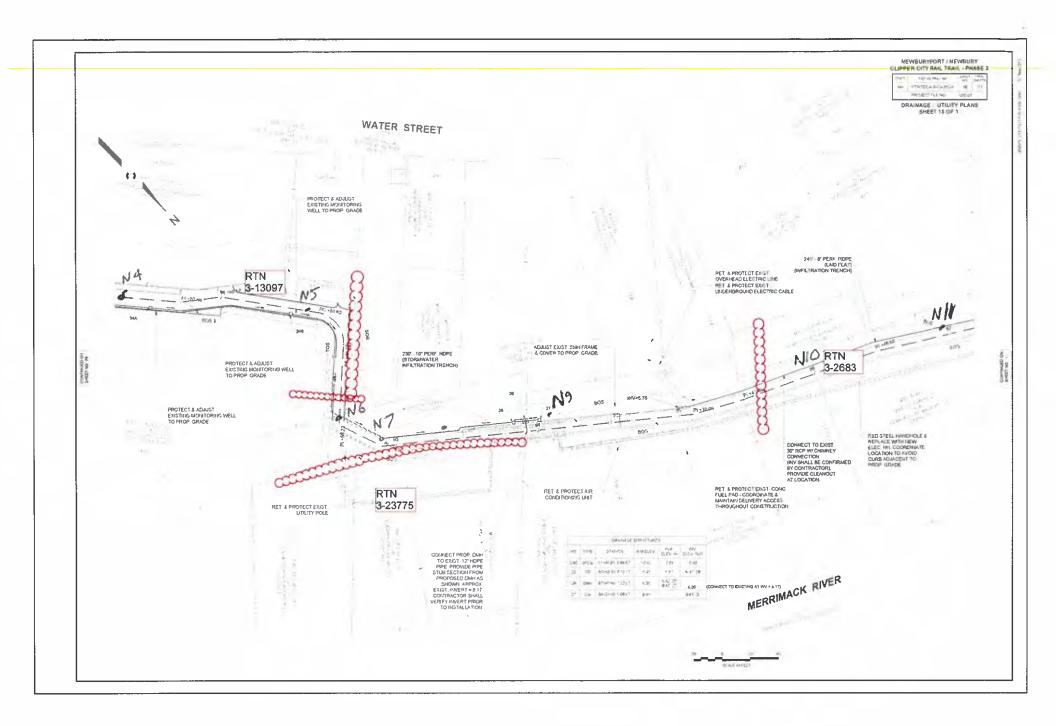

hit D. Sel

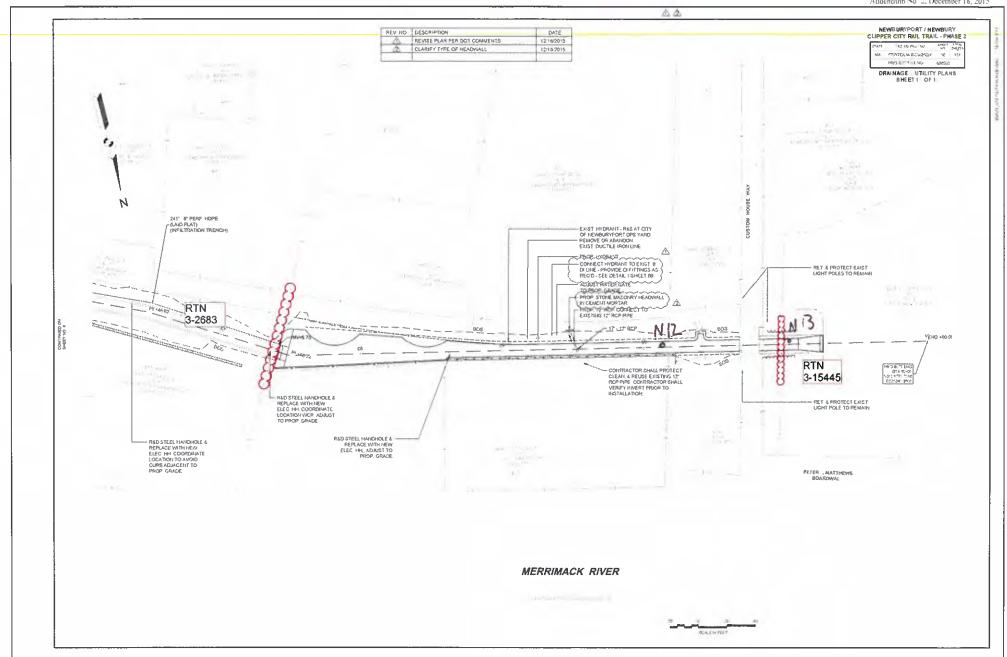

Christopher D. Glod, PG, LSP Licensed Site Professional


Strategic Environmental Services, Inc. Office: 508-757-7782


Appendix A: Site Maps with Sample Locations







1. 1

Addendum No. 2, December 18, 2015

Appendix B: Analytical Results Tables

Summary of Soil Analytical Composite Samples Newburyport-Clipper City

SES Job No. 15-0754

Deremeter	Reportable Cond	centrations (RCs)	MA COMM-97 [Disposal Criteria	DEP Coal/Wood Ash "Historic Fill"		
Parameter	D22 4	D 00 0			Historic Fill		
Sampling Date	RCS-1	RCS-2	Unlined	Lined		South-1 11/10/2016	North-1 11/10/2016
Soil Classification						Comp	Comp
MCP14 Metals		20			_	MG/KG DRY	MG/KG DRY
ANTIMONY ARSENIC	20 20	30 20	40	~ 40	7 20	ND (0.75) <mark>66.3 (0.75)</mark>	ND (0.73) 25.3 (0.73)
BARIUM	1000	3000	~	~	50	61.8 (0.37)	30.8 (0.36)
BERYLLIUM	90	200		~	0.9	ND (0.37)	ND (0.36)
CADMIUM CHROMIUM	70	100	30 1000	80	3	2.60 (0.37)	2.98 (0.36)
LEAD	100 200	200 600	1000 1000	1000 2000	40 600	24.1 (0.37) 317 (0.37)	24.7 (0.36) 326 (0.36)
MERCURY	20	30	10	10	1	0.660 (0.376)	0.636 (0.074)
NICKEL	600	1000		~	30	17.5 (0.37)	16.1 (0.36)
SELENIUM SILVER	400 100	700 200	~ ~	~ ~	1 5	ND (0.75) ND (0.37)	ND (0.73) ND (0.36)
THALLIUM	8	60	~	~	5	ND (0.15)	ND (0.15)
VANADIUM	400	700	~	~	30	13.3 (0.37)	8.39 (0.36)
	1000	3000	~	~	300	125 (1.50)	65.7 (1.46)
TCLP METALS LEAD						MG/L 0.09 (0.02)	MG/L 0.49 (0.02)
Pesticides/Herbicides						UG/KG DRY	UG/KG DRY
ALDRIN	80	500	~	~	~	ND (5.0)	ND (5.0)
ALPHA-BHC	50000	500000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~ ~	ND (5.0)	ND (5.0)
BETA-BHC DELTA-BHC	10000 10000	100000 100000	~	~	~	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)
GAMMA-BHC (LINDANE)	3	500	~	~	~	ND (5.0)	ND (5.0)
ALPHA-CHLORDANE	5000	30000	~	~	~	ND (5.0)	ND (5.0)
GAMMA-CHLORDANE	5000	30000	~ ~	~ ~	~ ~	ND (5.0)	ND (5.0)
CHLORDANE 4,4'-DDD	5000 8000	30000 40000	~ ~	~	~ ~	ND (50.0) ND (5.0)	ND (50.0) ND (5.0)
4,4'-DDE	6000	30000	~	~	~	ND (5.0)	ND (5.0)
4,4'-DDT	6000	30000	~	~	~	ND (10.0)	ND (10.0)
DIELDRIN ENDOSULFAN I	80 500	500 1000	~	~	~ ~	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)
ENDOSULFAN I	500	1000	~	~	~	ND (5.0) ND (5.0)	ND (5.0)
ENDOSULFAN SULFATE	~	~	~	~	~	ND (5.0)	ND (5.0)
ENDRIN	10000	20000	~	~	~	ND (5.0)	ND (5.0)
ENDRIN ALDEHYDE ENDRIN KETONE	~ ~	~ ~	~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)
HEPTACHLOR	300	2000	~	~	~	ND (5.0)	ND (5.0)
HEPTACHLOR EPOXIDE	100	900	~	~	~	ND (5.0)	ND (5.0)
METHOXYCHLOR	200000	400000	~	~	~	ND (5.0)	ND (5.0)
TOXAPHENE PCBs	~	~	~	~	~	ND (50.0) UG/KG DRY	ND (50.0) UG/KG DRY
PCB 1016	1000	4000	~	~	~	ND (100)	ND (100)
PCB 1221	1000	4000	~	~	~	ND (100)	ND (100)
PCB 1232	1000	4000	~	~	~	ND (100)	ND (100)
PCB 1242 PCB 1248	1000 1000	4000 4000	~	~	~	ND (100) ND (100)	ND (100) ND (100)
PCB 1254	1000	4000	~	~	~	ND (100)	ND (100)
PCB 1260	1000	4000	~	~	~	3500 (100)	ND (100)
PCB 1262	1000	4000	~ ~	~ ~	~ ~	ND (100)	ND (100)
PCB 1268 Total PCBs	1000 ~	4000 ~	<2,000	<2,000		ND (100) 3500	ND (100) ND
Total Petroleum Hydrocarbons						MG/KG DRY	MG/KG DRY
TPH	1000	3000	2500	5000		123 (27)	300 (28)
Volatile Organic Compounds VINYL CHLORIDE	700	700	~	~	~	UG/KG DRY ND (27)	UG/KG DRY ND (33)
BROMOMETHANE	500	500	~	~	~	ND (27)	ND (33)
CHLOROETHANE	100000	1000000	~	~	~	ND (27)	ND (33)
ACETONE	6000 ~	50000 ~	~	~	~	ND (130)	ND (160)
1,1-DICHLOROETHENE CARBON DISULFIDE	~ 100000	~ 1000000	~ ~	~ ~	~ ~	ND (27) ND (27)	ND (33) ND (33)
METHYLENE CHLORIDE	100	20000	~	~	~	ND (27)	ND (33)
METHYL TERT-BUTYL ETHER (MTBE)	100	100000	~	~	~	ND (27)	ND (33)
TRANS-1,2-DICHLOROETHYLENE	1000	1000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND (27)	ND (33)
1,1-DICHLOROETHANE 2-BUTANONE (MEK)	400 4000	9000 50000	~	~	~	ND (27) ND (270)	ND (33) ND (330)
2,2-DICHLOROPROPANE	100	200	~	~	~	ND (27)	ND (33)
CIS-1,2-DICHLOROETHYLENE	100	100	~	~	~	ND (27)	ND (33)
CHLOROFORM BROMOCHLOROMETHANE	200 ~	200 ~	~	~	~ ~	ND (27)	ND (33)
BROMOCHLOROMETHANE 1,1,1-TRICHLOROETHANE	~ 30000	~ 600000	~	~	~ ~	ND (27) ND (27)	ND (33) ND (33)
1,1-DICHLOROPROPENE	10	100	~	~	~	ND (27)	ND (33)
CARBON TETRACHLORIDE	5000	500	~	~	~	ND (27)	ND (33)
BENZENE 1,2-DICHLOROETHANE	2000 100	200000 100	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	ND (27) ND (27)	ND (33) ND (33)
TRICHLOROETHANE	300	300	~	~	~	ND (27)	ND (33) ND (33)
1,2-DICHLOROPROPANE	100	100	~	~	~	ND (27)	ND (33)
BROMODICHLOROMETHANE	100	100	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	ND (27)	ND (33)
DIBROMOMETHANE 4-METHYL-2-PENTANONE (MIBK)	500000 400	5000000 50000	~ ~	~ ~	~ ~	ND (27) ND (130)	ND (33) ND (160)
1,2-DIBROMOETHANE (EDB)	100	100	~	~	~	ND (130) ND (27)	ND (180) ND (33)
TOLUENE	30000	1000000	~	~	~	ND (27)	ND (33)
CIS-1,3-DICHLOROPROPENE	10	100	~	~	~	ND (27)	ND (33)
TRANS-1,3-DICHLOROPROPENE 1,1,2-TRICHLOROETHANE	10 100	100 2000	~ ~	~ ~	~ ~	ND (27) ND (27)	ND (33) ND (33)
2-HEXANONE	100000	1000000	~	~	~	ND (27) ND (130)	ND (33) ND (160)
TETRACHLOROETHYLENE	1000	10000	~	~	~	ND (27)	ND (33)
				~	~	ND (27)	ND (33)
	5	30	~			ND (27)	
CHLOROBENZENE	1000	3000	~ ~ ~ ~	~ ~	~ ~	ND (27)	ND (33)
			~ ~ ~ ~	~	~		

Summary of Soil Analytical Composite Samples Newburyport-Clipper City

SES Job No. 15-0754

Parameter	Reportable Cond	centrations (RCs)	MA COMM-97 I	Disposal Criteria	DEP Coal/Wood Ash "Historic Fill"		
	RCS-1	RCS-2	Unlined	Lined		South-1	North-1
O-XYLENE	100000	100000	~	~	~	ND (27)	ND (33)
STYRENE	3000	4000	~	~	~	ND (27)	ND (33)
BROMOFORM	100	1000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND (27)	ND (33)
	1000000	1000000	~ ~	~	~ ~	ND (27)	ND (33)
1,1,2,2-TETRACHLOROETHANE BROMOBENZENE	5 100000	20 1000000	~	~	~	ND (27) ND (27)	ND (33) ND (33)
1,2,3-TRICHLOROPROPANE	100000	1000000	~	~	~	ND (27)	ND (33)
2-CHLOROTOLUENE	100000	1000000	~	~	~	ND (27)	ND (33)
N-PROPYLBENZENE	100000	1000000	~	~	~	ND (27)	ND (33)
1,3,5-TRIMETHYLBENZENE	10000	100000	~	~	~	ND (27)	ND (33)
4-CHLOROTOLUENE	100000	1000000	~	~	~	ND (27)	ND (33)
TERT-BUTYLBENZENE	100000	1000000	~	~	~	ND (27)	ND (33)
1,2,4-TRIMETHYLBENZENE	1000000	1000000	~	~	~	ND (27)	ND (33)
SEC-BUTYLBENZENE	~	~	~	~	~	ND (27)	ND (33)
P-ISOPROPYLTOLUENE	100000	1000000	~	~	~	ND (27)	ND (33)
CHLOROMETHANE	100000	1000000	~	~	~	ND (27)	ND (33)
TERT-BUTYL ALCOHOL	~	~	~	~	~	ND (540)	ND (660)
1,3-DICHLOROBENZENE	3000	200000	~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND (27)	ND (33)
TETRAHYDROFURAN	500000	500000	~	~	~	ND (540)	ND (660)
1,4-DICHLOROBENZENE DIETHYL ETHER	700 100000	1000 1000000	~	~	~	ND (27) ND (27)	ND (33) ND (33)
N-BUTYLBENZENE	~	~	~	~	~	ND (27)	ND (33)
1,2-DICHLOROBENZENE	9000	100000	~	~	~	ND (27)	ND (33)
1,2-DIBROMO-3-CHLOROPROPANE	10000	100000	~	~	~	ND (27)	ND (33)
1,2,4-TRICHLOROBENZENE	2000	6000	~	~	~	ND (27)	ND (33)
HEXACHLOROBUTADIENE	30000	100000	~	~	~	ND (27)	ND (33)
NAPHTHALENE	4000	20000	~	~	~	ND (27)	ND (33)
1,2,3-TRICHLOROBENZENE	~	~	~	~	~	ND (27)	ND (33)
TERT-AMYLMETHYL ETHER	~	~	~	~	~	ND (27)	ND (33)
DICHLORODIFLUOROMETHANE	1000000	1000000	~	~	~	ND (27)	ND (33)
1,3-DICHLOROPROPANE	500000	500000	~	~	~	ND (27)	ND (33)
TRICHLOROFLUOROMETHANE	1000000	1000000	~	~	~	ND (27)	ND (33)
TERT-BUTYLETHYL ETHER	~	~	~	~	~	ND (27)	ND (33)
DIISOPROPYL ETHER	100000	1000000	~ ~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND (27)	ND (33)
1,4-DIOXANE Total VOCs	200	6000 ~	~ 4,000	~ 10,000	~	ND (13000) ND	ND (16000) ND
Semi-Volatile Organic Compounds			4,000	~	~	UG/KG DRY	UG/KG DRY
N-NITROSODIMETHYLAMINE	~	~	~	~	~	ND (220)	ND (200)
PYRIDINE	~	~	~	~	~	ND (150)	ND (140)
PHENOL	1000	20000	~	~	~	ND (150)	ND (140)
ANILINE	1000000	10000000	~	~	~	ND (150)	ND (140)
BIS(2-CHLOROETHYL)ETHER	700	700	~	~	~	ND (150)	ND (140)
2-CHLOROPHENOL	700	100000	~	~	~	ND (150)	ND (140)
1,3-DICHLOROBENZENE	3000	200000	~	~	~	ND (150)	ND (140)
1,4-DICHLOROBENZENE	700	1000	~	~	~	ND (150)	ND (140)
1,2-DICHLOROBENZENE	9000	100000	~	~	~	ND (150)	ND (140)
O-CRESOL	500000	500000	~	~	~	ND (150)	ND (140)
2,2'-OXYBIS(2-CHLOROPROPANE)	~	~	~	~	~	ND (150)	ND (140)
	500000 ~	5000000 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND (300)	ND (270)
N-NITROSO-DI-N-PROPYLAMINE HEXACHLOROETHANE	700	3000	~	~	~	ND (150) ND (150)	ND (140) ND (140)
NITROBENZENE	500000	5000000	~	~	~	ND (150) ND (150)	ND (140) ND (140)
ISOPHORONE	100000	1000000	~	~	~	ND (150)	ND (140)
2-NITROPHENOL	100000	1000000	~	~	~	ND (370)	ND (340)
2,4-DIMETHYLPHENOL	700	100000	~	~	~	ND (740)	ND (680)
BENZOIC ACID	~	~	~	~	~	ND (1100)	ND (1000)
BIS(2-CHLOROETHOXY)METHANE	500000	500000	~	~	~	ND (150)	ND (140)
2,4-DICHLOROPHENOL	700	40000	~	~	~	ND (370)	ND (340)
1,2,4-TRICHLOROBENZENE	2000	6000	~	~	~	ND (150)	ND (140)
NAPHTHALENE	4000	20000	~	~	1000	ND (150)	180 (140)
4-CHLOROANILINE	1000	3000	~	~	~	ND (150)	ND (140)
HEXACHLOROBUTADIENE	30000	100000	~	~	~	ND (150)	ND (140)
4-CHLORO-3-METHYLPHENOL	~	~	~	~	~	ND (370)	ND (340)
2-METHYLNAPHTHALENE HEXACHLOROCYCLOPENTADIENE	700 ~	80000 ~	~	~ ~	1000 ~	ND (150) ND (150)	170 (140) ND (140)
2,4,6-TRICHLOROPHENOL	700	20000	~	~	~	ND (150) ND (150)	ND (140) ND (140)
2,4,5-TRICHLOROPHENOL	4000	600000	~	~	~	ND (150)	ND (140) ND (140)
2-CHLORONAPHTHALENE	1000000	1000000	~	~	~	ND (150)	ND (140)
2-NITROANILINE	~	~	~	~	~	ND (150)	ND (140)
DIMETHYLPHTHALATE	700	10000	~	~	~	ND (370)	ND (340)
ACENAPHTHYLENE	1000	10000	~	~	1000	180 (150)	290 (140)
2,6-DINITROTOLUENE	100000	1000000	~	~	~	ND (150)	ND (140)
3-NITROANILINE	~	~	~	~	~	ND (150)	ND (140)
ACENAPHTHENE	4000	3000000	~	~	2000	ND (150)	190 (140)
2,4-DINITROPHENOL	3000	50000	~	~	~	ND (370)	ND (340)
4-NITROPHENOL	100000	1000000	~	~	~	ND (370)	ND (340)
	100000	100000	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND (150)	230 (140)
	700	10000	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	ND (150)	ND (140)
DIETHYLPHTHALATE	10000	200000	~	~ ~		ND (150) ND (150)	ND (140)
FLUORENE 4-CHLOROPHENYL ETHER	1000000 ~	3000000 ~	~	~	2000 ~	ND (150) ND (150)	320 (140) ND (140)
4-CHLOROPHENYL ETHER 4-NITROANILINE	~	~	~	~	~	ND (150) ND (150)	ND (140) ND (140)
4.6-DINITRO-2-METHYLPHENOL	~	~	~	~	~	ND (150) ND (370)	ND (140) ND (340)
N-NITROSODIPHENYLAMINE	~	~	~	~	~	ND (370)	ND (340) ND (140)
4-BROMOPHENYL PHENYL ETHER	100000	1000000	~	~	~	ND (150)	ND (140)
HEXACHLOROBENZENE	700	800	~	~	~	ND (150)	ND (140)
PENTACHLOROPHENOL	3000	10000	~	~	~	ND (370)	ND (340)
PHENANTHRENE	10000	1000000	~	~	20	460 (150)	3300 (140)
ANTHRACENE	1000000	3000000	~	~	4000	160 (150)	830 (140)
DI-N-BUTYLPHTHALATE	50000	500000	~	~	~	ND (220)	ND (200)
FLUORANTHENE	1000000	3000000	~	~	10000	1100 (150)	4200 (140)
PYRENE	1000000	3000000	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20000	1300 (150)	4400 (140)
BUTYLBENZYLPHTHALATE	100000	1000000	~	~	~	ND (150)	ND (140)

Summary of Soil Analytical Composite Samples Newburyport-Clipper City

SES Job No. 15-0754

Parameter	Reportable Concentrations (RCs)		MA COMM-97 Disposal Criteria		DEP Coal/Wood Ash "Historic Fill"		
	RCS-1	RCS-2	Unlined	Lined		South-1	North-1
3,3'-DICHLOROBENZIDINE	3000	20000	~	~	~	ND (370)	ND (340)
BENZO(A)ANTHRACENE	7000	40000	~	~	9000	770 (150)	2400 (140)
CHRYSENE	70000	400000	~	~	7000	880 (150)	2300 (140)
BIS(2-ETHYLHEXYL)PHTHALATE	90000	600000	~	~	~	ND (370)	ND (410)
DI-N-OCTYLPHTHALATE	1000000	1000000	~	~	~	ND (220)	ND (200)
BENZO(B)FLUORANTHENE	7000	40000	~	~	8000	960 (150)	2000 (140)
BENZO(K)FLUORANTHENE	70000	400000	~	~	4000	790 (150)	1800 (140)
BENZO(A)PYRENE	2000	7000	~	~	7000	900 (150)	2200 (140)
DIBENZO(A,H)ANTHRACENE	700	4000	~	~	1000	170 (150)	390 (140)
INDENO(1,2,3-CD)PYRENE	7000	40000	~	~	3000	630 (150)	1500 (140)
BENZO(G,H,I)PERYLENE	1000000	3000000	~	~	3000	570 (150)	1400 (140)
Total SVOCs	~	~	100,000	100,000	~	<u>8870</u>	<u>28100</u>
Specific Conductance	~	~	4000	8000	~	186.4	208.2
Flash Point (deg F)	~	~	~	~	~	>200	>200
pH (SU)	~	~	~	~	~	6.73	7.81
Reactivity - Sulfide (mg/kg)	~	~	~	~	~	ND (0.21)	ND (0.23)
Reactivity - Cyanide (mg/kg)	~	~	~	~	~	ND (0.22)	ND (0.22)

NOTES:

ND = Not detected above the lab reporting limits shown in parenthesis.

NT = Not tested.

Bolded values exceed the MCP Reportable Concentrations (RCs).

~ = No Standard or Criteria

* = Can be accepted on a case by case basis.

Summary of Soil Analytical South Individual Samples Newburyport-Clipper City SES Job No. 15-0754

Parameter	Reportable Concentrations (RCs)			Sample No.									
	RCS-1	RCS-2	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9	S-10	S-11
Sampling Date			11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
Soil Classification													
MCP14 Metals			MG/KG DRY										
ARSENIC	20	20	22.1 (0.95)	17.2 (1.07)	16.3 (1.06)	16.4 (1.06)	36.3 (0.96)	31.9 (1.05)	21.6 (0.98)	14.7 (1.04)	31.7 (0.99)	16.1 (1.15)	24.0 (1.02)
PCBs			UG/KG DRY										
PCB 1016	1000	4000	ND (100)										
PCB 1221	1000	4000	ND (100)										
PCB 1232	1000	4000	ND (100)										
PCB 1242	1000	4000	ND (100)										
PCB 1248	1000	4000	ND (100)										
PCB 1254	1000	4000	ND (100)										
PCB 1260	1000	4000	ND (100)	ND (100)	1380 (100)	39200 (100)	1430 (100)	371 (100)	ND (100)	ND (100)	139 (100)	ND (100)	ND (100)
PCB 1262	1000	4000	ND (100)										
PCB 1268	1000	4000	ND (100)										
Total PCBs	~	~	ND	ND	1380	39200	1430	371	ND	ND	139	ND	ND

NOTES:

ND = Not detected above the lab reporting limits shown in parenthesis.

NT = Not tested.

Bolded values exceed the MCP Reportable Concentrations (RCs).

~ = No Standard or Criteria

* = Can be accepted on a case by case basis.

Appendix C: Laboratory Analytical Reports

LTLAB

NE

NETLAB Case Number C1111-18

Prepared for:

Strategic Environmental Services 362 Putnam Hill Rd Sutton, MA 01590

Report Date: November 18, 2016

Bich Ohtas

Director New England Testing Laboratory, Inc. Lab # RI010

NEW ENGLAND TESTING LABORATORY, INC. 59 Greenhill Street, West Warwick, RI 02893 (401) 353-3420

	MassDEP Analytical Protocol Certification Form									
Labo	oratory Na	ame: New England	Testing Laboratory	y, Inc.	Project #: 15-754					
Proje	ect Locati	on: ET+L Newbury	port		RTN:					
This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): C1111-18										
Matrie	ces: Gr	oundwater/Surface	e Water x Soil/Se	diment Drinking W	ater Air Other:					
CAM	Protoco	ol (check all that a	oply below):							
8260 CAM		7470/7471 Hg CAM III B x	MassDEP VPH CAM IV A	8081 Pesticides CAM V B x	7196 Hex Cr CAM VI B	MassDEP CAM IX A	APH			
8270 CAM	TO-15 VO CAM IX B	С								
	Metals III A x	6020 Metals CAM III D	8082 PCB CAM V A x	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B	Other x				
	Affirmativ	ve Responses to	Questions A throu	ugh F are required i	for "Presumptive Cert	ainty" stat	us			
А	Custody,		ed (including temp		cribed on the Chain-of- ld or laboratory, and	x Yes	No			
В		e analytical method tocol(s) followed?	(s) and all associate	ed QC requirements s	pecified in the selected	x Yes	No			
с				cal response actions s formance standard no	specified in the selected n-conformances?	x Yes	No			
D		Assurance and Qu			specified in CAM VII A, ition and Reporting of	x Yes	No			
Е	a. VPH, modificat	tion(s)? (Refer to the	lethods only: Was individual method(s	each method condu) for a list of significant ete analyte list reported		Yes Yes	No No			
F					-conformances identified Questions A through E)?	x Yes	No			
Res	sponses	to Questions G, F	and I below are l	required for "Presu	mptive Certainty" star	tus				
G	Were the protocol		r below all CAM repo	orting limits specified in	the selected CAM	x Yes	No ¹			
				inty" status may not ne R 40. 1056 (2)(k) and W	cessarily meet the data us SC-07-350.	ability and				
Н	Were all	QC performance sta	andards specified in t	the CAM protocol(s) ac	chieved?	x Yes	No ¹			
I	Were res	sults reported for the	complete analyte lis	t specified in the selec	ted CAM protocol(s)?	x Yes	No ¹			
¹ <i>All i</i>	negative r	esponses must be a	addressed in an atta	ached laboratory narra	ative.					
respo	nsible for				sed upon my personal ir al report is, to the best of					
Sign	ature: <u>&</u>	A Children		Positio	on: Laboratory Director		_			
Print	ted Name	Richard Warila		— Date:1	1/18/2016					

SAMPLES SUBMITTED and REQUEST FOR ANALYSIS:

The samples listed in Table I were submitted to New England Testing Laboratory on November 11, 2016. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is C1111-18.

Custody records are included in this report.

Project: 15-754 – ET+L Newburyport

Sample ID	Date Sampled	Matrix	Analysis Requested
South-1	11/10/2016	Soil	Table II
North-1	11/10/2016	Soil	Table II

TABLE I, Samples Submitted

TABLE II, Analysis and Methods

ANALYSIS	PREPARATION METHOD	DETERMINATIVE METHOD
Flashpoint	NA	1020
pH	NA	9045D
Reactive Cyanide	NA	SW-846 sec. 7.3
Reactive Sulfide	NA	SW-846 sec. 7.3
Specific Conductance	NA	9050A Modified
Total Metals		
Antimony	3050B	6010C
Arsenic	3050B	6010C
Barium	3050B	6010C
Beryllium	3050B	6010C
Cadmium	3050B	6010C
Chromium	3050B	6010C
Lead	3050B	6010C
Mercury	NA	7471B
Nickel	3050B	6010C
Selenium	3050B	6010C
Silver	3050B	6010C
Thallium	3050B	7010
Vanadium	3050B	6010C
Zinc	3050B	6010C
TCLP Extraction	1311	NA
Lead	3010A	6010C
PCB's	3546	8082A
Pesticides	3546	8081B
Semi-volatile Compounds	3546	8270D
Total Petroleum Hydrocarbons	3546	8100M
Volatile Organic Compounds	5035	8260C

These methods are documented in:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, USEPA/OSW.

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Metals

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

PCBs

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

Pesticides

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

Semi-volatile Compounds

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

Total Petroleum Hydrocarbons

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

Volatile Organic Compounds

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

Wet Chemistry

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures.

Case No. C1111-18

South-1

Parameter	Result	Reporting Limit	Date Analyzed
Flashpoint, °F	>200	NA	11/18/2016
Reactive Cyanide, mg/kg*	ND	0.22	11/15/2016
Reactive Sulfide, mg/kg*	ND	0.21	11/15/2016
pH, S.U.	6.73	NA	11/17/2016
Specific Conductance, umhos/cm	186.4	0.1	11/15/2016

North-1

Parameter	Result	Reporting Limit	Date Analyzed
Flashpoint, °F	>200	NA	11/18/2016
Reactive Cyanide, mg/kg*	ND	0.22	11/15/2016
Reactive Sulfide, mg/kg*	ND	0.23	11/15/2016
pH, S.U.	7.81	NA	11/18/2016
Specific Conductance, umhos/cm	208.2	0.1	11/15/2016

NA = Not Applicable ND = Not Detected *Dry Weight Basis Sample: South-1

Case No. C1111-18

Date TCLP Extracted: 11/15/2016 Date Analyzed*: 11/17/2016			
TCLP Extractable Metals	<u>Result, mg/L</u>		Detection Limit, <u>mg/L</u>
Lead	0.09		0.02
* Date Completed ND = Not Detected			
Sample: North-1		Case No. C1111-	18
Date TCLP Extracted: 11/15/2016 Date Analyzed*: 11/17/2016			
TCLP Extractable Metals	<u>Result, mg/L</u>		Detection Limit, <u>mg/L</u>
Lead	0.49		0.02
* Date Completed ND = Not Detected			

METALS RESULTS

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Metals Analysis Department certifies that the results included in this section have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

New England Testing Laboratory, Inc.

Case Number:	C1111-18	
Sample ID:	NORTH-1	
Date collected:	11/10/16	
Matrix	SOIL	
Solids, %	87.53	AEG/NC/NB
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3050B	6010C	ND	0.75	mg/kg	11/15/16	11/16/16
Arsenic	7440-38-2	3050B	6010C	66.3	0.75	mg/kg	11/15/16	11/16/16
Barium	7440-39-3	3050B	6010C	61.8	0.37	mg/kg	11/15/16	11/16/16
Beryllium	7440-41-7	3050B	6010C	ND	0.37	mg/kg	11/15/16	11/16/16
Cadmium	7440-43-9	3050B	6010C	2.60	0.37	mg/kg	11/15/16	11/16/16
Chromium	7440-47-3	3050B	6010C	24.1	0.37	mg/kg	11/15/16	11/16/16
Lead	7439-92-1	3050B	6010C	317	0.37	mg/kg	11/15/16	11/16/16
Mercury	7439-97-6	NA	7471B	0.660	0.379	mg/kg	11/15/16	11/15/16
Nickel	7440-02-0	3050B	6010C	17.5	0.37	mg/kg	11/15/16	11/16/16
Selenium	7782-49-2	3050B	6010C	ND	0.75	mg/kg	11/15/16	11/16/16
Silver	7440-22-4	3050B	6010C	ND	0.37	mg/kg	11/15/16	11/16/16
Thallium	7440-28-0	3050B	7010	ND	0.15	mg/kg	11/15/16	11/17/16
Vanadium	7440-62-2	3050B	6010C	13.3	0.37	mg/kg	11/15/16	11/16/16
Zinc	7440-66-6	3050B	6010C	125	1.50	mg/kg	11/15/16	11/16/16

ND indicates Not Detected.

NA indicates Not Applicable

All results are reported on a dry weight basis.

Case Number:	C1111-18	
Sample ID:	SOUTH-1	
Date collected:	11/10/16	
Matrix	SOIL	
Solids, %	90.63	AEG/NC/NB
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3050B	6010C	ND	0.73	mg/kg	11/15/16	11/16/16
Arsenic	7440-38-2	3050B	6010C	25.3	0.73	mg/kg	11/15/16	11/16/16
Barium	7440-39-3	3050B	6010C	30.8	0.36	mg/kg	11/15/16	11/16/16
Beryllium	7440-41-7	3050B	6010C	ND	0.36	mg/kg	11/15/16	11/16/16
Cadmium	7440-43-9	3050B	6010C	2.98	0.36	mg/kg	11/15/16	11/16/16
Chromium	7440-47-3	3050B	6010C	24.7	0.36	mg/kg	11/15/16	11/16/16
Lead	7439-92-1	3050B	6010C	326	0.36	mg/kg	11/15/16	11/16/16
Mercury	7439-97-6	NA	7471B	0.636	0.074	mg/kg	11/15/16	11/15/16
Nickel	7440-02-0	3050B	6010C	16.1	0.36	mg/kg	11/15/16	11/16/16
Selenium	7782-49-2	3050B	6010C	ND	0.73	mg/kg	11/15/16	11/16/16
Silver	7440-22-4	3050B	6010C	ND	0.36	mg/kg	11/15/16	11/16/16
Thallium	7440-28-0	3050B	7010	ND	0.15	mg/kg	11/15/16	11/17/16
Vanadium	7440-62-2	3050B	6010C	8.39	0.36	mg/kg	11/15/16	11/16/16
Zinc	7440-66-6	3050B	6010C	65.7	1.46	mg/kg	11/15/16	11/16/16

ND indicates Not Detected.

NA indicates Not Applicable

All results are reported on a dry weight basis.

AEG/NC/AHB

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3050B	6010C	ND	0.67	mg/kg	11/15/16	11/16/16
Arsenic	7440-38-2	3050B	6010C	ND	0.67	mg/kg	11/15/16	11/16/16
Barium	7440-39-3	3050B	6010C	ND	0.33	mg/kg	11/15/16	11/16/16
Beryllium	7440-41-7	3050B	6010C	ND	0.33	mg/kg	11/15/16	11/16/16
Cadmium	7440-43-9	3050B	6010C	ND	0.33	mg/kg	11/15/16	11/16/16
Chromium	7440-47-3	3050B	6010C	ND	0.33	mg/kg	11/15/16	11/16/16
Lead	7439-92-1	3050B	6010C	ND	0.33	mg/kg	11/15/16	11/16/16
Mercury	7439-97-6	NA	7471B	ND	0.033	mg/kg	11/15/16	11/15/16
Nickel	7440-02-0	3050B	6010C	ND	0.33	mg/kg	11/15/16	11/16/16
Selenium	7782-49-2	3050B	6010C	ND	0.67	mg/kg	11/15/16	11/16/16
Silver	7440-22-4	3050B	6010C	ND	0.33	mg/kg	11/15/16	11/16/16
Thallium	7440-28-0	3050B	7010	ND	0.13	mg/kg	11/15/16	11/17/16
Vanadium	7440-62-2	3050B	6010C	ND	0.33	mg/kg	11/15/16	11/16/16
Zinc	7440-66-6	3050B	6010C	ND	1.33	mg/kg	11/15/16	11/16/16

ND indicates Not Detected.

NA indicates Not Applicable

All results are reported on a dry weight basis.

LABORATORY CONTROL SAMPLE RECOVERY

			Internal			
True Value	Result	Units	Recovery, %	LCL, %	UCL, %	Date Analyzed
66.7	63.2	mg/kg	95	85	115	11/16/16
13.3	13.4	mg/kg	101	85	115	11/16/16
66.7	63.2	mg/kg	95	85	115	11/16/16
13.3	13.8	mg/kg	104	85	115	11/16/16
66.7	64.3	mg/kg	96	85	114	11/16/16
66.7	62.8	mg/kg	94	85	115	11/16/16
66.7	61.9	mg/kg	93	85	115	11/16/16
0.133	0.1	mg/kg	91	85	115	11/15/16
66.7	62.9	mg/kg	94	85	112	11/16/16
13.3	13.0	mg/kg	97	85	115	11/16/16
26.6	25.5	mg/kg	96	85	115	11/16/16
1.33	1.4	mg/kg	108	85	115	11/16/16
66.7	61.1	mg/kg	92	85	115	11/16/16
66.7	62.9	mg/kg	94	85	115	11/16/16
	66.7 13.3 66.7 13.3 66.7 66.7 66.7 0.133 66.7 13.3 26.6 1.33 66.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66.763.2mg/kg13.313.4mg/kg66.763.2mg/kg13.313.8mg/kg66.764.3mg/kg66.762.8mg/kg66.761.9mg/kg0.1330.1mg/kg66.762.9mg/kg13.313.0mg/kg13.313.0mg/kg13.31.4mg/kg66.761.1mg/kg	66.7 63.2 mg/kg 95 13.3 13.4 mg/kg 101 66.7 63.2 mg/kg 95 13.3 13.4 mg/kg 95 13.3 13.8 mg/kg 96 66.7 64.3 mg/kg 96 66.7 62.8 mg/kg 94 66.7 61.9 mg/kg 93 0.133 0.1 mg/kg 91 66.7 62.9 mg/kg 94 13.3 13.0 mg/kg 97 26.6 25.5 mg/kg 108 66.7 61.1 mg/kg 92	True ValueResultUnitsRecovery, %LCL, %66.763.2mg/kg958513.313.4mg/kg1018566.763.2mg/kg958513.313.8mg/kg1048566.764.3mg/kg968566.762.8mg/kg948566.761.9mg/kg93850.1330.1mg/kg918566.762.9mg/kg948513.313.0mg/kg978526.625.5mg/kg96851.331.4mg/kg1088566.761.1mg/kg9285	True ValueResultUnitsRecovery, %LCL, %UCL, %66.763.2mg/kg958511513.313.4mg/kg1018511566.763.2mg/kg958511513.313.8mg/kg968511466.764.3mg/kg968511466.762.8mg/kg948511566.761.9mg/kg93851150.1330.1mg/kg918511566.762.9mg/kg948511566.762.9mg/kg948511566.762.9mg/kg948511513.313.0mg/kg97851151.331.4mg/kg1088511566.761.1mg/kg9285115

RESULTS: PCBs

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Sample: South-1		Analyst's Initials: JD
Case No.: C1111-18		
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/15/16	11/15/16,11/16/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	3500	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	93	45-125
DCBP	96	42-131

Sample: North-1		Analyst's Initials: JD
Case No.: C1111-18		
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/15/16	11/15/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	79	45-125
DCBP	83	42-131

Sample: Method Blank		Analyst's Initials: JD
Case No.: C1111-18		
Date Collected: NA		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/15/16	11/15/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg (ppb)	ug/kg (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	93	45-125
DCBP	100	42-131

N.D. = Not Detected

Sample Matrix: Soil				
Subject: PCB	Date Extracted			Date Analyzed
Prep Method: EPA 3546	11/15/16			11/15/16
Analytical Method: EPA 8082A				
Compound	Amount Spiked	Result	Recovery	Recovery
	mg/kg	mg/kg	%	Limits
Aroclor 1016	0.500	0.450	90	55-131
Aroclor 1260	0.500	0.415	83	63-133
Surrogates:				
Compound	% Recovery	Limits		
TCMX	90	45-125		
DCBP	89	42-131		

PCB Laboratory Control Spike

RESULTS: PESTICIDES

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Sample: South-1		Analyst's Initials: JD
Case No.: C1111-18		
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: Pesticides	Date Extracted 11/15/16	Date Analyzed 11/15/16
Prep Method: EPA 3546	11/13/10	11/13/10
Analytical Method: EPA 8081B		
Compound	Concentration ug/kg* (ppb)	Reporting Limit ug/kg* (ppb)
Aldrin	N.D.	5.0
alpha-BHC	N.D.	5.0
beta-BHC	N.D.	5.0
delta-BHC	N.D.	5.0
gamma-BHC	N.D.	5.0
alpha-Chlordane	N.D.	5.0
gamma-Chlordane	N.D.	5.0
Chlordane	N.D.	50.0
4,4'-DDD	N.D.	5.0
4,4'-DDE	N.D.	5.0
4,4'-DDT	N.D.	10.0
Dieldrin	N.D.	5.0
Endosulfan I	N.D.	5.0
Endosulfan II	N.D.	5.0
Endosulfan sulfate	N.D.	5.0
Endrin	N.D.	5.0
Endrin aldehyde	N.D.	5.0
Endrin Ketone	N.D.	5.0
Heptachlor	N.D.	5.0
Heptachlor epoxide	N.D.	5.0
Methoxychlor	N.D.	5.0
Toxaphene	N.D.	50.0
Surrogates:		
Compound	% Recovery	Limits
TCMX	54	38-106
DCBP	76	32-110

NELT

Sample: North-1		Analyst's Initials: JD
Case No.: C1111-18		
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: Pesticides	Date Extracted 11/15/16	Date Analyzed 11/15/16
Prep Method: EPA 3546	11/13/10	11/13/10
Analytical Method: EPA 8081B		
Compound	Concentration ug/kg* (ppb)	Reporting Limit ug/kg* (ppb)
Aldrin	N.D.	5.0
alpha-BHC	N.D.	5.0
beta-BHC	N.D.	5.0
delta-BHC	N.D.	5.0
gamma-BHC	N.D.	5.0
alpha-Chlordane	N.D.	5.0
gamma-Chlordane	N.D.	5.0
Chlordane	N.D.	50.0
4,4'-DDD	N.D.	5.0
4,4'-DDE	N.D.	5.0
4,4'-DDT	N.D.	10.0
Dieldrin	N.D.	5.0
Endosulfan I	N.D.	5.0
Endosulfan II	N.D.	5.0
Endosulfan sulfate	N.D.	5.0
Endrin	N.D.	5.0
Endrin aldehyde	N.D.	5.0
Endrin Ketone	N.D.	5.0
Heptachlor	N.D.	5.0
Heptachlor epoxide	N.D.	5.0
Methoxychlor	N.D.	5.0
Toxaphene	N.D.	50.0
Surrogates:		
Compound	% Recovery	Limits
TCMX	52	38-106
DCBP	70	32-110

NELT

Sample: Method Blank		Analyst's Initials:JD
Case No.: C1111-18		
Date Collected: N.A.		
Sample Matrix: Soil		
Subject: Pesticides	Date Extracted 11/15/16	Date Analyzed 11/15/16
Prep Method: EPA 3546	11/13/10	11/13/10
Analytical Method: EPA 8081B		
Compound	Concentration ug/kg (ppb)	Reporting Limit ug/kg (ppb)
Aldrin	N.D.	5.0
alpha-BHC	N.D.	5.0
beta-BHC	N.D.	5.0
delta-BHC	N.D.	5.0
gamma-BHC	N.D.	5.0
alpha-Chlordane	N.D.	5.0
gamma-Chlordane	N.D.	5.0
Chlordane	N.D.	50.0
4,4'-DDD	N.D.	5.0
4,4'-DDE	N.D.	5.0
4,4'-DDT	N.D.	5.0
Dieldrin	N.D.	5.0
Endosulfan I	N.D.	5.0
Endosulfan II	N.D.	5.0
Endosulfan sulfate	N.D.	5.0
Endrin	N.D.	5.0
Endrin aldehyde	N.D.	5.0
Endrin Ketone	N.D.	5.0
Heptachlor	N.D.	5.0
Heptachlor epoxide	N.D.	5.0
Methoxychlor	N.D.	5.0
Toxaphene	N.D.	50.0
Surrogates:		
Compound	% Recovery	Limits
TCMX	75	38-106
DCBP	84	32-110

NELT

NEL	LAB
-7	2

Date Collected: NA				
Sample Matrix: SOIL				
Subject: Pesticides	Date Extracted			Date Analyzed
Prep Method: EPA 3546	11/15/2016			11/15/2016
Analytical Method:EPA				
8081B				
Compound	Spike Amount	Recovery	Recovery	Recovery
	ng/mL (ppb)	ng/mL (ppb)	%	Limits
alpha-BHC	40	33.7	84	50-132
gamma-BHC	40	35.0	88	54-128
beta-BHC	40	34.3	86	69-126
delta-BHC	40	36.9	92	40-126
Heptachlor	40	45.4	114	55-125
Aldrin	40	33.3	83	45-135
Heptachlor epoxide	40	34.0	85	54-127
gamma-Chlordane	40	33.7	84	55-124
alpha-Chlordane	40	34.4	86	54-126
4,4'-DDE	40	33.0	83	63-130
Endosulfan I	40	35.1	88	53-128
Dieldrin	40	34.2	86	57-124
Endrin	40	35.3	88	40-140
4,4'-DDD	40	36.6	92	74-140
Endosulfan II	40	38.4	96	45-125
4,4'-DDT	40	50.7	127	60-140
Endrin aldehyde	40	43.5	109	40-140
Methoxychlor	40	52.3	131	71-140
Endosulfan sulfate	40	44.7	112	43-131
Endrin Ketone	40	46.7	117	56-131
Surrogates:				
Compound	% Recovery	Limits		
TCMX	78	38-106		
DCBP	86	32-110		1

Sample: South-1		Analyst's Initials: JD
Case No.: C1111-18		
Date Collected: 11/10/16		
Sample Matrix: Soil		
Subject: TPH		
Prep Method: EPA 3546	Date Extracted	Date Analyzed
Analytical Method:		
EPA 8100 M	11/17/2016	11/18/2016
Compound	Concentration, mg/kg* (ppm)	Reporting Limit mg/kg* (ppm)
Total Petroleum		
Hydrocarbons	123	27
Surrogates:		
Compound	% Recovery	Limits
Chloroctadecane	106	62-151

Sample: North-1		Analyst's Initials: JD
Case No.: C1111-18		
Date Collected: 11/10/16		
Sample Matrix: Soil		
Subject: TPH		
Prep Method: EPA 3546	Date Extracted	Date Analyzed
Analytical Method:		
EPA 8100 M	11/17/2016	11/18/2016
Compound	Concentration, mg/kg* (ppm)	Reporting Limit mg/kg* (ppm)
	ing/kg (ppin)	ing/kg (ppin)
Total Petroleum		
Hydrocarbons	300	28
Surrogates:		
Compound	% Recovery	Limits
Chloroctadecane	132	62-151

ND = Not Detected *Dry Weight Basis

RESULTS: SEMIVOLATILE ORGANIC COMPOUNDS

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

NETTLAB

	SEMI	VOLATILE ORGA	ANICS ANAL	YSIS DATA SH	IEET		_
Lab Name:	New Engla	and Testing Labo	ratory Co	ontract: <u>ET+L</u>	Newb	S	outh-1
Lab Code:	RI010	Case No.:	C1111-18	SAS No.: Stra	tegi SD	G No.:	Strategic E
Matrix: (soil/wa	ater) S	OIL		Lab Sam	ble ID [.] S	South-1	
•	,		-				
Sample wt/vol	: <u>1</u>	5.353 (g/ml)	G	Lab File II	D: <u>E</u>	3111803	i.D
Level: (low/m	ed) L	OW		Date Rec	eived: 1	1/11/20	16
% Moisture:	12.47	decanted:(`	Y/N) N	Date Extra	acted: 1	1/17/20	16
Concentrated	Extract Vo	olume: 1000	(uL)	Date Ana	yzed: 1	1/18/20	16
Injection Volur	me: 1.0	(uL)		Dilution F	actor: 1	.0	
, GPC Cleanup					_		
	. (1/14)	pri					
				CONCENTRA	TION U	NITS:	
CAS NO.		COMPOUND		(ug/L or ug/Kg	a) UG/	KG	Q
		50 0011D					- ~
62-75-9	}	n-Nitrosodime	ethylamine			220	U
110-86-		Pyridine				150	U
108-95-		Phenol				150	U
62-53-3	}	Aniline				150	U
111-44-	-4	bis(2-Chloroe	thyl)ether			150	U
95-57-8	}	2-Chlorophen				150	U
541-73-		1,3-Dichlorob				150	U
106-46-		1,4-Dichlorob				150	U
95-50-1		1,2-Dichlorob				150	U
95-48-7		2-Methylphen				150	U
108-60-		2,2'-oxybis (1		ne)		150	U
106-44-		3- & 4-Methyl				300	U
621-64-		n-Nitroso-di-n		9		150	U
67-72-1		Hexachloroet				150	U
98-95-3		Nitrobenzene				150	U
78-59-1		lsophorone				150	U
88-75-5		2-Nitrophenol				370	U
<u> 105-67-</u> 65-85-0		2,4-Dimethylp Benzoic acid				740 1100	UU
111-91-		bis(2-Chloroe		ne		150	U
120-83-		2,4-Dichlorop				370	U
120-82-		1,2,4-Trichlor				150	U
91-20-3		Naphthalene				150	U
106-47-		4-Chloroanilir	ne			150	U
87-68-3		Hexachlorobu				150	U
59-50-7		4-Chloro-3-m				370	U
91-57-6		2-Methylnaph				150	U
77-47-4	ł	Hexachlorocy		e		150	U
88-06-2	>	2,4,6-Trichlor	ophenol			150	U
95-95-4	ļ	2,4,5-Trichlor	ophenol			150	U
91-58-7		2-Chloronaph				150	U
88-74-4		2-Nitroaniline				150	U
131-11-		Dimethyl phth				370	U
208-96-		Acenaphthyle				180	
606-20-		2,6-Dinitrotolu				150	U
99-09-2		3-Nitroaniline				150	U
83-32-9	j	Acenaphthen	е			150	U

A	IFI	ſΤ	71	AR
		7	7	

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET						
Lab Name: New Er	ngland Testing Laboratory Contract: ET+L Newb	Sout	า-1			
Lab Code: RI010	Case No.: <u>C1111-18</u> SAS No.: <u>Strategi</u> SD	G No.: Stra	ategic E			
Matrix: (soil/water)	SOIL Lab Sample ID: S	South-1				
Sample wt/vol:	15.353 (g/ml) G Lab File ID: E	3111803.D				
Level: (low/med)	LOW Date Received: 1	1/11/2016				
	47 decanted:(Y/N) N Date Extracted: 1					
Concentrated Extract						
Injection Volume:		.0				
GPC Cleanup: (Y/N)	<u>N</u> pH:					
	CONCENTRATION U					
CAS NO.	COMPOUND (ug/L or ug/Kg) UG/I		0			
CAS NO.		NG	Q			
51-28-5	2,4-Dinitrophenol	370	U			
100-02-7	4-Nitrophenol	370	U			
132-64-9	Dibenzofuran	150	U			
121-14-2	2,4-Dinitrotoluene	150	U			
84-66-2	Diethyl phthalate	150	U			
86-73-7	Fluorene	150	U			
7005-72-3	4-Chlorophenyl phenyl ether	150	U			
100-01-6	4-Nitroaniline	150	U			
534-52-1	4,6-Dinitro-2-methylphenol	370	U			
86-30-6	n-Nitrosodiphenylamine	150	U			
101-55-3	4-Bromophenyl phenyl ether	150	U			
118-74-1	Hexachlorobenzene	150	U			
87-86-5	Pentachlorophenol	370	U			
85-01-8	Phenanthrene	460				
120-12-7	Anthracene	160				
84-74-2	Di-n-butylphthalate	220	U			
206-44-0	Fluoranthene	1100				
129-00-0	Pyrene	1300				
85-68-7	Butyl benzyl phthalate	150	U			
91-94-1	3,3'-Dichlorobenzidine	370	U			
56-55-3	Benzo(a)anthracene	770				
218-01-9	Chrysene	880				
117-81-7	bis(2-Ethylhexyl)phthalate	440	U			
117-84-0	Di-n-octyl phthalate	220	U			
205-99-2	Benzo(b)fluoranthene	960				
207-08-9	Benzo(k)fluoranthene	790				
50-32-8	Benzo(a)pyrene	900				
53-70-3	Dibenz(a,h)anthracene	170				
193-39-5	Indeno(1,2,3-cd)pyrene	630				
191-24-2	Benzo(g,h,i)perylene	570				

	SEMIV	OLATILE ORGANICS A	NALYSI	S DATA SHE	ΞT		
Lab Name: <u>N</u>	New Englar	d Testing Laboratory	_ Contr	act: <u>ET+L N</u>	ewb	N	lorth-1
Lab Code: F	RI010	Case No.: C1111-1	18 SA	S No.: Strate	gi SI	DG No.:	Strategic E
Matrix: (soil/wa	ater) <u>SC</u>	IL		Lab Sample	ID:	North-1	
Sample wt/vol:	<u>16</u> .	236 (g/ml) G		Lab File ID:		B111804	4.D
Level: (low/me	ed) LO	W		Date Receiv	ed:	11/11/20	016
	9.37	decanted:(Y/N)	N	Date Extract			
-		. ,					
Concentrated E		、		Date Analyz			010
Injection Volum	1.0 <u>1.0</u>	_ (uL)		Dilution Fac	tor:	1.0	
GPC Cleanup:	(Y/N)	N pH:					
			_				
			_	ONCENTRATI	-		
CAS NO.		COMPOUND	(u	g/L or ug/Kg)	UG	6/KG	Q
62 75 0		n Nitropodimothylomir				200	11
<u>62-75-9</u> 110-86-2		n-Nitrosodimethylamir Pyridine	le			<u>200</u> 140	U U
108-95-2		Phenol				140	U
62-53-3		Aniline				140	U
111-44-4		bis(2-Chloroethyl)ethe	er			140	U
95-57-8		2-Chlorophenol	-			140	U
541-73-1		1,3-Dichlorobenzene				140	U
106-46-7		1,4-Dichlorobenzene				140	U
95-50-1		1,2-Dichlorobenzene				140	U
95-48-7		2-Methylphenol				140	U
108-60-2	1	2,2'-oxybis (1-chloropr	ropane)			140	U
106-44-5		3- & 4-Methylphenol				270	U
621-64-7	7	n-Nitroso-di-n-propyla	mine			140	U
67-72-1		Hexachloroethane				140	U
98-95-3		Nitrobenzene				140	U
78-59-1		Isophorone				140	U
88-75-5		2-Nitrophenol				340	U
<u> 105-67-9</u>	9	2,4-Dimethylphenol				680	U
<u> 65-85-0 </u> 111-91-1	1	Benzoic acid bis(2-Chloroethoxy)me	othano			<u>1000</u> 140	UU
120-83-2		2,4-Dichlorophenol				340	U
120-82-2		1,2,4-Trichlorobenzen	P			140	U
91-20-3		Naphthalene	0			180	
106-47-8	8	4-Chloroaniline				140	U
87-68-3		Hexachlorobutadiene				140	U
59-50-7		4-Chloro-3-methylphe	nol			340	U
91-57-6		2-Methylnaphthalene				170	
77-47-4		Hexachlorocyclopenta	Idiene			140	U
88-06-2		2,4,6-Trichlorophenol				140	U
95-95-4		2,4,5-Trichlorophenol				140	U
91-58-7		2-Chloronaphthalene				140	U
88-74-4		2-Nitroaniline				140	U
131-11-3		Dimethyl phthalate				340	U
208-96-8		Acenaphthylene				290	
606-20-2		2,6-Dinitrotoluene				140	U
99-09-2		3-Nitroaniline				140	U
83-32-9		Acenaphthene				190	

NEL	LAB
L	7

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET						
Lab Name:	New Eng	land Testing Laboratory Contract: ET+L Newb	No	rth-1		
Lab Code:	RI010	Case No.: C1111-18 SAS No.: Strategi SI	DG No.: S	strategic E		
Matrix: (soil/v	vater)	SOIL Lab Sample ID:	North-1			
Sample wt/vo	,	·	B111804.I	 ר		
Level: (low/r	ned)	LOW Date Received:	11/11/201	6		
% Moisture:	9.37	decanted:(Y/N) N Date Extracted:	11/17/201	6		
Concentrated	d Extract	/olume: 1000 (uL) Date Analyzed:	11/18/201	6		
Injection Volu	ume: 1.	Dilution Factor:	1.0			
, GPC Cleanu		、 ,				
	p. (1/1 1)					
		CONCENTRATION	UNITS:			
CAS NO).	COMPOUND (ug/L or ug/Kg) UG	6/KG	Q		
	_					
51-28-		2,4-Dinitrophenol	340	U		
100-02		4-Nitrophenol	340	U		
132-64		Dibenzofuran	230			
121-14		2,4-Dinitrotoluene	140	U		
84-66-		Diethyl phthalate	140	U		
86-73-		Fluorene	320			
7005-7		4-Chlorophenyl phenyl ether 4-Nitroaniline	140 140	UU		
<u>100-01</u> 534-52		4,6-Dinitro-2-methylphenol	340	U		
86-30-		n-Nitrosodiphenylamine	140	U		
101-5		4-Bromophenyl phenyl ether	140	U		
118-74		Hexachlorobenzene	140	U		
87-86-		Pentachlorophenol	340	U		
85-01-		Phenanthrene	3300			
120-12		Anthracene	830			
84-74-		Di-n-butylphthalate	200	U		
206-44		Fluoranthene	4200			
129-00		Pyrene	4400			
85-68-		Butyl benzyl phthalate	140	U		
91-94-		3,3'-Dichlorobenzidine	340	U		
56-55-	3	Benzo(a)anthracene	2400			
218-01	1-9	Chrysene	2300			
117-8 <i>°</i>	1-7	bis(2-Ethylhexyl)phthalate	410	U		
117-84	1-0	Di-n-octyl phthalate	200	U		
205-99		Benzo(b)fluoranthene	2000			
207-08		Benzo(k)fluoranthene	1800			
50-32-		Benzo(a)pyrene	2200			
53-70-		Dibenz(a,h)anthracene	390			
		Indeno(1,2,3-cd)pyrene	1500			
191-24	1-2	Benzo(g,h,i)perylene	1400			

NEL	LAB
7	

Lab Name: New England Testing Laboratory Contract: ET+L Newb ESS111716 Lab Code: RI010 Case No.: C1111-18 SAS No.: Strategi SDG No.: Strategic E Matrix: (soil/water) SOIL Lab Sample ID: BSS111716 Sample wt/vol: 15 (g/ml) G Lab Sample ID: BSS111716 Sample wt/vol: 15 (g/ml) G Lab Sample ID: BSS111716 Concentrated Extract Volume: 100 (uL) Date Extracted: 11/17/2016 Concentrated Extract Volume: 100 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:		SEI	MIVOLATILE	ORGANICS	ANALYS	IS DATA SHE	ET		
Matrix: SOL Lab Sample ID: BSS111716 Sample wt/vol: 15 (g/ml) G Lab File ID: BS111704.D Level: (low/med) LOW Date Received: 11/11/2016 % Moisture: 0 decanted:(Y/N) N Date Extracted: 11/17/2016 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Date Analyzed: 11/17/2016 GPC Cleanup: (Y/N) N pH:	Lab Name:	New En	gland Testin	g Laboratory	Cont	ract: <u>ET+L N</u>	ewb	BSS	5111716
Sample wt/vol: 15 (g/ml) G Lab File ID: B111704.D Level: (low/med) LOW Date Received: 11/17/2016 Level: (low/med) LOW Date Extracted: 11/17/2016 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Date Analyzed: 11/17/2016 GPC Cleanup: (Y/N) N pH:	Lab Code:	RI010	Cas	e No.: <u>C1111</u>	-18 SA	S No.: Strate	gi SD0	G No.:	Strategic E
Sample wt/vol: 15 (g/ml) G Lab File ID: B111704.D Level: (low/med) LOW Date Received: 11/17/2016 Level: (low/med) LOW Date Extracted: 11/17/2016 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Date Analyzed: 11/17/2016 GPC Cleanup: (Y/N) N pH:	Matrix: (soil/v	water)	SOIL			Lab Sample	e ID: B	SS1117	716
Level: (low/med) LOW Date Received: 11/11/2016 % Moisture: 0 decanted:(Y/N) N Date Extracted: 11/11/2016 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:		,							
% Moisture: 0 decanted: (Y/N) N Date Extracted: 11/17/2016 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:	Sample wt/vo	OI:	15	(g/ml) <u>G</u>		Lab File ID:	B	111704	.D
Concentrated Extract Volume: 1000 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:	Level: (low/r	med)	LOW			Date Receiv	ved: 1	1/11/20	16
Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:	% Moisture:	0	deca	anted:(Y/N)	Ν	Date Extrac	ted: 1	1/17/20	16
GPC Cleanup: (Y/N) N pH:	Concentrated	d Extract	Volume: 1	000 (uL)		Date Analyz	zed: 1	1/17/20	16
GPC Cleanup: (Y/N) N pH:	Iniection Volu	ume: 1	0(uL)	、 ,		Dilution Fac	tor: 1	.0	
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 62-75-9 n-Nitrosodimethylamine 200 U 110-86-1 Pyridine 130 U 108-95-2 Phenol 130 U 108-95-2 Phenol 130 U 95-57-8 2-Chlorophenol 130 U 95-57-8 2-Chlorophenol 130 U 95-50-1 1,3-Dichlorobenzene 130 U 95-50-1 1,2-Dichlorobenzene 130 U 106-46-7 2-Methylphenol 270 U 106-44-5 3- & 4-Methylphenol 270 U 108-60-1 2,2'oxybis (1-chloropropane) 130 U 106-44-5 3- & & 4-Methylphenol 270 U 67-72-1 Hexachloroethane 130 U 98-95-3 Nitrobenzene 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U	-		、 /	n Ll·			_		
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 62-75-9 n-Nitrosodimethylamine 100 U 110-86-1 Pyridine 130 U 108-95-2 Phenol 130 U 130 U 62-75-9 Aniline 130 U 111-44-4 130 U 95-57-8 2-Chloroethyl)ether 130 U 106-46-7 1,4-Dichlorobenzene 130 U 95-50-1 1,2-Dichlorobenzene 130 U 106-46-7 1,4-Dichlorobenzene 130 U 95-48-7 2-Methylphenol 130 U 108-60-1 2,2'-oxybis (1-chloropropane) 130 U 108-64-7 n-Nitroso-di-n-propylamine 130 U 108-67-9 130 U 108-64-7 n-Nitrobenzene 130 U 108-67-9 130 U 108-67-9 2,4-Dimethylphenol 270 U 621-64-7 n-Nitroso-di-n-propylamine 130 U 105-67-9 2,4-Dimethylphenol		p. (1/N)		рп	_				
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 62-75-9 n-Nitrosodimethylamine 100 U 110-86-1 Pyridine 130 U 108-95-2 Phenol 130 U 130 U 62-75-9 Aniline 130 U 111-44-4 bis(2-Chloroethyl)ether 130 U 95-57-8 2-Chlorophenol 130 U 106-46-7 1,4-Dichlorobenzene 130 U 95-50-1 1,2-Dichlorobenzene 130 U 106-46-7 1,4-Dichlorobenzene 130 U 95-48-7 2-Methylphenol 130 U 108-60-1 2,2'oxybis (1-chloropropane) 130 U 108-64-7 n-Nitroso-di-n-propylamine 130 U 108-67-9 10 100 10 100 10					С	ONCENTRAT	ION UI	NITS:	
62-75-9 n-Nitrosodimethylamine 200 U 110-86-1 Pyridine 130 U 108-95-2 Phenol 130 U 62-53-3 Aniline 130 U 111-44-4 bis(2-Chloroethyl)ether 130 U 95-57-8 2-Chlorophenol 130 U 95-50-1 1,3-Dichlorobenzene 130 U 95-50-1 1,2-Dichlorobenzene 130 U 95-48-7 2-Methylphenol 130 U 106-46-7 1.4-Dichlorobenzene 130 U 95-50-1 1,2-Dichlorobenzene 130 U 106-46-7 1.4-Dichlorobenzene 130 U 108-60-1 2,2'-oxybis (1-chloropropane) 130 U 108-61 2,2'-oxybis (1-chlorophylamine 130 U 106-47-8 3-& 4-Methylphenol 270 U 621-64-7 n-Nitroso-di-n-propylamine 130 U 98-95-3 Nitrobenzene 130 U	CASNO	r	COMPC						0
110-86-1 Pyridine 130 U 108-95-2 Phenol 130 U 62-53-3 Aniline 130 U 62-53-3 Aniline 130 U 95-57-8 2-Chloroethyl)ether 130 U 95-57-8 2-Chlorobenzene 130 U 95-50-1 1,3-Dichlorobenzene 130 U 95-50-1 1,2-Dichlorobenzene 130 U 95-48-7 2-Methylphenol 130 U 106-44-5 3-8-4-Methylphenol 270 U 621-64-7 n-Nitroso-di-n-propylamine 130 U 67-72-1 Hexachloroethane 130 U 98-95-3 Nitrobenzene 130 U 98-95-1 Isophorone 130 U 88-75-5 2-Nitrophenol 300 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 110-91-1 bis(2-Chloroethoxy			COMP C		(u	gir of ugirty)	00/	.0	
110-86-1 Pyridine 130 U 108-95-2 Phenol 130 U 62-53-3 Aniline 130 U 95-57-8 2-Chloroethyl)ether 130 U 95-57-8 2-Chlorobpenol 130 U 95-57-8 2-Chlorobenzene 130 U 95-50-1 1,4-Dichlorobenzene 130 U 95-50-1 2,2'-oxybis (1-chloropropane) 130 U 95-48-7 2-Methylphenol 270 U 108-60-1 2,2'-oxybis (1-chloropropane) 130 U 106-44-5 3-& & +Methylphenol 270 U 621-64-7 n-Nitroso-di-n-propylamine 130 U 98-95-3 Nitrobenzene 130 U 98-95-3 Nitrobenzene 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 </td <td>62-75-</td> <td>-9</td> <td>n-Nitro</td> <td>sodimethvlan</td> <td>nine</td> <td></td> <td></td> <td>200</td> <td>U</td>	62-75-	-9	n-Nitro	sodimethvlan	nine			200	U
108-95-2 Phenol 130 U 62-53-3 Aniline 130 U 111-44-4 bis(2-Chloroethyl)ether 130 U 95-57-8 2-Chlorophenol 130 U 95-67-7 1,3-Dichlorobenzene 130 U 95-48-7 1,4-Dichlorobenzene 130 U 95-48-7 2-Methylphenol 130 U 95-48-7 2-Methylphenol 130 U 106-46-7 1,2-Dichlorobenzene 130 U 95-48-7 2-Methylphenol 130 U 108-60-1 2,2'-oxybis (1-chloropropane) 130 U 106-44-5 3-& & 4-Methylphenol 270 U 67-72-1 Hexachloroethane 130 U 98-95-3 Nitrobenzene 130 U 88-75-5 2-Nitrophenol 300 U 105-67-9 2,4-Dichlorophenol 330 U 120-83-2 2,4-Dichlorophenol 330 U 120-83-	-								
62-53-3 Aniline 130 U 111-44-4 bis(2-Chloroethyl)ether 130 U 95-57-8 2-Chlorophenol 130 U 95-57-8 2-Chlorophenol 130 U 95-11 1,3-Dichlorobenzene 130 U 95-50-1 1,2-Dichlorobenzene 130 U 95-48-7 2-Methylphenol 130 U 106-44-5 3-& & -Methylphenol 270 U 108-60-1 2,2'-oxybis (1-chloropropane) 130 U 108-44-5 3-& & -Methylphenol 270 U 621-64-7 n-Nitroso-di-n-propylamine 130 U 98-95-3 Nitrobenzene 130 U 98-95-3 Nitrobenzene 130 U 78-59-1 Isophorone 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-	-								
95-57-8 2-Chlorophenol 130 U 541-73-1 1,3-Dichlorobenzene 130 U 106-46-7 1,4-Dichlorobenzene 130 U 95-50-1 1,2-Dichlorobenzene 130 U 95-50-1 1,2-Dichlorobenzene 130 U 95-48-7 2-Methylphenol 130 U 108-60-1 2,2'-oxybis (1-chloropropane) 130 U 106-44-5 3-& & 4-Methylphenol 270 U 621-64-7 n-Nitroso-di-n-propylamine 130 U 67-72-1 Hexachloroethane 130 U 98-95-3 Nitrobenzene 130 U 78-59-1 Isophorone 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U <td>-</td> <td></td> <td>Aniline</td> <td>9</td> <td></td> <td></td> <td></td> <td>130</td> <td>U</td>	-		Aniline	9				130	U
541-73-1 1,3-Dichlorobenzene 130 U 106-46-7 1,4-Dichlorobenzene 130 U 95-50-1 1,2-Dichlorobenzene 130 U 95-48-7 2-Methylphenol 130 U 108-60-1 2,2'-oxybis (1-chloropropane) 130 U 106-44-5 3- & 4-Methylphenol 270 U 621-64-7 n-Nitroso-di-n-propylamine 130 U 98-95-3 Nitrobenzene 130 U 98-95-3 Nitrobenzene 130 U 98-95-3 Nitrobenzene 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 120-83-2 2,4-Dichlorophenol 30 U 106-47-8 4-Chlorooaniline 130 U <td>111-44</td> <td>4-4</td> <td>bis(2-0</td> <td>Chloroethyl)etl</td> <td>ner</td> <td></td> <td></td> <td>130</td> <td>U</td>	111-44	4-4	bis(2-0	Chloroethyl)etl	ner			130	U
106-46-7 1,4-Dichlorobenzene 130 U 95-50-1 1,2-Dichlorobenzene 130 U 95-48-7 2-Methylphenol 130 U 108-60-1 2,2'-oxybis (1-chloropropane) 130 U 106-44-5 3- & 4-Methylphenol 270 U 621-64-7 n-Nitroso-di-n-propylamine 130 U 67-72-1 Hexachloroethane 130 U 98-95-3 Nitrobenzene 130 U 78-59-1 Isophorone 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 91-20-3 Naphthalene 130 U 91-64-7-8 4-Chloroa-3-methylphenol 330 U 91-57-6 2-Methylnaphthalene 130 U <	95-57-	-8	2-Chlo	orophenol				130	U
95-50-1 1,2-Dichlorobenzene 130 U 95-48-7 2-Methylphenol 130 U 108-60-1 2,2'-oxybis (1-chloropropane) 130 U 106-44-5 3- & 4-Methylphenol 270 U 621-64-7 n-Nitroso-di-n-propylamine 130 U 67-72-1 Hexachloroethane 130 U 98-95-3 Nitrobenzene 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 120-83-3 Naphthalene 130 U 120-83-3 Hexachlorobutadiene 130 U 91-20-3 Naphthalene 130 U 91-57-6 2-Methylnaphthalene 130 U 91-57-6 2-Methylnaphthalene 130 U	541-73	3-1	1,3-Dio	chlorobenzene	Э				
95-48-7 2-Methylphenol 130 U 108-60-1 2,2'-oxybis (1-chloropropane) 130 U 106-44-5 3-& & -Methylphenol 270 U 621-64-7 n-Nitroso-di-n-propylamine 130 U 67-72-1 Hexachloroethane 130 U 98-95-3 Nitrobenzene 130 U 78-59-1 Isophorone 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 120-82-1 1,2,4-Trichlorobenzene 130 U 91-20-3 Naphthalene 130 U 91-20-3 Naphthalene 130 U 91-50-7 4-Chloroa-3-methylphenol 330 U 91-57-6 2-Methylnaphthalene 130 U	-								
108-60-1 2,2'-oxybis (1-chloropropane) 130 U 106-44-5 3- & 4-Methylphenol 270 U 621-64-7 n-Nitroso-di-n-propylamine 130 U 67-72-1 Hexachloroethane 130 U 98-95-3 Nitrobenzene 130 U 78-59-1 Isophorone 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 120-82-1 1,2,4-Trichlorobenzene 130 U 91-20-3 Naphthalene 130 U 91-20-3 Naphthalene 130 U 95-50-7 4-Chloro-alline 130 U 95-50-7 4-Chloro-alline 130 U 95-50-7 4-Chloro-alline 130 U	-				Э				
106-44-5 3- & 4-Methylphenol 270 U 621-64-7 n-Nitroso-di-n-propylamine 130 U 67-72-1 Hexachloroethane 130 U 98-95-3 Nitrobenzene 130 U 78-59-1 Isophorone 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 120-83-1 1,2,4-Trichlorobenzene 130 U 91-20-3 Naphthalene 130 U 91-20-3 Naphthalene 130 U 87-68-3 Hexachlorobutadiene 130 U 91-57-6 2-Methylnaphthalene 130 U 91-57-6 2.4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U	-								
621-64-7 n-Nitroso-di-n-propylamine 130 U 67-72-1 Hexachloroethane 130 U 98-95-3 Nitrobenzene 130 U 78-59-1 Isophorone 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 120-83-2 2,4-Trichlorobenzene 130 U 120-83-1 1,2,4-Trichlorobenzene 130 U 91-20-3 Naphthalene 130 U 106-47-8 4-Chloroaniline 130 U 87-68-3 Hexachlorobutadiene 130 U 91-57-6 2-Methylnaphthalene 130 U 91-57-6 2.4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U	-								
67-72-1 Hexachloroethane 130 U 98-95-3 Nitrobenzene 130 U 78-59-1 Isophorone 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 120-82-1 1,2,4-Trichlorobenzene 130 U 91-20-3 Naphthalene 130 U 106-47-8 4-Chloroaniline 130 U 87-68-3 Hexachlorobutadiene 130 U 91-57-6 2-Methylnaphthalene 130 U 91-57-6 2.4,6-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 91-58-7 2-Chloronaphthalene 130 U 91-58-7 2-Chloronaphthalene 130 U	-								
98-95-3 Nitrobenzene 130 U 78-59-1 Isophorone 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 120-83-2 2,4-Dichlorobenzene 130 U 120-82-1 1,2,4-Trichlorobenzene 130 U 91-20-3 Naphthalene 130 U 91-57-6 2-Methylnaphthalene 130 U 95-50-7 4-Chloro-3-methylphenol 130 U 88-06-2					lamine				
78-59-1 Isophorone 130 U 88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 120-83-2 2,4-Dichlorobenzene 130 U 120-82-1 1,2,4-Trichlorobenzene 130 U 91-20-3 Naphthalene 130 U 106-47-8 4-Chloroaniline 130 U 106-47-8 4-Chloro-3-methylphenol 330 U 91-57-6 2-Methylnaphthalene 130 U 91-57-6 2-Methylnaphthalene 130 U 91-57-6 2,4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 91-58-7 2-Chloronaphthalene 130 U <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-								
88-75-5 2-Nitrophenol 330 U 105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 120-82-1 1,2,4-Trichlorobenzene 130 U 91-20-3 Naphthalene 130 U 106-47-8 4-Chloroaniline 130 U 87-68-3 Hexachlorobutadiene 130 U 91-57-6 2-Methylnaphthalene 130 U 91-57-6 2-Methylnaphthalene 130 U 91-57-6 2,4,6-Trichlorophenol 330 U 91-57-6 2,4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 131-11-3 Dimethyl phthalate 330 U									
105-67-9 2,4-Dimethylphenol 670 U 65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 120-83-2 2,4-Dichlorophenol 330 U 120-82-1 1,2,4-Trichlorobenzene 130 U 91-20-3 Naphthalene 130 U 106-47-8 4-Chloroaniline 130 U 87-68-3 Hexachlorobutadiene 130 U 59-50-7 4-Chloro-3-methylphenol 330 U 91-57-6 2-Methylnaphthalene 130 U 77-47-4 Hexachlorocyclopentadiene 130 U 88-06-2 2,4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 91-58-7 2-Chloronaphthalene 130 U 131-11-3 Dimethyl phthalate 330									
65-85-0 Benzoic acid 1000 U 111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 120-82-1 1,2,4-Trichlorobenzene 130 U 91-20-3 Naphthalene 130 U 106-47-8 4-Chloroaniline 130 U 87-68-3 Hexachlorobutadiene 130 U 91-50-7 4-Chloro-3-methylphenol 330 U 91-57-6 2-Methylnaphthalene 130 U 91-57-6 2,4,6-Trichlorophenol 130 U 77-47-4 Hexachlorocyclopentadiene 130 U 88-06-2 2,4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 208-96-8 Acenaphthylene 130 U									
111-91-1 bis(2-Chloroethoxy)methane 130 U 120-83-2 2,4-Dichlorophenol 330 U 120-82-1 1,2,4-Trichlorobenzene 130 U 91-20-3 Naphthalene 130 U 106-47-8 4-Chloroaniline 130 U 87-68-3 Hexachlorobutadiene 130 U 59-50-7 4-Chloro-3-methylphenol 330 U 91-57-6 2-Methylnaphthalene 130 U 77-47-4 Hexachlorocyclopentadiene 130 U 88-06-2 2,4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 88-74-4 2-Nitroaniline 130 U 131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 99-09-2 3-Nitroaniline 130 U									
120-83-2 2,4-Dichlorophenol 330 U 120-82-1 1,2,4-Trichlorobenzene 130 U 91-20-3 Naphthalene 130 U 106-47-8 4-Chloroaniline 130 U 87-68-3 Hexachlorobutadiene 130 U 59-50-7 4-Chloro-3-methylphenol 330 U 91-57-6 2-Methylnaphthalene 130 U 77-47-4 Hexachlorocyclopentadiene 130 U 88-06-2 2,4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 91-58-7 2-Chloronaphthalene 130 U 131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U					methane				_
120-82-1 1,2,4-Trichlorobenzene 130 U 91-20-3 Naphthalene 130 U 106-47-8 4-Chloroaniline 130 U 87-68-3 Hexachlorobutadiene 130 U 59-50-7 4-Chloro-3-methylphenol 330 U 91-57-6 2-Methylnaphthalene 130 U 77-47-4 Hexachlorocyclopentadiene 130 U 88-06-2 2,4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 91-58-7 2-Chloronaphthalene 130 U 91-58-7 2-Chloronaphthalene 130 U 131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U									
91-20-3 Naphthalene 130 U 106-47-8 4-Chloroaniline 130 U 87-68-3 Hexachlorobutadiene 130 U 59-50-7 4-Chloro-3-methylphenol 330 U 91-57-6 2-Methylnaphthalene 130 U 77-47-4 Hexachlorocyclopentadiene 130 U 88-06-2 2,4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 91-58-7 2-Chloronaphthalene 130 U 91-58-7 2-Chloronaphthalene 130 U 88-74-4 2-Nitroaniline 130 U 131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U			,		ene				U
87-68-3 Hexachlorobutadiene 130 U 59-50-7 4-Chloro-3-methylphenol 330 U 91-57-6 2-Methylnaphthalene 130 U 77-47-4 Hexachlorocyclopentadiene 130 U 88-06-2 2,4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 88-74-4 2-Nitroaniline 130 U 131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U	91-20-	-3							U
59-50-7 4-Chloro-3-methylphenol 330 U 91-57-6 2-Methylnaphthalene 130 U 77-47-4 Hexachlorocyclopentadiene 130 U 88-06-2 2,4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 88-74-4 2-Nitroaniline 130 U 131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U	-								_
91-57-6 2-Methylnaphthalene 130 U 77-47-4 Hexachlorocyclopentadiene 130 U 88-06-2 2,4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 88-74-4 2-Nitroaniline 130 U 131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U									_
77-47-4 Hexachlorocyclopentadiene 130 U 88-06-2 2,4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 88-74-4 2-Nitroaniline 130 U 131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U									_
88-06-2 2,4,6-Trichlorophenol 130 U 95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 88-74-4 2-Nitroaniline 130 U 131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U				<i>/</i> /					_
95-95-4 2,4,5-Trichlorophenol 130 U 91-58-7 2-Chloronaphthalene 130 U 88-74-4 2-Nitroaniline 130 U 131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U									_
91-58-7 2-Chloronaphthalene 130 U 88-74-4 2-Nitroaniline 130 U 131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U	-								_
88-74-4 2-Nitroaniline 130 U 131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U									_
131-11-3 Dimethyl phthalate 330 U 208-96-8 Acenaphthylene 130 U 606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U	-				е				_
208-96-8 Acenaphthylene 130 U 606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U									_
606-20-2 2,6-Dinitrotoluene 130 U 99-09-2 3-Nitroaniline 130 U	-								-
99-09-2 3-Nitroaniline 130 U	-								
	-								-
	83-32-			phthene				130	U

NEL	LAB
2	7

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET Lab Name: New England Testing Laboratory Contract: ET+L Newb BSS111716 Lab Code: RI010 Case No.: C1111-18 SAS No.: Strategi SDG No.: Strategic E Matrix: (soil/water) SOIL Lab Sample ID: BSS111716 Sample wt/vol: 15 (g/ml) G Lab Sample ID: BSS111716 Level: (low/med) LOW Date Received: 11/11/2016 % Moisture: 0 decanted:(Y/N) N Date Extracted: 11/17/2016 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:
Lab Name: New England Testing Laboratory Contract: ET+L Newb
Matrix: (soil/water) SOIL Lab Sample ID: BSS111716 Sample wt/vol: 15 (g/ml) G Lab File ID: B111704.D Level: (low/med) LOW Date Received: 11/11/2016 % Moisture: 0 decanted:(Y/N) N Date Extracted: 11/17/2016 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Date Analyzed: 11/17/2016 GPC Cleanup: (Y/N) N pH:
Sample wt/vol: 15 (g/ml) G Lab File ID: B111704.D Level: (low/med) LOW Date Received: 11/11/2016 % Moisture: 0 decanted:(Y/N) N Date Extracted: 11/17/2016 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Date Analyzed: 11/17/2016 GPC Cleanup: (Y/N) N pH:
Level: (low/med) LOW Date Received: 11/11/2016 % Moisture: 0 decanted:(Y/N) N Date Extracted: 11/17/2016 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Date Analyzed: 11/17/2016 GPC Cleanup: (Y/N) N pH:
Level: (low/med) LOW Date Received: 11/11/2016 % Moisture: 0 decanted:(Y/N) N Date Extracted: 11/17/2016 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Date Analyzed: 11/17/2016 GPC Cleanup: (Y/N) N pH:
% Moisture: 0 decanted:(Y/N) N Date Extracted: 11/17/2016 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:
Concentrated Extract Volume: 1000 (uL) Date Analyzed: 11/17/2016 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:
Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:
GPC Cleanup: (Y/N) N pH:
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 51-28-5 2,4-Dinitrophenol 330 U 100-02-7 4-Nitrophenol 330 U 132-64-9 Dibenzofuran 130 U 121-14-2 2,4-Dinitrotoluene 130 U 84-66-2 Diethyl phthalate 130 U 7005-72-3 4-Chlorophenyl phenyl ether 130 U 7005-72-3 4-Chlorophenyl phenyl ether 130 U 100-01-6 4-Nitroaniline 130 U 100-01-6 4-Nitroaniline 130 U 101-55-3 4-6-Dinitro-2-methylphenol 330 U 86-30-6 n-Nitrosodiphenylamine 130 U 101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorobenzene 130 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 2
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 51-28-5 2,4-Dinitrophenol 330 U 100-02-7 4-Nitrophenol 330 U 132-64-9 Dibenzofuran 130 U 121-14-2 2,4-Dinitrotoluene 130 U 84-66-2 Diethyl phthalate 130 U 86-73-7 Fluorene 130 U 7005-72-3 4-Chlorophenyl phenyl ether 130 U 100-01-6 4-Nitroaniline 130 U 534-52-1 4,6-Dinitro-2-methylphenol 330 U 86-30-6 n-Nitrosodiphenyl amine 130 U 101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 20-12-7 Anthracene 130 U 120-12-7 Anthracene 130 U
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 51-28-5 2,4-Dinitrophenol 330 U 100-02-7 4-Nitrophenol 330 U 132-64-9 Dibenzofuran 130 U 121-14-2 2,4-Dinitrotoluene 130 U 84-66-2 Diethyl phthalate 130 U 86-73-7 Fluorene 130 U 7005-72-3 4-Chlorophenyl phenyl ether 130 U 100-01-6 4-Nitroaniline 130 U 534-52-1 4,6-Dinitro-2-methylphenol 330 U 86-30-6 n-Nitrosodiphenylamine 130 U 101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorophenol 330 U 87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 20-12-7 Anthracene 130 U
51-28-5 2,4-Dinitrophenol 330 U 100-02-7 4-Nitrophenol 330 U 132-64-9 Dibenzofuran 130 U 121-14-2 2,4-Dinitrotoluene 130 U 84-66-2 Diethyl phthalate 130 U 86-73-7 Fluorene 130 U 7005-72-3 4-Chlorophenyl phenyl ether 130 U 100-01-6 4-Nitroanilne 130 U 534-52-1 4,6-Dinitro-2-methylphenol 330 U 86-30-6 n-Nitrosodiphenyl amine 130 U 101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorobenzene 130 U 87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 206-44-0 Fluoranthene 130 U 206-44-0 Fluoranthene 130 U <
100-02-7 4-Nitrophenol 330 U 132-64-9 Dibenzofuran 130 U 121-14-2 2,4-Dinitrotoluene 130 U 84-66-2 Diethyl phthalate 130 U 86-73-7 Fluorene 130 U 7005-72-3 4-Chlorophenyl phenyl ether 130 U 100-01-6 4-Nitroaniline 130 U 534-52-1 4,6-Dinitro-2-methylphenol 330 U 86-30-6 n-Nitrosodiphenylamine 130 U 101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorobenzene 130 U 87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 8
132-64-9 Dibenzofuran 130 U 121-14-2 2,4-Dinitrotoluene 130 U 84-66-2 Diethyl phthalate 130 U 84-66-2 Diethyl phthalate 130 U 84-66-2 Diethyl phthalate 130 U 86-73-7 Fluorene 130 U 7005-72-3 4-Chlorophenyl phenyl ether 130 U 100-01-6 4-Nitroaniline 130 U 534-52-1 4,6-Dinitro-2-methylphenol 330 U 86-30-6 n-Nitrosodiphenylamine 130 U 101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorobenzene 130 U 87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 1
121-14-2 2,4-Dinitrotoluene 130 U 84-66-2 Diethyl phthalate 130 U 86-73-7 Fluorene 130 U 7005-72-3 4-Chlorophenyl phenyl ether 130 U 100-01-6 4-Nitroaniline 130 U 534-52-1 4,6-Dinitro-2-methylphenol 330 U 86-30-6 n-Nitrosodiphenylamine 130 U 101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorobenzene 130 U 87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
84-66-2 Diethyl phthalate 130 U 86-73-7 Fluorene 130 U 7005-72-3 4-Chlorophenyl phenyl ether 130 U 100-01-6 4-Nitroaniline 130 U 534-52-1 4,6-Dinitro-2-methylphenol 330 U 86-30-6 n-Nitrosodiphenylamine 130 U 101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorobenzene 130 U 87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
86-73-7 Fluorene 130 U 7005-72-3 4-Chlorophenyl phenyl ether 130 U 100-01-6 4-Nitroaniline 130 U 534-52-1 4,6-Dinitro-2-methylphenol 330 U 86-30-6 n-Nitrosodiphenylamine 130 U 101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorobenzene 130 U 87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
7005-72-3 4-Chlorophenyl phenyl ether 130 U 100-01-6 4-Nitroaniline 130 U 534-52-1 4,6-Dinitro-2-methylphenol 330 U 86-30-6 n-Nitrosodiphenylamine 130 U 101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorobenzene 130 U 87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
100-01-6 4-Nitroaniline 130 U 534-52-1 4,6-Dinitro-2-methylphenol 330 U 86-30-6 n-Nitrosodiphenylamine 130 U 101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorobenzene 130 U 87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
534-52-1 4,6-Dinitro-2-methylphenol 330 U 86-30-6 n-Nitrosodiphenylamine 130 U 101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorobenzene 130 U 87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
86-30-6 n-Nitrosodiphenylamine 130 U 101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorobenzene 130 U 87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
101-55-3 4-Bromophenyl phenyl ether 130 U 118-74-1 Hexachlorobenzene 130 U 87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
118-74-1 Hexachlorobenzene 130 U 87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
87-86-5 Pentachlorophenol 330 U 85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
85-01-8 Phenanthrene 130 U 120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
120-12-7 Anthracene 130 U 84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
84-74-2 Di-n-butylphthalate 200 U 206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
206-44-0 Fluoranthene 130 U 129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
129-00-0 Pyrene 130 U 85-68-7 Butyl benzyl phthalate 130 U 91-94-1 3,3'-Dichlorobenzidine 330 U
85-68-7Butyl benzyl phthalate130U91-94-13,3'-Dichlorobenzidine330U
91-94-1 3,3'-Dichlorobenzidine 330 U
56-55-3 Benzo(a)anthracene 130 U 218-01-9 Chrysene 130 U
117-81-7 bis(2-Ethylhexyl)phthalate 400 U
117-81-7 Dis(2-Ethylnexyl)phthalate 400 0 117-84-0 Di-n-octyl phthalate 200 U
205-99-2 Benzo(b)fluoranthene 130 U
203-39-2 Benzo(b)Indorantiene 130 0 207-08-9 Benzo(k)fluoranthene 130 U
207-08-9 Benzo(k)indorantinene 130 0 50-32-8 Benzo(a)pyrene 130 U
50-52-6 Denzo(a)pyrene 130 0 53-70-3 Dibenz(a,h)anthracene 130 U
193-39-5 Indeno(1,2,3-cd)pyrene 130 U
191-24-2 Benzo(g,h,i)perylene 130 U

2D

SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab Name:	New England T	esting Laboratory	Contract:	ET+L Newburypor	
Lab Code:	RI010	Case No.: <u>C1111-18</u>	SAS No	.: <u>Strategi</u> SDG No.:	Strategic E
Level: (low/m	ned) LOW				

	EPA	S1	S2	S3	S4	S5	S6	тот
	SAMPLE NO.	#	#	#	#	#	#	OUT
01	BSS111716	70	73	76	82	81	118	0
02	LSS111716	79	83	85	87	100	122	0
03	SOUTH-1	83	85	90	96	105	117	0
04	NORTH-1	83	86	89	96	105	125	0

S1	=	2-Fluorophenol	(30-130)
S2	=	Phenol-d6	(30-130)
S3	=	Nitrobenzene-d5	(30-130)
S4	=	2-Fluorobiphenyl	(30-130)
S5	=	2,4,6-Tribromophenol	(30-130)
S6	=	Terphenyl-d14	(30-130)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate diluted out

QC LIMITS

OLM03.0

Semivolatile Laboratory Control Spike

Date Extracted:	11/17/2016
Date Analyzed:	11/17/2016

	Amount Spiked			Lower Recovery	
n Nitro e o dine o thu domain o	ug/Kg	ug/Kg 2121	%	Limit 40	Limit
n-Nitrosodimethylamine	3333 3333	2721	64	40 40	130 130
Phenol			84	-	
Aniline	3333	2266	68	40	130
bis(2-Chloroethyl)ether	3333	3027	91	40	130
2-Chlorophenol	3333	2865	86	40	130
1,3-Dichlorobenzene	3333	2674	80	40	130
1,4-Dichlorobenzene	3333	2709	81	40	130
1,2-Dichlorobenzene	3333	2725	82	40	130
2-Methylphenol	3333	2780	83	40	130
3- & 4-Methylphenol	3333	3060	92	40	130
n-Nitroso-di-n-propylamine	3333	2853	86	40	130
Hexachloroethane	3333	1545	46	40	130
Nitrobenzene	3333	2948	88	40	130
Isophorone	3333	3126	94	40	130
2-Nitrophenol	3333	2848	85	40	130
2,4-Dimethylphenol	3333	2900	87	40	130
bis(2-Chloroethoxy)methane	3333	3206	96	40	130
2,4-Dichlorophenol	3333	2963	89	40	130
1,2,4-Trichlorobenzene	3333	2851	86	40	130
Naphthalene	3333	2864	86	40	130
Hexachlorobutadiene	3333	2146	64	40	130
4-Chloro-3-methylphenol	3333	3273	98	40	130
2-Methylnaphthalene	3333	2924	88	40	130
2,4,6-Trichlorophenol	3333	3079	92	40	130
2,4,5-Trichlorophenol	3333	2884	87	40	130
2-Chloronaphthalene	3333	2992	90	40	130
2-Nitroaniline	3333	3219	97	40	130
Dimethyl phthalate	3333	3398	102	40	130
Acenaphthylene	3333	3008	90	40	130
2,6-Dinitrotoluene	3333	3346	100	40	130
Acenaphthene	3333	2965	89	40	130
4-Nitrophenol	3333	3558	107	40	130
Dibenzofuran	3333	3087	93	40	130
2,4-Dinitrotoluene	3333	3412	102	40	130
Diethyl phthalate	3333	3358	101	40	130
Fluorene	3333	3188	96	40	130

Semivolatile Soil Laboratory Control Spike

Date Extracted: 11/17/2016 Date Analyzed: 11/17/2016

	Amount Spiked	Result,	Recovery	Lower Recovery	Upper Recovery
	ug/Kg	ug/Kg	%	Limit	Limit
4-Chlorophenyl phenyl ether	3333	3190	96	40	130
4-Bromophenyl phenyl ether	3333	3383	101	40	130
Hexachlorobenzene	3333	3283	98	40	130
Pentachlorophenol	3333	2972	89	40	130
Phenanthrene	3333	3292	99	40	130
Anthracene	3333	3292	99	40	130
Di-n-butylphthalate	3333	3291	99	40	130
Fluoranthene	3333	3410	102	40	130
Pyrene	3333	2930	88	40	130
Butyl benzyl phthalate	3333	3846	115	40	130
Benzo(a)anthracene	3333	3520	106	40	130
Chrysene	3333	3484	105	40	130
bis(2-Ethylhexyl)phthalate	3333	4097	123	40	130
Di-n-octyl phthalate	3333	4244	127	40	130
Benzo(b)fluoranthene	3333	3903	117	40	130
Benzo(k)fluoranthene	3333	3777	113	40	130
Benzo(a)pyrene	3333	3734	112	40	130
Indeno(1,2,3-cd)pyrene	3333	3656	110	40	130
Dibenz(a,h)anthracene	3333	3761	113	40	130
Benzo(g,h,i)perylene	3333	3661	110	40	130

RESULTS: VOLATILE ORGANIC COMPOUNDS

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Case No.: <u>C1111-18</u>	Client Name: Strategic Environmental
Method: 8260	Lab Sample ID: SOUTH-1
Matrix: (soil/water) SOIL	Lab File ID: C111708.D
Sample wt/vol: 20.5 (g/ml) G	Date Sampled: 11/10/2016
% Moisture 9.37	Date Analyzed: 11/17/2016
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: KC	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
75-01-4	Vinyl Chloride		27	U
74-83-9	Bromomethane		27	U
75-00-3	Chloroethane		27	U
67-64-1	Acetone		130	U
75-35-4	1,1-Dichloroethene		27	U
75-15-0	Carbon Disulfide		27	U
75-09-2	Methylene Chloride		54	U
1634-04-4	tert-Butyl methyl ether		27	U
156-60-5	trans-1,2 Dichloroethene		27	U
75-34-3	1,1-Dichloroethane		27	U
78-93-3	2-Butanone		270	U
594-20-7	2,2-Dichloropropane		27	U
156-59-2	cis-1,2-Dichloroethene		27	U
67-66-3	Chloroform		27	U
74-97-5	Bromochloromethane		27	U
71-55-6	1,1,1-Trichloroethane		27	U
563-58-6	1,1-Dichloropropene		27	U
56-23-5	Carbon Tetrachloride		27	U
71-43-2	Benzene		27	U
107-06-2	1,2-Dichloroethane		27	U
79-01-6	Trichloroethene		27	U
78-87-5	1,2-Dichloropropane		27	U
75-27-4	Bromodichloromethane		27	U
74-95-3	Dibromomethane		27	U
108-10-1	4-Methyl-2-pentanone		130	U
106-93-4	Ethylene Dibromide		27	U
108-88-3	Toluene		27	U
10061-01-5	cis-1,3-Dichloropropene		27	U
10061-02-6	Trans-1,3-Dichloropropene		27	U
79-00-5	1,1,2-Trichloroethane		27	U
591-78-6	2-Hexanone		130	U
127-18-4	Tetrachloroethene		27	U
124-48-1	Chlorodibromomethane		27	U
108-90-7	Chlorobenzene		27	U
630-20-6	1,1,1,2-Tetrachloroethane		27	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>C1111-18</u>	Client Name: Strategic Environmental
Method: 8260	Lab Sample ID: SOUTH-1
Matrix: (soil/water) SOIL	Lab File ID: C111708.D
Sample wt/vol: 20.5 (g/ml) G	Date Sampled: <u>11/10/2016</u>
% Moisture 9.37	Date Analyzed: 11/17/2016
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: KC	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UG/KG	Q
100-41-4	Ethylbenzene	27	U
1330-20-7	m & p-Xylene	54	U
95-47-6	o-Xylene	27	U
100-42-5	Styrene	27	U
75-25-2	Bromoform	27	U
98-82-8	Isopropylbenzene	27	U
79-34-5	1,1,2,2-Tetrachloroethane	27	U
108-86-1	Bromobenzene	27	U
96-18-4	1,2,3-Trichloropropane	27	U
95-49-8	2-Chlorotoluene	27	U
103-65-1	n-Propylbenzene	27	U
108-67-8	1,3,5-Trimethylbenzene	27	U
106-43-4	4-Chlorotoluene	27	U
98-06-6	tert-Butylbenzene	27	U
95-63-6	1,2,4-Trimethylbenzene	27	U
135-98-8	sec-Butylbenzene	27	U
99-87-6	p-Isopropyltoluene	27	U
75-87-3	Chloromethane	27	U
75-65-0	tert butyl alcohol	540	U
541-73-1	1,3-Dichlorobenzene	27	U
109-99-9	Tetrahydrofuran	540	U
106-46-7	1,4-Dichlorobenzene	27	U
60-29-7	Diethyl Ether	27	U
104-51-8	n-Butylbenzene	27	U
95-50-1	1,2-Dichlorobenzene	27	U
96-12-8	1,2-Dibromo-3-chloropropane	27	U
120-82-1	1,2,4-Trichlorobenzene	27	U
87-68-3	Hexachlorobutadiene	27	U
91-20-3	Naphthalene	27	U
87-61-6	1,2,3-Trichlorobenzene	27	U
994-05-8	Tert-amyl Methyl Ether	 27	U
75-71-8	Dichlorodifluoromethane	 27	U
142-28-9	1,3-Dichloropropane	27	U
75-69-4	Trichlorofluoromethane	27	U
637-92-3	Ethyl Tert-butyl ether	27	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: C1111-18	Client Name: Strategic Environmental
Method: 8260	Lab Sample ID: SOUTH-1
Matrix: (soil/water) SOIL	Lab File ID: <u>C111708.D</u>
Sample wt/vol: 20.5 (g/ml) G	Date Sampled: 11/10/2016
% Moisture 9.37	Date Analyzed: 11/17/2016
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: KC	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
108-20-3	Diisopropyl Ether		27	U
123-91-1	1,4-Dioxane		13000	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>C1111-18</u>	Client Name:	Strategic Environ	mental
Method: 8260	Lab Sample ID:	NORTH-1	
Matrix: (soil/water) SOIL	Lab File ID:	C111709.D	
Sample wt/vol: <u>17.3</u> (g/ml) <u>G</u>	Date Sampled:	11/10/2016	
% Moisture 12.45	Date Analyzed:	11/17/2016	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: KC	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
75-01-4	Vinyl Chloride		33	U
74-83-9	Bromomethane		33	U
75-00-3	Chloroethane		33	U
67-64-1	Acetone		160	U
75-35-4	1,1-Dichloroethene		33	U
75-15-0	Carbon Disulfide		33	U
75-09-2	Methylene Chloride		66	U
1634-04-4	tert-Butyl methyl ether		33	U
156-60-5	trans-1,2 Dichloroethene		33	U
75-34-3	1,1-Dichloroethane		33	U
78-93-3	2-Butanone		330	U
594-20-7	2,2-Dichloropropane		33	U
156-59-2	cis-1,2-Dichloroethene		33	U
67-66-3	Chloroform		33	U
74-97-5	Bromochloromethane		33	U
71-55-6	1,1,1-Trichloroethane		33	U
563-58-6	1,1-Dichloropropene		33	U
56-23-5	Carbon Tetrachloride		33	U
71-43-2	Benzene		33	U
107-06-2	1,2-Dichloroethane		33	U
79-01-6	Trichloroethene		33	U
78-87-5	1,2-Dichloropropane		33	U
75-27-4	Bromodichloromethane		33	U
74-95-3	Dibromomethane		33	U
108-10-1	4-Methyl-2-pentanone		160	U
106-93-4	Ethylene Dibromide		33	U
108-88-3	Toluene		33	U
10061-01-5	cis-1,3-Dichloropropene		33	U
10061-02-6	Trans-1,3-Dichloropropene		33	U
79-00-5	1,1,2-Trichloroethane		33	U
591-78-6	2-Hexanone		160	U
127-18-4	Tetrachloroethene		33	U
124-48-1	Chlorodibromomethane		33	U
108-90-7	Chlorobenzene		33	U
630-20-6	1,1,1,2-Tetrachloroethane		33	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>C1111-18</u>	Client Name: Strategic Environmental
Method: 8260	Lab Sample ID: NORTH-1
Matrix: (soil/water) SOIL	Lab File ID: C111709.D
Sample wt/vol: <u>17.3</u> (g/ml) <u>G</u>	Date Sampled: 11/10/2016
% Moisture 12.45	Date Analyzed: 11/17/2016
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: KC	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
100-41-4	Ethylbenzene		33	U
1330-20-7	m & p-Xylene		66	U
95-47-6	o-Xylene		33	U
100-42-5	Styrene		33	U
75-25-2	Bromoform		33	U
98-82-8	Isopropylbenzene		33	U
79-34-5	1,1,2,2-Tetrachloroethane		33	U
108-86-1	Bromobenzene		33	U
96-18-4	1,2,3-Trichloropropane		33	U
95-49-8	2-Chlorotoluene		33	U
103-65-1	n-Propylbenzene		33	U
108-67-8	1,3,5-Trimethylbenzene		33	U
106-43-4	4-Chlorotoluene		33	U
98-06-6	tert-Butylbenzene		33	U
95-63-6	1,2,4-Trimethylbenzene	1,2,4-Trimethylbenzene 33		U
135-98-8	sec-Butylbenzene		33	U
99-87-6	p-Isopropyltoluene		33	U
75-87-3	Chloromethane		33	U
75-65-0	tert butyl alcohol		660	U
541-73-1	1,3-Dichlorobenzene		33	U
109-99-9	Tetrahydrofuran		660	U
106-46-7	1,4-Dichlorobenzene		33	U
60-29-7	Diethyl Ether		33	U
104-51-8	n-Butylbenzene		33	U
95-50-1	1,2-Dichlorobenzene		33	U
96-12-8	1,2-Dibromo-3-chloropropane		33	U
120-82-1	1,2,4-Trichlorobenzene		33	U
87-68-3	Hexachlorobutadiene		33	U
91-20-3	Naphthalene		33	U
87-61-6	1,2,3-Trichlorobenzene		33	U
994-05-8	Tert-amyl Methyl Ether		33	U
75-71-8	Dichlorodifluoromethane		33	U
142-28-9	1,3-Dichloropropane		33	U
75-69-4	Trichlorofluoromethane		33	U
637-92-3	Ethyl Tert-butyl ether		33	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>C1111-18</u>	Client Name: Strategic Environmental
Method: 8260	Lab Sample ID: NORTH-1
Matrix: (soil/water) SOIL	Lab File ID: C111709.D
Sample wt/vol: <u>17.3</u> (g/ml) <u>G</u>	Date Sampled: 11/10/2016
% Moisture 12.45	Date Analyzed: 11/17/2016
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: KC	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
108-20-3	Diisopropyl Ether		33	U
123-91-1	1,4-Dioxane		16000	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>C1111-18</u>	Client Name:	Strategic Environ	mental
Method: 8260	Lab Sample ID:	VBLANK 111816	6
Matrix: (soil/water) SOIL	Lab File ID:	C111707.D	
Sample wt/vol: 10.0 (g/ml) G	Date Sampled:	11/10/2016	
% Moisture 0	Date Analyzed:	11/17/2016	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: KC	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
75-01-4	Vinyl Chloride	50		U
74-83-9	Bromomethane		50	U
75-00-3	Chloroethane		50	U
67-64-1	Acetone		250	U
75-35-4	1,1-Dichloroethene		50	U
75-15-0	Carbon Disulfide		50	U
75-09-2	Methylene Chloride		100	U
1634-04-4	tert-Butyl methyl ether		50	U
156-60-5	trans-1,2 Dichloroethene		50	U
75-34-3	1,1-Dichloroethane		50	U
78-93-3	2-Butanone		500	U
594-20-7	2,2-Dichloropropane		50	U
156-59-2	cis-1,2-Dichloroethene		50	U
67-66-3	Chloroform		50	U
74-97-5	Bromochloromethane		50	U
71-55-6	1,1,1-Trichloroethane		50	U
563-58-6	1,1-Dichloropropene		50	U
56-23-5	Carbon Tetrachloride		50	U
71-43-2	Benzene		50	U
107-06-2	1,2-Dichloroethane		50	U
79-01-6	Trichloroethene		50	U
78-87-5	1,2-Dichloropropane		50	U
75-27-4	Bromodichloromethane		50	U
74-95-3	Dibromomethane		50	U
108-10-1	4-Methyl-2-pentanone		250	U
106-93-4	Ethylene Dibromide		50	U
108-88-3	Toluene		50	U
10061-01-5	cis-1,3-Dichloropropene		50	U
10061-02-6	Trans-1,3-Dichloropropene		50	U
79-00-5	1,1,2-Trichloroethane		50	U
591-78-6	2-Hexanone		250	U
127-18-4	Tetrachloroethene		50	U
124-48-1	Chlorodibromomethane		50	U
108-90-7	Chlorobenzene		50	U
630-20-6	1,1,1,2-Tetrachloroethane		50	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>C1111-18</u>	Client Name:	Strategic Environ	mental
Method: 8260	Lab Sample ID:	VBLANK 111816	6
Matrix: (soil/water) SOIL	Lab File ID:	C111707.D	
Sample wt/vol: 10.0 (g/ml) G	Date Sampled:	11/10/2016	
% Moisture 0	Date Analyzed:	11/17/2016	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: KC	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UG/KG	Q
100-41-4	Ethylbenzene	50	U
1330-20-7	m & p-Xylene	100	U
95-47-6	o-Xylene	50	U
100-42-5	Styrene	50	U
75-25-2	Bromoform	50	U
98-82-8	Isopropylbenzene	50	U
79-34-5	1,1,2,2-Tetrachloroethane	50	U
108-86-1	Bromobenzene	50	U
96-18-4	1,2,3-Trichloropropane	50	U
95-49-8	2-Chlorotoluene	50	U
103-65-1	n-Propylbenzene	50	U
108-67-8	1,3,5-Trimethylbenzene	50	U
106-43-4	4-Chlorotoluene	50	U
98-06-6	tert-Butylbenzene	50	U
95-63-6	1,2,4-Trimethylbenzene	50	U
135-98-8	sec-Butylbenzene	50	U
99-87-6	p-Isopropyltoluene	50	U
75-87-3	Chloromethane	50	U
75-65-0	tert butyl alcohol	1000	U
541-73-1	1,3-Dichlorobenzene	50	U
109-99-9	Tetrahydrofuran	1000	U
106-46-7	1,4-Dichlorobenzene	50	U
60-29-7	Diethyl Ether	50	U
104-51-8	n-Butylbenzene	50	U
95-50-1	1,2-Dichlorobenzene	50	U
96-12-8	1,2-Dibromo-3-chloropropane	50	U
120-82-1	1,2,4-Trichlorobenzene	50	U
87-68-3	Hexachlorobutadiene	50	U
91-20-3	Naphthalene	50	U
87-61-6	1,2,3-Trichlorobenzene	50	U
994-05-8	Tert-amyl Methyl Ether	50	U
75-71-8	Dichlorodifluoromethane	50	U
142-28-9	1,3-Dichloropropane	50	U
75-69-4	Trichlorofluoromethane	50	U
637-92-3	Ethyl Tert-butyl ether	50	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

Case No.: <u>C1111-18</u>	Client Name: Strategic Environmental
Method: 8260	Lab Sample ID: VBLANK 111816
Matrix: (soil/water) SOIL	Lab File ID: C111707.D
Sample wt/vol: 10.0 (g/ml) G	Date Sampled: <u>11/10/2016</u>
% Moisture 0	Date Analyzed: 11/17/2016
Soil Extract Volume: (uL)	Dilution Factor: 1.0
Analyst's Initials: KC	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS:	UG/KG	Q
108-20-3	Diisopropyl Ether		50	U
123-91-1	1,4-Dioxane		25000	U

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name:	New England T	esting Laboratory	Contract:	15-754		
Lab Code:	RI010	Case No.: <u>C1111-18</u>	SAS No.	: Strategi	SDG No.:	Strategic E
Level: (low/m	ned) MED					

	EPA	SMC1	SMC2	SMC3	TOT
	SAMPLE NO.	#	#	#	OUT
01	LCS 111816	100	102	94	0
02	VBLANK 111816	90	100	101	0
03	SOUTH-1	86	95	99	0
04	NORTH-1	88	100	111	0

SMC1	=	4-Bromofluorobenzene	(70-130)
SMC2		Toluene-D8	(70-130)
SMC3	=	1,2-Dichloroethane-D4	(70-130)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

New England Testing Laboratory, Inc.

QC LIMITS

Volatile Organics Laboratory Control Spike

Date Analyzed: 11/17/2016

Sample ID: LCS 111816

	Spike	Spike	Recovery,	Lower Control	Upper Control
Compound	Added	Result	%	Limit, %	Limit, %
1,1-Dichloroethene	50.0	62.1	124	70	129
Benzene	50.0	48.7	97	73	129
Trichloroethene	50.0	48.8	98	77	122
Toluene	50.0	46.4	93	75	123
Chlorobenzene	50.0	42.4	85	73	125

New England Testing Laboratory 59 Greenhill Street West Wanwick, RI 02893	ng		* (- ⊕ar 1167 ⊺	•				\sim			21111-16
1-888-863-8522		Chain of	f Cu:	stod	Chain of Custody Record				,)		0
Project No. Project Name/Location:	erloci Peci	ation: wbury pert		·					Tes	Tests**		
Client: Stratenic Environmental	1 por	mutil Scruces	2	Matrix		Ð				(8	H¢	
Report TO: phydrus @ strategic-es. Com	Strat	Tegic-es. Com		9 9 ¹²⁴ 90		vits		44 1	78		<u>d</u> 7	
Sandra - Spictra - Sp	u ch	Spuchek Ostrategic-cs.com		ی م یت شده م 	No. of	reserv	Z8 118		98		ии <u>Б'</u> т	
Date Time	Comp	Sample I.D.	suoeupA	Othet.₋ Othet.₋		d	voc s Hdt	MCPI	- घेट्र	54524 546)	(1)200 5/2 0/0)	
10/16 9:30	1	South-1	/		S	-neth 2-DI						
		North-1		` X	••••	-reth 2-D1				-+		
4												
							_			-		
				+						_		
								+				
	_		+	-								
	te/Time	Date/Time Derreived By:	Date/	Date/Time I' a	/		Snecial Instructions:	uction	ls:	-		
Patrick Hughas III) e;cl)1/qi/[1	a. 97 J	1921				(2)	Kun TCLP, (20× rule)		Ŀ, Ŀ	if Arcessary	4
Relinquished By: Da	ite/Time	Received By:	Date/	Date/Time								
11 Carroland Control	1-11-19	A Marce	2121	''(6 \S	Temp. Received:	प रू र						
10,	ollowir	ng tests: Radiologicals, Radon, Jella Carbamates	TOC, /	Asbestc	a, Radon, TOC, Asbestos, UCMRs, Perchlorate,	llorate,	Turnaround Time [Business Days]: 5 Days	nd Time	[Busir	Tess Da	ays]: 5	Days
				7								

• •

.

÷

,

LTLAB

NE

NETLAB Case Number C1122-20

Prepared for:

Strategic Environmental Services 362 Putnam Hill Rd Sutton, MA 01590

Report Date: December 2, 2016

Bich Ohtas

Director New England Testing Laboratory, Inc. Lab # RI010

NEW ENGLAND TESTING LABORATORY, INC. 59 Greenhill Street, West Warwick, RI 02893 (401) 353-3420

		Ма	ssDEP Analytica	al Protocol Certifi	cation Form		
Labo	oratory Na	ame: New England	Testing Laborator	y, Inc.	Project #: 15-0754		
Project Location: Newburyport RTN:							
	Form pro C1122-20	ovides certificatio	ns for the followi	ng data set: list Lat	ooratory Sample ID Nu	mber(s):	
Matri	ces: Gr	oundwater/Surface	water x Soil/Se	diment Drinking W	/ater Air Other:		
CAN	Protoco	ol (check all that a	oply below):				
8260 CAM	VOC II A	7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A	
8270 CAM	SVOC II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B	
	Metals III A x	6020 Metals CAM III D	8082 PCB CAM V A x	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B	Other	
	Affirmativ	/e Responses to (Questions A throu	igh F are required a	for "Presumptive Cert	ainty" status	
Α	A Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and x Yes No prepared/analyzed within method holding times?						
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?						
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?x YesNo						
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?						
E	a. VPH, modificat	tion(s)? (Refer to the	ethods only: Was individual method(s	e each method condu) for a list of significant ete analyte list reported		Yes No Yes No	
F					-conformances identified Questions A through E)?	x Yes No	
Re					mptive Certainty" sta	tus	
G	Were the protocol		r below all CAM repo	orting limits specified ir	the selected CAM	x Yes No ¹	
	ata User No	ote: Data that achieve		inty" status may not ne R 40. 1056 (2)(k) and W	ecessarily meet the data us SC-07-350.	ability and	
Н		-		the CAM protocol(s) ad		x Yes No ¹	
I	Were res	sults reported for the	complete analyte lis	t specified in the selec	ted CAM protocol(s)?	x Yes No ¹	
¹ <i>A</i>	negative r	esponses must be a	addressed in an atta	ached laboratory narra	ative.		
respo	nsible for				sed upon my personal in cal report is, to the best of		
Sign	nature: 😥	ACUSA		Positio	on: Laboratory Director		
Prin	ted Name	Richard Warila		Date:	12/2/2016		

SAMPLES SUBMITTED and REQUEST FOR ANALYSIS:

The samples listed in Table I were submitted to New England Testing Laboratory on November 22, 2016. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is C1122-20.

Custody records are included in this report.

Project: 15-0754 – Newburyport

Sample ID	Date Sampled	Matrix	Analysis Requested
S-1	11/10/2016	Soil	Table II
S-2	11/10/2016	Soil	Table II
S-3	11/10/2016	Soil	Table II
S-4	11/10/2016	Soil	Table II
S-5	11/10/2016	Soil	Table II
S-6	11/10/2016	Soil	Table II
S-7	11/10/2016	Soil	Table II
S-8	11/10/2016	Soil	Table II
S-9	11/10/2016	Soil	Table II
S-10	11/10/2016	Soil	Table II
S-11	11/10/2016	Soil	Table II

TABLE I, Samples Submitted

TABLE II, Analysis and Methods

ANALYSIS	PREPARATION METHOD	DETERMINATIVE METHOD
Total Metals		
Arsenic	3050B	6010C
PCB's	3546	8082A

These methods are documented in:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, USEPA/OSW.

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

<u>Metals</u>

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

PCBs

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

METALS RESULTS

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Metals Analysis Department certifies that the results included in this section have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

New England Testing Laboratory, Inc.

Case Number:	C1122-20		
Sample ID:	S-1		
Date collected:	11/10/16		
Matrix	SOIL		
Solids, %	92.78	NC/NB/E	C
Sample Type:	Total		

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	22.1	0.95	mg/kg	11/30/16	12/1/16

NA indicates Not Applicable

Case Number:	C1122-20	
Sample ID:	S-2	
Date collected:	11/10/16	
Matrix	SOIL	
Solids, %	92.25	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	17.2	1.07	mg/kg	11/30/16	12/1/16

NA indicates Not Applicable

Case Number:	C1122-20	
Sample ID:	S-3	
Date collected:	11/10/16	
Matrix	SOIL	
Solids, %	90.24	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	16.3	1.06	mg/kg	11/30/16	12/1/16

NA indicates Not Applicable

Case Number:	<u>C1122-20</u>	
Sample ID:	S-4	
Date collected:	11/10/16	
Matrix	SOIL	
Solids, %	92.17	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	16.4	1.06	mg/kg	11/30/16	12/1/16

NA indicates Not Applicable

NC/NB/DC

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	36.3	0.96	mg/kg	11/30/16	12/1/16

NA indicates Not Applicable

Case Number:	<u>C1122-20</u>	
Sample ID:	S-6	
Date collected:	11/10/16	
Matrix	SOIL	
Solids, %	89.74	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	31.9	1.05	mg/kg	11/30/16	12/1/16

NA indicates Not Applicable

Case Number:	<u>C1122-20</u>	
Sample ID:	S-7	
Date collected:	11/10/16	
Matrix	SOIL	
Solids, %	91.98	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	21.6	0.98	mg/kg	11/30/16	12/1/16

NA indicates Not Applicable

Case Number:	C1122-20	
Sample ID:	S-8	
Date collected:	11/10/16	
Matrix	SOIL	
Solids, %	94.15	NC/NB/D0
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	14.7	1.04	mg/kg	11/30/16	12/1/16

NA indicates Not Applicable

Case Number:	<u>C1122-20</u>	
Sample ID:	S-9	
Date collected:	11/10/16	
Matrix	SOIL	
Solids, %	91.54	NC/NB/DC
Sample Type:	Total	
- ••		

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	31.7	0.99	mg/kg	11/30/16	12/1/16

NA indicates Not Applicable

Case Number:	C1122-20	
Sample ID:	S-10	
Date collected:	11/10/16	_
Matrix	SOIL	
Solids, %	85.66	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	16.1	1.15	mg/kg	11/30/16	12/1/16

NA indicates Not Applicable

Case Number:	<u>C1122-20</u>	
Sample ID:	S-11	
Date collected:	11/10/16	_
Matrix	SOIL	
Solids, %	92.76	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	24.0	1.02	mg/kg	11/30/16	12/1/16

NA indicates Not Applicable

Sample ID:	Preparation Blank	
Matrix	SOIL	
Solids, %	100	AEG/NC/NB
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3051A	6010C	ND	1.00	mg/kg	11/30/16	12/1/16

NA indicates Not Applicable

LABORATORY CONTROL SAMPLE RECOVERY

			Internal				
Parameter	True Value	Result	Units	Recovery, %	LCL, %	UCL, %	Date Analyzed
Arsenic	13.3	12.8	mg/kg	96	85	115	12/1/16

New England Testing Laboratory, Inc.

RESULTS: PCBs

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Sample: S-1		Analyst's Initials: BJ
Case No.: C1122-20		
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/29/16	11/30/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	75	45-125
DCBP	86	42-131

Sample: S-2		Analyst's Initials: BJ
Case No.: C1122-20		
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/29/16	11/30/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	97	45-125
DCBP	96	42-131

New England Testing Laboratory, Inc.

Sample: S-3		Analyst's Initials: BJ
Case No.: C1122-20		¥
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/29/16	11/30/16, 12/1/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	1380	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	74	45-125
DCBP	89	42-131

New England Testing Laboratory, Inc.

Sample: S-4		Analyst's Initials: BJ
Case No.: C1122-20		
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/29/16	11/30/16, 12/1/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	39200	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	67	45-125
DCBP	100	42-131

New England Testing Laboratory, Inc.

Sample: S-5		Analyst's Initials: BJ
Case No.: C1122-20		
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/29/16	11/30/16, 12/1/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	1430	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	69	45-125
DCBP	92	42-131

New England Testing Laboratory, Inc.

Sample: S-6		Analyst's Initials: BJ
Case No.: C1122-20		¥
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/29/16	11/30/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	371	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	81	45-125
DCBP	82	42-131

New England Testing Laboratory, Inc.

Sample: S-7		Analyst's Initials: BJ
Case No.: C1122-20		
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/29/16	11/30/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	78	45-125
DCBP	96	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: S-8		Analyst's Initials: BJ
Case No.: C1122-20		
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/29/16	11/30/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	93	45-125
DCBP	104	42-131

New England Testing Laboratory, Inc.

Sample: S-9		Analyst's Initials: BJ
Case No.: C1122-20		
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/29/16	11/30/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	139	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	82	45-125
DCBP	114	42-131

New England Testing Laboratory, Inc.

Sample: S-10		Analyst's Initials: BJ
Case No.: C1122-20		
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/29/16	11/30/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	96	45-125
DCBP	102	42-131

New England Testing Laboratory, Inc.

Sample: S-11		Analyst's Initials: BJ
Case No.: C1122-20		¥
Date Collected: 11/10/2016		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/29/16	11/30/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	93	45-125
DCBP	100	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: Method Blank		Analyst's Initials: BJ
Case No.: C1122-20		
Date Collected: NA		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	11/29/16	11/30/16
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg (ppb)	ug/kg (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	54	45-125
DCBP	82	42-131

N.D. = Not Detected

Sample Matrix: Soil				
Subject: PCB	Date Extracted			Date Analyzed
Prep Method: EPA 3546	11/29/16			11/30/16
Analytical Method: EPA 8082A				
Compound	Amount Spiked	Result	Recovery	Recovery
	mg/kg	mg/kg	%	Limits
Aroclor 1016	0.500	0.476	95	55-131
Aroclor 1260	0.500	0.556	111	63-133
Surrogates:				
Compound	% Recovery	Limits		
TCMX	90	45-125		
DCBP	123	42-131		

PCB Laboratory Control Spike

1-2C			<u> </u>												*	et e	ared bor	- Pat via	s]: 5 Days
C1122-2	Tests**														ctions:	Pless for bo	plas rela	the per	Turmaround Time [Business Days]: 5 Days
		() ()	71 ~75 ey 25 25 25	DA DA	XX										Special Instructions:	is he	Sen	Jane .	
σ		evitevi			2	-				_	+-		 		irks:			د ق	chlorate,
y Recon			No. of Containers		24.	• •	•	•	•	•		•	•		لaboratory Remarks: م			الالاطم Temp. Received: الم	Radon, TOC, Asbestos, UCMRs, Perchlorate,
Custod		Matrix		upA lio2 9410	X								*		Date/Time Lab	7.45	N/22/1	uda ^{Tem}	, Asbestos,
New England Testing Laboratory 59 Greenhill Street West Warwick, RI 02893 1-888-863-8522 1-888-863-8522	1.4	101	Comolo 10	Í	1-5	55	S-4	\$-5		20	5-9	S-10	S-11		-	Jonva-			cals,
ting l				Con Grai		< ×	7	4	*)			-	X		21 21 21) L-D v Jate Time D	2-2	3;40	owing tu monella
jland Tes Street k, RI 02893 22	Project No. Project Name/Location: 15-6784 Nec. Dury part Client: Server Short and Fair A	andrese a	Seme	- †	252	7:50	8:10	8:16	8:30	8:45	8:52	9:15	0:05		Date/Ti 11/21	,		with di	tracts the follo le, Sieve, Sal
New England Te 59 Greenhill Street West Wawick, RI 02893 1-888-863-8522	Project No. 15-6754 Client:	Report To:	Invoice To:	te	0/11								A A		Sampled By: Part Hugher	Ralinguished Bur		Ku-1. Co	**Netlab Subcontracts the following tests: Radiologi Bromate, Bromide, Sieve, Salmonella, Carbamates

Page 33 of 33

LTLAB

NE

NETLAB Case Number D0120-10

Prepared for:

Strategic Environmental Services, Inc. 362 Putnam Hill Road Sutton, MA 01590

Report Date: January 25, 2017

Bich Ohras

Director New England Testing Laboratory, Inc. Lab # RI010

NEW ENGLAND TESTING LABORATORY, INC. 59 Greenhill Street, West Warwick, RI 02893 (401) 353-3420

MassDEP Analytical Protocol Certification Form							
Laboratory Name: New England Testing Laboratory, Inc.					Project #: 15-0754		
Proje	Project Location: Clipper City, Newburyport RTN:						
	Form pro 00120-10	ovides certificatio	ns for the followi	ng data set: list Lab	oratory Sample ID Nu	mber(s):	
Matri	ces: Gr	oundwater/Surface	e Water x Soil/Se	diment Drinking W	ater Air Other:		
CAM	Protoco	ol (check all that a	pply below):				
8260 CAM		7470/7471 Hg CAM III B x	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP CAM IX A	APH
8270 CAM	SVOC II B	7010 Metals CAM III C x	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VO CAM IX B	С
	Metals III A x	6020 Metals CAM III D	8082 PCB CAM V A x	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B		
	Affirmativ	/e Responses to	Questions A throu	ugh F are required t	for "Presumptive Certa	ainty" stat	us
Α	Custody,		ed (including temp		cribed on the Chain-of- ld or laboratory, and	x Yes	No
в		e analytical method(tocol(s) followed?	(s) and all associate	ed QC requirements s	pecified in the selected	x Yes	No
с				cal response actions s formance standard no	specified in the selected n-conformances?	x Yes	No
D		Assurance and Qu			specified in CAM VII A, ition and Reporting of	x Yes	No
Е	a. VPH, modificat	tion(s)? (Refer to the	lethods only: Was individual method(s) for a list of significant		Yes Yes	No No
			· ·	ete analyte list reported	-conformances identified	100	110
F					Questions A through E)?	x Yes	No
Res	<i>.</i>			-	mptive Certainty" stat	tus	
G	Were the protocol		r below all CAM repo	orting limits specified in	the selected CAM	x Yes	No ¹
	<u>Data User Note</u> : Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.						
н	Were all	QC performance sta	andards specified in t	the CAM protocol(s) ac	chieved?	x Yes	No ¹
I	Were res	sults reported for the	complete analyte lis	t specified in the selec	ted CAM protocol(s)?	x Yes	No ¹
¹ All I	¹ All negative responses must be addressed in an attached laboratory narrative.						
I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.							
Sign	ature: <u>&</u>	harde		Positio	on: Laboratory Director		_
Prin	ted Name	e: Richard Warila		Date:	1/25/2017		

SAMPLES SUBMITTED and REQUEST FOR ANALYSIS:

The samples listed in Table I were submitted to New England Testing Laboratory on January 20, 2017. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is D0120-10.

Custody records are included in this report.

Sample ID	Date Sampled	Matrix	Analysis Requested
61-E-1	1/19/2017	Soil	Table II
61-E-3	1/19/2017	Soil	Table II
61-M-1	1/19/2017	Soil	Table II
61-M-3	1/19/2017	Soil	Table II
61-W-1	1/19/2017	Soil	Table II
61-W-3	1/19/2017	Soil	Table II
61-O-0	1/19/2017	Soil	Table II
63-E-1	1/19/2017	Soil	Table II
63-E-3	1/19/2017	Soil	Table II
63-M-1	1/19/2017	Soil	Table II
63-M-3	1/19/2017	Soil	Table II
63-W-1	1/19/2017	Soil	Table II
63-W-3	1/19/2017	Soil	Table II
63-O-0	1/19/2017	Soil	Table II
65-E-1	1/19/2017	Soil	Table II
65-E-3	1/19/2017	Soil	Table II
65-M-1	1/19/2017	Soil	Table II
65-M-3	1/19/2017	Soil	Table II
65-W-1	1/19/2017	Soil	Table II
65-W-3	1/19/2017	Soil	Table II
65-O-0	1/19/2017	Soil	Table II
6075-M-0	1/19/2017	Soil	Table II
6150-M-0	1/19/2017	Soil	Table II
6250-M-0	1/19/2017	Soil	Table II
6350-M-0	1/19/2017	Soil	Table II
6450-M-0	1/19/2017	Soil	Table II
6525-M-0	1/19/2017	Soil	Table II
61-E-0	1/19/2017	Soil	Table II, III
61-M-0	1/19/2017	Soil	Table II, III
61-W-0	1/19/2017	Soil	Table II, III
63-E-0	1/19/2017	Soil	Table II, III
63-M-0	1/19/2017	Soil	Table II, III
63-W-0	1/19/2017	Soil	Table II, III

TABLE I, Samples Submitted

New England Testing Laboratory, Inc.

Sample ID	Date Sampled	Matrix	Analysis Requested
65-E-0	1/19/2017	Soil	Table II, III
65-M-0	1/19/2017	Soil	Table II, III
65-W-0	1/19/2017	Soil	Table II, III

TABLE I, Samples Submitted, Continued

TABLE II, Analysis and Methods

ANALYSIS	PREPARATION METHOD	DETERMINATIVE METHOD
PCB's	3546	8082A

TABLE III, Analysis and Methods

ANALYSIS	PREPARATION METHOD	DETERMINATIVE METHOD
Total Metals		
Antimony	3050B	6010C
Arsenic	3050B	6010C
Barium	3050B	6010C
Beryllium	3050B	6010C
Cadmium	3050B	6010C
Chromium	3050B	6010C
Copper	3050B	6010C
Lead	3050B	6010C
Mercury	NA	7471B
Nickel	3050B	6010C
Selenium	3050B	6010C
Silver	3050B	6010C
Thallium	3050B	7010
Zinc	3050B	6010C

These methods are documented in:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, USEPA/OSW.

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Metals

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

PCBs

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

METALS RESULTS

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Metals Analysis Department certifies that the results included in this section have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

New England Testing Laboratory, Inc.

Case Number:	D0120-10	
Sample ID:	61-E-0	
Date collected:	1/19/17	
Matrix	SOIL	
Solids, %	84.53	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3050B	6010C	ND	0.78	mg/kg	1/23/17	1/24/17
Arsenic	7440-38-2	3050B	6010C	12.7	0.78	mg/kg	1/23/17	1/24/17
Barium	7440-39-3	3050B	6010C	53.5	0.39	mg/kg	1/23/17	1/24/17
Beryllium	7440-41-7	3050B	6010C	ND	0.39	mg/kg	1/23/17	1/24/17
Cadmium	7440-43-9	3050B	6010C	1.09	0.39	mg/kg	1/23/17	1/24/17
Chromium	7440-47-3	3050B	6010C	19.8	0.39	mg/kg	1/23/17	1/24/17
Lead	7439-92-1	3050B	6010C	192	0.39	mg/kg	1/23/17	1/24/17
Mercury	7439-97-6	NA	7471B	0.398	0.082	mg/kg	1/23/17	1/24/17
Nickel	7440-02-0	3050B	6010C	11.0	0.39	mg/kg	1/23/17	1/24/17
Selenium	7782-49-2	3050B	6010C	ND	0.78	mg/kg	1/23/17	1/24/17
Silver	7440-22-4	3050B	6010C	ND	0.39	mg/kg	1/23/17	1/24/17
Thallium	7440-28-0	3050B	7010	ND	0.16	mg/kg	1/23/17	1/24/17
Vanadium	7440-62-2	3050B	6010C	13.3	0.39	mg/kg	1/23/17	1/24/17
Zinc	7440-66-6	3050B	6010C	74.1	1.56	mg/kg	1/23/17	1/24/17

NA indicates Not Applicable

Case Number:	D0120-10	
Sample ID:	61-M-0	
Date collected:	1/19/17	
Matrix	SOIL	
Solids, %	86.32	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3050B	6010C	ND	0.74	mg/kg	1/23/17	1/24/17
Arsenic	7440-38-2	3050B	6010C	17.9	0.74	mg/kg	1/23/17	1/24/17
Barium	7440-39-3	3050B	6010C	71.7	0.37	mg/kg	1/23/17	1/24/17
Beryllium	7440-41-7	3050B	6010C	ND	0.37	mg/kg	1/23/17	1/24/17
Cadmium	7440-43-9	3050B	6010C	1.02	0.37	mg/kg	1/23/17	1/24/17
Chromium	7440-47-3	3050B	6010C	15.3	0.37	mg/kg	1/23/17	1/24/17
Lead	7439-92-1	3050B	6010C	241	0.37	mg/kg	1/23/17	1/24/17
Mercury	7439-97-6	NA	7471B	0.704	0.073	mg/kg	1/23/17	1/24/17
Nickel	7440-02-0	3050B	6010C	13.6	0.37	mg/kg	1/23/17	1/24/17
Selenium	7782-49-2	3050B	6010C	ND	0.74	mg/kg	1/23/17	1/24/17
Silver	7440-22-4	3050B	6010C	ND	0.37	mg/kg	1/23/17	1/24/17
Thallium	7440-28-0	3050B	7010	ND	0.15	mg/kg	1/23/17	1/24/17
Vanadium	7440-62-2	3050B	6010C	12.2	0.37	mg/kg	1/23/17	1/24/17
Zinc	7440-66-6	3050B	6010C	101	1.48	mg/kg	1/23/17	1/24/17

NA indicates Not Applicable

Case Number:	D0120-10	
Sample ID:	61-W-0	
Date collected:	1/19/17	
Matrix	SOIL	
Solids, %	88.73	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3050B	6010C	ND	0.73	mg/kg	1/23/17	1/24/17
Arsenic	7440-38-2	3050B	6010C	16.2	0.73	mg/kg	1/23/17	1/24/17
Barium	7440-39-3	3050B	6010C	32.2	0.36	mg/kg	1/23/17	1/24/17
Beryllium	7440-41-7	3050B	6010C	ND	0.36	mg/kg	1/23/17	1/24/17
Cadmium	7440-43-9	3050B	6010C	0.89	0.36	mg/kg	1/23/17	1/24/17
Chromium	7440-47-3	3050B	6010C	17.8	0.36	mg/kg	1/23/17	1/24/17
Lead	7439-92-1	3050B	6010C	78.4	0.36	mg/kg	1/23/17	1/24/17
Mercury	7439-97-6	NA	7471B	0.587	0.077	mg/kg	1/23/17	1/24/17
Nickel	7440-02-0	3050B	6010C	13.4	0.36	mg/kg	1/23/17	1/24/17
Selenium	7782-49-2	3050B	6010C	ND	0.73	mg/kg	1/23/17	1/24/17
Silver	7440-22-4	3050B	6010C	ND	0.36	mg/kg	1/23/17	1/24/17
Thallium	7440-28-0	3050B	7010	ND	0.15	mg/kg	1/23/17	1/24/17
Vanadium	7440-62-2	3050B	6010C	11.3	0.36	mg/kg	1/23/17	1/24/17
Zinc	7440-66-6	3050B	6010C	53.4	1.45	mg/kg	1/23/17	1/24/17

NA indicates Not Applicable

Case Number:	D0120-10	
Sample ID:	63-E-0	
Date collected:	1/19/17	
Matrix	SOIL	
Solids, %	91.54	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3050B	6010C	ND	0.72	mg/kg	1/23/17	1/24/17
Arsenic	7440-38-2	3050B	6010C	12.2	0.72	mg/kg	1/23/17	1/24/17
Barium	7440-39-3	3050B	6010C	69.0	0.36	mg/kg	1/23/17	1/24/17
Beryllium	7440-41-7	3050B	6010C	ND	0.36	mg/kg	1/23/17	1/24/17
Cadmium	7440-43-9	3050B	6010C	1.15	0.36	mg/kg	1/23/17	1/24/17
Chromium	7440-47-3	3050B	6010C	31.1	0.36	mg/kg	1/23/17	1/24/17
Lead	7439-92-1	3050B	6010C	90.1	0.36	mg/kg	1/23/17	1/24/17
Mercury	7439-97-6	NA	7471B	0.987	0.343	mg/kg	1/23/17	1/24/17
Nickel	7440-02-0	3050B	6010C	27.5	0.36	mg/kg	1/23/17	1/24/17
Selenium	7782-49-2	3050B	6010C	ND	0.72	mg/kg	1/23/17	1/24/17
Silver	7440-22-4	3050B	6010C	ND	0.36	mg/kg	1/23/17	1/24/17
Thallium	7440-28-0	3050B	7010	ND	0.14	mg/kg	1/23/17	1/24/17
Vanadium	7440-62-2	3050B	6010C	20.2	0.36	mg/kg	1/23/17	1/24/17
Zinc	7440-66-6	3050B	6010C	55.5	1.44	mg/kg	1/23/17	1/24/17

NA indicates Not Applicable

Case Number:	D0120-10	
Sample ID:	63-M-0	
Date collected:	1/19/17	
Matrix	SOIL	
Solids, %	91.1	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3050B	6010C	ND	0.71	mg/kg	1/23/17	1/24/17
Arsenic	7440-38-2	3050B	6010C	27.4	0.71	mg/kg	1/23/17	1/24/17
Barium	7440-39-3	3050B	6010C	35.7	0.36	mg/kg	1/23/17	1/24/17
Beryllium	7440-41-7	3050B	6010C	ND	0.36	mg/kg	1/23/17	1/24/17
Cadmium	7440-43-9	3050B	6010C	1.55	0.36	mg/kg	1/23/17	1/24/17
Chromium	7440-47-3	3050B	6010C	19.5	0.36	mg/kg	1/23/17	1/24/17
Lead	7439-92-1	3050B	6010C	72.7	0.36	mg/kg	1/23/17	1/24/17
Mercury	7439-97-6	NA	7471B	2.59	0.340	mg/kg	1/23/17	1/24/17
Nickel	7440-02-0	3050B	6010C	16.0	0.36	mg/kg	1/23/17	1/24/17
Selenium	7782-49-2	3050B	6010C	ND	0.71	mg/kg	1/23/17	1/24/17
Silver	7440-22-4	3050B	6010C	ND	0.36	mg/kg	1/23/17	1/24/17
Thallium	7440-28-0	3050B	7010	ND	0.14	mg/kg	1/23/17	1/24/17
Vanadium	7440-62-2	3050B	6010C	15.1	0.36	mg/kg	1/23/17	1/24/17
Zinc	7440-66-6	3050B	6010C	57.9	1.43	mg/kg	1/23/17	1/24/17

NA indicates Not Applicable

Case Number:	D0120-10	
Sample ID:	63-W-0	
Date collected:	1/19/17	
Matrix	SOIL	
Solids, %	86.48	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3050B	6010C	ND	0.72	mg/kg	1/23/17	1/24/17
Arsenic	7440-38-2	3050B	6010C	18.6	0.72	mg/kg	1/23/17	1/24/17
Barium	7440-39-3	3050B	6010C	34.2	0.36	mg/kg	1/23/17	1/24/17
Beryllium	7440-41-7	3050B	6010C	ND	0.36	mg/kg	1/23/17	1/24/17
Cadmium	7440-43-9	3050B	6010C	1.17	0.36	mg/kg	1/23/17	1/24/17
Chromium	7440-47-3	3050B	6010C	17.2	0.36	mg/kg	1/23/17	1/24/17
Lead	7439-92-1	3050B	6010C	59.5	0.36	mg/kg	1/23/17	1/24/17
Mercury	7439-97-6	NA	7471B	0.689	0.074	mg/kg	1/23/17	1/24/17
Nickel	7440-02-0	3050B	6010C	16.1	0.36	mg/kg	1/23/17	1/24/17
Selenium	7782-49-2	3050B	6010C	ND	0.72	mg/kg	1/23/17	1/24/17
Silver	7440-22-4	3050B	6010C	ND	0.36	mg/kg	1/23/17	1/24/17
Thallium	7440-28-0	3050B	7010	ND	0.14	mg/kg	1/23/17	1/24/17
Vanadium	7440-62-2	3050B	6010C	19.9	0.36	mg/kg	1/23/17	1/24/17
Zinc	7440-66-6	3050B	6010C	44.0	1.44	mg/kg	1/23/17	1/24/17

NA indicates Not Applicable

Case Number:	D0120-10	
Sample ID:	65-E-0	
Date collected:	1/19/17	
Matrix	SOIL	
Solids, %	82.28	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3050B	6010C	ND	0.75	mg/kg	1/23/17	1/24/17
Arsenic	7440-38-2	3050B	6010C	22.9	0.75	mg/kg	1/23/17	1/24/17
Barium	7440-39-3	3050B	6010C	27.8	0.38	mg/kg	1/23/17	1/24/17
Beryllium	7440-41-7	3050B	6010C	ND	0.38	mg/kg	1/23/17	1/24/17
Cadmium	7440-43-9	3050B	6010C	0.75	0.38	mg/kg	1/23/17	1/24/17
Chromium	7440-47-3	3050B	6010C	13.4	0.38	mg/kg	1/23/17	1/24/17
Lead	7439-92-1	3050B	6010C	429	0.38	mg/kg	1/23/17	1/24/17
Mercury	7439-97-6	NA	7471B	0.275	0.079	mg/kg	1/23/17	1/24/17
Nickel	7440-02-0	3050B	6010C	10.6	0.38	mg/kg	1/23/17	1/24/17
Selenium	7782-49-2	3050B	6010C	ND	0.75	mg/kg	1/23/17	1/24/17
Silver	7440-22-4	3050B	6010C	ND	0.38	mg/kg	1/23/17	1/24/17
Thallium	7440-28-0	3050B	7010	ND	0.15	mg/kg	1/23/17	1/24/17
Vanadium	7440-62-2	3050B	6010C	9.88	0.38	mg/kg	1/23/17	1/24/17
Zinc	7440-66-6	3050B	6010C	52.7	1.51	mg/kg	1/23/17	1/24/17

NA indicates Not Applicable

Case Number:	D0120-10		
Sample ID:	65-M-O		
Date collected:	1/19/17		
Matrix	SOIL		
Solids, %	90.47	NC/	/NB/DC
Sample Type:	Total		

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3050B	6010C	ND	0.68	mg/kg	1/23/17	1/24/17
Arsenic	7440-38-2	3050B	6010C	20.7	0.68	mg/kg	1/23/17	1/24/17
Barium	7440-39-3	3050B	6010C	32.0	0.34	mg/kg	1/23/17	1/24/17
Beryllium	7440-41-7	3050B	6010C	ND	0.34	mg/kg	1/23/17	1/24/17
Cadmium	7440-43-9	3050B	6010C	1.11	0.34	mg/kg	1/23/17	1/24/17
Chromium	7440-47-3	3050B	6010C	17.6	0.34	mg/kg	1/23/17	1/24/17
Lead	7439-92-1	3050B	6010C	37.5	0.34	mg/kg	1/23/17	1/24/17
Mercury	7439-97-6	NA	7471B	0.601	0.071	mg/kg	1/23/17	1/24/17
Nickel	7440-02-0	3050B	6010C	15.3	0.34	mg/kg	1/23/17	1/24/17
Selenium	7782-49-2	3050B	6010C	ND	0.68	mg/kg	1/23/17	1/24/17
Silver	7440-22-4	3050B	6010C	ND	0.34	mg/kg	1/23/17	1/24/17
Thallium	7440-28-0	3050B	7010	ND	0.14	mg/kg	1/23/17	1/24/17
Vanadium	7440-62-2	3050B	6010C	14.7	0.34	mg/kg	1/23/17	1/24/17
Zinc	7440-66-6	3050B	6010C	36.9	1.36	mg/kg	1/23/17	1/24/17

NA indicates Not Applicable

Case Number:	D0120-10	
Sample ID:	65-W-0	
Date collected:	1/19/17	
Matrix	SOIL	
Solids, %	88.89	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3050B	6010C	ND	0.70	mg/kg	1/23/17	1/24/17
Arsenic	7440-38-2	3050B	6010C	19.7	0.70	mg/kg	1/23/17	1/24/17
Barium	7440-39-3	3050B	6010C	40.9	0.35	mg/kg	1/23/17	1/24/17
Beryllium	7440-41-7	3050B	6010C	ND	0.35	mg/kg	1/23/17	1/24/17
Cadmium	7440-43-9	3050B	6010C	1.18	0.35	mg/kg	1/23/17	1/24/17
Chromium	7440-47-3	3050B	6010C	22.2	0.35	mg/kg	1/23/17	1/24/17
Lead	7439-92-1	3050B	6010C	46.0	0.35	mg/kg	1/23/17	1/24/17
Mercury	7439-97-6	NA	7471B	0.388	0.077	mg/kg	1/23/17	1/24/17
Nickel	7440-02-0	3050B	6010C	17.4	0.35	mg/kg	1/23/17	1/24/17
Selenium	7782-49-2	3050B	6010C	ND	0.70	mg/kg	1/23/17	1/24/17
Silver	7440-22-4	3050B	6010C	ND	0.35	mg/kg	1/23/17	1/24/17
Thallium	7440-28-0	3050B	7010	ND	0.14	mg/kg	1/23/17	1/24/17
Vanadium	7440-62-2	3050B	6010C	20.3	0.35	mg/kg	1/23/17	1/24/17
Zinc	7440-66-6	3050B	6010C	48.8	1.40	mg/kg	1/23/17	1/24/17

NA indicates Not Applicable

Sample ID:	Preparation Blank	
Matrix	SOIL	
Solids, %	100	NC/NB/DC
Sample Type:	Total	

		Preparative	Analytical		Reporting		Date of	Date
Parameter	CAS Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3050B	6010C	ND	0.67	mg/kg	1/23/17	1/24/17
Arsenic	7440-38-2	3050B	6010C	ND	0.67	mg/kg	1/23/17	1/24/17
Barium	7440-39-3	3050B	6010C	ND	0.33	mg/kg	1/23/17	1/24/17
Beryllium	7440-41-7	3050B	6010C	ND	0.33	mg/kg	1/23/17	1/24/17
Cadmium	7440-43-9	3050B	6010C	ND	0.33	mg/kg	1/23/17	1/24/17
Chromium	7440-47-3	3050B	6010C	ND	0.33	mg/kg	1/23/17	1/24/17
Lead	7439-92-1	3050B	6010C	ND	0.33	mg/kg	1/23/17	1/24/17
Mercury	7439-97-6	NA	7471B	ND	0.033	mg/kg	1/23/17	1/24/17
Nickel	7440-02-0	3050B	6010C	ND	0.33	mg/kg	1/23/17	1/24/17
Selenium	7782-49-2	3050B	6010C	ND	0.67	mg/kg	1/23/17	1/24/17
Silver	7440-22-4	3050B	6010C	ND	0.33	mg/kg	1/23/17	1/24/17
Thallium	7440-28-0	3050B	7010	ND	0.13	mg/kg	1/23/17	1/24/17
Vanadium	7440-62-2	3050B	6010C	ND	0.33	mg/kg	1/23/17	1/24/17
Zinc	7440-66-6	3050B	6010C	ND	1.33	mg/kg	1/23/17	1/24/17

NA indicates Not Applicable

LABORATORY CONTROL SAMPLE RECOVERY

					Inte	rnal	
Parameter	True Value	Result	Units	Recovery, %	LCL, %	UCL, %	Date Analyzed
Antimony	66.7	59.8	mg/kg	90	85	115	1/24/17
Arsenic	13.3	12.7	mg/kg	96	85	115	1/24/17
Barium	66.7	61.6	mg/kg	92	85	115	1/24/17
Beryllium	13.3	13.6	mg/kg	102	85	115	1/24/17
Cadmium	66.7	60.3	mg/kg	90	85	114	1/24/17
Chromium	66.7	61.6	mg/kg	92	85	115	1/24/17
Lead	66.7	57.0	mg/kg	85	85	115	1/24/17
Mercury	0.133	0.1	mg/kg	101	85	115	1/24/17
Nickel	66.7	59.1	mg/kg	89	85	112	1/24/17
Selenium	13.3	12.1	mg/kg	91	85	115	1/24/17
Silver	26.6	24.3	mg/kg	91	85	115	1/24/17
Thallium	1.33	1.3	mg/kg	100	85	115	1/24/17
Vanadium	66.7	71.5	mg/kg	107	85	115	1/24/17
Zinc	66.7	66.1	mg/kg	99	85	115	1/24/17

New England Testing Laboratory, Inc.

RESULTS: PCBs

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Sample: 61-E-1		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	281	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	53	45-125
DCBP	73	42-131

New England Testing Laboratory, Inc.

Sample: 61-E-3		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	87	45-125
DCBP	94	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 61-M-1		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	104	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	82	45-125
DCBP	91	42-131

New England Testing Laboratory, Inc.

Sample: 61-M-3		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	86	45-125
DCBP	99	42-131

New England Testing Laboratory, Inc.

Sample: 61-W-1		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	402	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	80	45-125
DCBP	93	42-131

New England Testing Laboratory, Inc.

Sample: 61-W-3		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	65	45-125
DCBP	88	42-131

New England Testing Laboratory, Inc.

Sample: 61-O-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	648	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	71	45-125
DCBP	83	42-131

New England Testing Laboratory, Inc.

Sample: 63-E-1		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	343	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	87	45-125
DCBP	98	42-131

New England Testing Laboratory, Inc.

Sample: 63-E-3		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	81	45-125
DCBP	92	42-131

New England Testing Laboratory, Inc.

Sample: 63-M-1		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17, 1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	3490	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	75	45-125
DCBP	87	42-131

New England Testing Laboratory, Inc.

Sample: 63-M-3		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	92	45-125
DCBP	98	42-131

New England Testing Laboratory, Inc.

Sample: 63-W-1		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17, 1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	5240	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	67	45-125
DCBP	84	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 63-W-3		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	83	45-125
DCBP	93	42-131

New England Testing Laboratory, Inc.

Sample: 63-O-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17, 1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	51000	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	68	45-125
DCBP	101	42-131

Sample: 65-E-1		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	85	45-125
DCBP	94	42-131

New England Testing Laboratory, Inc.

Sample: 65-E-3		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	83	45-125
DCBP	89	42-131

New England Testing Laboratory, Inc.

Sample: 65-M-1		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17, 1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	1820	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	80	45-125
DCBP	90	42-131

New England Testing Laboratory, Inc.

Sample: 65-M-3		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	84	45-125
DCBP	89	42-131

New England Testing Laboratory, Inc.

Sample: 65-W-1		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/23/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	428	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	89	45-125
DCBP	85	42-131

New England Testing Laboratory, Inc.

Sample: 65-W-3		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	1200	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	92	45-125
DCBP	84	42-131

New England Testing Laboratory, Inc.

Sample: 65-O-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	1990	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	86	45-125
DCBP	94	42-131

New England Testing Laboratory, Inc.

Sample: 6075-M-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	538	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	72	45-125
DCBP	79	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 6150-M-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	2300	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	79	45-125
DCBP	78	42-131

New England Testing Laboratory, Inc.

Sample: 6250-M-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	10300	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	73	45-125
DCBP	79	42-131

New England Testing Laboratory, Inc.

Sample: 6350-M-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	7380	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	79	45-125
DCBP	96	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 6450-M-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	2340	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	94	45-125
DCBP	93	42-131

New England Testing Laboratory, Inc.

Sample: 6525-M-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	3030	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	92	45-125
DCBP	94	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 61-E-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	635	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	88	45-125
DCBP	83	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 61-M-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	618	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	77	45-125
DCBP	89	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 61-W-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	273	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	78	45-125
DCBP	85	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 63-E-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	5910	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	61	45-125
DCBP	70	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 63-M-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	115000	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	75	45-125
DCBP	107	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 63-W-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	27300	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	78	45-125
DCBP	90	42-131

New England Testing Laboratory, Inc.

Sample: 65-E-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	27800	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	57	45-125
DCBP	61	42-131

New England Testing Laboratory, Inc.

Sample: 65-M-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	1370	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	83	45-125
DCBP	82	42-131

New England Testing Laboratory, Inc.

Sample: 65-W-0		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	81	45-125
DCBP	79	42-131

New England Testing Laboratory, Inc.

Sample: Method Blank		Analyst's Initials: BJ
Case No.: D0120-10		¥
Date Collected: NA		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/20/17	1/20/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg (ppb)	ug/kg (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	79	45-125
DCBP	88	42-131

N.D. = Not Detected

Sample: Method Blank		Analyst's Initials: BJ
Case No.: D0120-10		
Date Collected: NA		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/23/17	1/24/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg (ppb)	ug/kg (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	71	45-125
DCBP	92	42-131

N.D. = Not Detected

Sample Matrix: Soil				
Subject: PCB	Date Extracted			Date Analyzed
Prep Method: EPA 3546	1/20/17			1/20/17
Analytical Method: EPA 8082A				
Compound	Amount Spiked	Result	Recovery	Recovery
	mg/kg	mg/kg	%	Limits
Aroclor 1016	0.500	0.524	105	55-131
Aroclor 1260	0.500	0.642	128	63-133
Surrogates:				
Compound	% Recovery	Limits		
TCMX	82	45-125		
DCBP	100	42-131		

PCB Laboratory Control Spike

Sample Matrix: Soil				
Subject: PCB	Date Extracted			Date Analyzed
Prep Method: EPA 3546	1/23/17			1/24/17
Analytical Method: EPA 8082A				
Compound	Amount Spiked	Result	Recovery	Recovery
	mg/kg	mg/kg	%	Limits
Aroclor 1016	0.500	0.454	91	55-131
Aroclor 1260	0.500	0.491	98	63-133
Surrogates:				
Compound	% Recovery	Limits		
TCMX	96	45-125		
DCBP	96	42-131		

PCB Laboratory Control Spike

NEW ENGLAND TESTING LABORATORY, INC.

59 Greenhill Street West Warwick, RI 02893 1-888-863-8522

CHAIN OF CUSTODY RECORD

D0120-10

PROJ. NO.			AME/LOCATION														-7			
15-0754		<u>[].</u>	per City/N hviron Mer lughes, Chris C gues	cubir	yport							F	2		/		/			
Strat	egic	Ē	nviron mer	tal			A					F.E.S.E.F.		,	:21°		/			
REPORT TO:	<u> </u>	<u>it </u>	tughes, Chris (5 od			ŭ	S O	T		ю.	A A		2	"/ /	/ /	/	/ /	/ / /	
INVOICE TO:	Pat	Hua	thes				AQUEOU	Ĭ	O⊤H ER		DF	T 1	-	/	5/					
DATE TIM		G R A B		SAMPLE I			U S		R	CONT	AINERS	V E		X	5/		/			REMARKS
1/19 102	-8	×	OF E-T			•		Х		161	1455,	N -		X						
102			61-E-3					1				1		1						
107	22		61-M-1																	
102	2		61-M-3			•														
104	0		61-W-1			•														
104	Ø		61-10-3			•					_			Π						
1013	5		61-0-0			•								Τ						
100	2		63-E-1			•						T								
100	2		63-E-3 (3-M-1		<u> </u>	•						T								
957	5		63-M-1			•										-				
950	>		63-M-3			-								\square						
941	6		63-W-1											T				_		
94	6		63-W-3			•									_					
94	0	l	63-0-0			•					1	Z		6						
Sampled by: (Sign	ature)		Date/	Time	Received by: (Signature)			A	<u> </u>	Date	e/Time				Remark				Special Instructions:	
PA-	11-		1/19	1800									Temp. Cooled	receiv مسلح لا	/ed:	<u>4</u> ~_			List Specific Detection Limit Requirements:	n
Relinquished by: (Signature)		Date/	Time	Received by: (Signature)			-		Date	e/Time									
					^	1	>	•	K											
Relinquished by: (S	Signature)	\overline{c}	1 / Date/	Time	Received for Laboratory I	by: (Signature				//7 Date	e/Time	D								ĺ
Just 1		Ì	60	1245	· · · · · · · · · · · · · · · · · · ·				14	20/13	e/Time - (24	5							Turnaround (Business	s Days) ASh-TUSh
			······································																	Days/ IC TIL ICSN

Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates

Page 59 of 61

NEW ENGLAND TESTING LABORATORY, INC.

59 Greenhill Street West Warwick, RI 02893 1-888-863-8522

CHAIN OF CUSTODY RECORD

00120-10

PROJ. NO).	PRO.	JECT N	AME/LOCATION											/ /	
15-0	754	<	.l.;p	per City / Newburyport Invironmental ugnes, Chris Glad							PR				' / ,	
St	reter	210	A	nvironmental		A					S S E B		FSTG.	;///		
REPORT	το: (Pei	t H	ignes, Chris Glad		A Q U E	s O	O T H E R	NC OF		V A T			/ /		
		C C	GU	MIS		E O U S	Ľ	E R	CONTAI	INERS	i V E		6	3///	/ /	REMARKS
DATE		P	A B	SAMPLE I.D.								K	X/		/ /	
1/19	917			65-E-1	•		X		1614	135	No	X				
	917			65-E-3	•						1	1				
	900			65-M-1	•	_										
	900			65-M-3	•											
	<u>725</u>	 		65-W-1	•											
	925			65-W-3	•											
	330	•		63-0-0	•						_					
	1105			6075-M-0	•						_					
	1120			6150-M-0	•											
<u> </u>	1142			6250-M-0	•											
	202			6350-M-0	•											
	127			6450-M-0	•											
{	208			6525-M-0	•		ł		4		4	V	'			
Sampled	y: (Signatur			Date/Time Received by: (Signature)												
1	+7			Date/Time Received by: (Signature)					Date/	/ Ime		mp. re		marks: d: 4		Special Instructions: List Specific Detection Limit Requirements:
Relinquish	ed by: (Sigr	nature)		Date/Time Received by: (Signature)					Date/	/Time						
				Ander	Q			12	20/17	03	35					
Relinquist	ed by: (Sigr	nature)	1	Date/Time Received for Laboratory by:	(Signature	•)			Date/	Time						
Chin	st	4	\sim	7 9917 1245 mm	·			1,15	20/17	12	45					Turnaround (Business Days) 48hr Rush
$- + \vee$								_								amarouna (business bays)

Page 60 of 61

é

*

**Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates

.

NEW ENGLAND TESTING LABORATORY, INC.

59 Greenhill Street West Warwick, RI 02893

1-888-863-8522

CHAIN OF CUSTODY RECORD

D0120-10

PROJ. NO		PROJ	ECT N	AME/LOCATION									- 7			
15-0-	754	$<$,lip	per City / Newbury Wironmental Les, Chris Glod	port					P R				1/2 to 1/2	3//	
	+ /		Er	wings again to 1						P R E S E R V		*		T.		
BEPORT	alegi	$\frac{c}{1}$		Irn on irrental		A Q U	s	0	NO.			1E.S.J.S.		$\langle \rangle$	/ /	
INVOICE	то: Р	at l	109	nes Chris Glog		UEO	S O I	О⊢тшп	OF	A T		1			/ /	
DATE	TIME	COM P	G R A B	SAMPLE I.D.		EOUS		Ŕ	CONTAINERS	v É	K	2/.	5 5/			REMARKS
1/19	1028			61-E-0	•		\times		1	NO	X	X				
	1022			61-M-0	•		1		1	1	1	1				
	1040		+	61-W-0	•				l							
	1602			63-E-0					1						-	
	950			63-M-0	•				1							
	946			63-W-0	•		1		1		$\dagger \uparrow$					
	917			65-E-0 ·	•		-{		1							
	900			65-H-O	•				1		+}-	+	+		_	
	925		b	65 - W-0	•		J			5		V				
v	<i>J</i> 2 <i>J</i>						v	-	•			-				
							_						+		_	
											+				_	
				<i>o</i>							-	-	┝╌┼			
						····										
Sampled b	y: (Signatur	re)		Date/Time Received by	r: (Signature)				Date/Time	lah			harke:	_		Special Instructions:
Pa	77	1		1/19 1800						Ten	np. rec	eived	^{narks} .	AL		List Specific Detection Limit Requirements:
Relinquish	ed by: (Sign	nature)		Date/Time Received by	: (Signature)	_		11	Date/Time							
		ŀ		And And	X//	=	7	15	Date/Time	.5						
Relinquish	ed by: (Sign	nature)	1	Date/Time Received for	r Laboratory by: (Signatur	e)		1/~	Date/Time							
$\left \right $	US	-4	/	> 18/11/045	Laboratory by: (Signatur			12	oliz 12	نرح						Turnaround (Business Days) 48 h-rush
		1			012											rumaround (business Days) ro TIL TOS

**Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMAs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates

•••

LTLAB

NE

NETLAB Case Number D0127-19

Prepared for:

Strategic Environmental Services, Inc. 362 Putnam Hill Road Sutton, MA 01590

Report Date: February 2, 2017

Bich Ohras

Director New England Testing Laboratory, Inc. Lab # RI010

NEW ENGLAND TESTING LABORATORY, INC. 59 Greenhill Street, West Warwick, RI 02893 (401) 353-3420

LTLAB

NE

NETLAB Case Number D0306-28

Prepared for:

Strategic Environmental Services, Inc. 362 Putnam Hill Road Sutton, MA 01590

Report Date: March 9, 2017

Bich Ohras

Director New England Testing Laboratory, Inc. Lab # RI010

NEW ENGLAND TESTING LABORATORY, INC. 59 Greenhill Street, West Warwick, RI 02893 (401) 353-3420

	MassDEP Analytical Protocol Certification Form									
Labo	Laboratory Name: New England Testing Laboratory, Inc. Project #: 15-0754									
Proje	Project Location: Clipper City, Newburyport RTN:									
	Form pro 00306-28	ovides certificatio	ns for the followir	ng data set: list Lat	ooratory Sample ID Nu	mber(s):				
Matrie	ces: Gr	oundwater/Surface	e Water x Soil/Se	diment Drinking W	ater Air Other:					
CAM	CAM Protocol (check all that apply below):									
8260 CAM		7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP CAM IX A	APH			
8270 CAM	SVOC II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VO CAM IX B	С			
6010 CAM	Metals III A	6020 Metals CAM III D	8082 PCB CAM V A x	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B					
	Affirmativ	/e Responses to (Questions A throu	ugh F are required i	for "Presumptive Certa	ainty" stat	us			
Α	Affirmative Responses to Questions A through F are required for "Presumptive Certainty" status A Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and x Yes No prepared/analyzed within method holding times?									
в	Were the applytical method(c) and all associated OC requirements specified in the selected									
с	Ware all required corrective estions and analytical response actions aposified in the selected									
D		Assurance and Qu			specified in CAM VII A, ition and Reporting of	x Yes	No			
E	a. VPH, modificat	tion(s)? (Refer to the	lethods only: Was individual method(s)	e each method condu) for a list of significant ete analyte list reported		Yes Yes	No No			
F					-conformances identified Questions A through E)?	x Yes	No			
Res	sponses	to Questions G, H	and I below are I	required for "Presu	mptive Certainty" stat	tus				
G	Were the protocol(r below all CAM repo	orting limits specified in	the selected CAM	x Yes	No ¹			
				inty" status may not ne R 40. 1056 (2)(k) and WS	ecessarily meet the data us SC-07-350.	ability and				
Н	Were all	QC performance sta	andards specified in t	the CAM protocol(s) ac	chieved?	x Yes	No ¹			
I										
¹ All I	¹ All negative responses must be addressed in an attached laboratory narrative.									
I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.										
Sign	Signature: 624 Outo Position: Laboratory Director									
Prin	ted Name	: Richard Warila		Date:_	3/9/2017					

SAMPLES SUBMITTED and REQUEST FOR ANALYSIS:

The samples listed in Table I were submitted to New England Testing Laboratory on March 6, 2017. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is D0306-28.

Custody records are included in this report.

Sample ID	Date Sampled	Matrix	Analysis Requested
6250-Е-1	1/19/2017	Soil	Table II
6250-Е-3	1/19/2017	Soil	Table II
6275-M-1	1/20/2017	Soil	Table II
6275-M-3	1/20/2017	Soil	Table II
6350-W-1	1/19/2017	Soil	Table II
6350-W-3	1/19/2017	Soil	Table II
6475-M-0	1/20/2017	Soil	Table II
6475-M-1	1/20/2017	Soil	Table II
6475-M-3	1/20/2017	Soil	Table II

TABLE I, Samples Submitted

TABLE II, Analysis and Methods

ANALYSIS	PREPARATION METHOD	DETERMINATIVE METHOD
PCB's	3546	8082A

These methods are documented in:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, USEPA/OSW.

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

PCBs

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

Samples were received to the laboratory outside of the method recommended holding time of 14 days.

RESULTS: PCBs

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Sample: 6250-E-1		Analyst's Initials: BJ
Case No.: D0306-28		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	3/7/17	3/8/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	91	45-125
DCBP	87	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 6250-E-3		Analyst's Initials: BJ
Case No.: D0306-28		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	3/7/17	3/8/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	79	45-125
DCBP	102	42-131

New England Testing Laboratory, Inc.

Sample: 6275-M-1		Analyst's Initials: BJ
Case No.: D0306-28		
Date Collected: 1/20/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	3/7/17	3/8/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	4310	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	77	45-125
DCBP	75	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 6275-M-3		Analyst's Initials: BJ
Case No.: D0306-28		
Date Collected: 1/20/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	3/7/17	3/8/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	102	45-125
DCBP	108	42-131

New England Testing Laboratory, Inc.

Sample: 6350-W-1		Analyst's Initials: BJ
Case No.: D0306-28		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	3/7/17	3/8/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	443	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	78	45-125
DCBP	81	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 6350-W-3		Analyst's Initials: BJ
Case No.: D0306-28		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	3/7/17	3/8/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	92	45-125
DCBP	91	42-131

New England Testing Laboratory, Inc.

Sample: 6475-M-0		Analyst's Initials: BJ
Case No.: D0306-28		
Date Collected: 1/20/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	3/7/17	3/8/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	375	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	94	45-125
DCBP	92	42-131

New England Testing Laboratory, Inc.

Sample: 6475-M-1		Analyst's Initials: BJ
Case No.: D0306-28		
Date Collected: 1/20/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	3/7/17	3/8/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	3920	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	98	45-125
DCBP	104	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 6475-M-3		Analyst's Initials: BJ
Case No.: D0306-28		
Date Collected: 1/20/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	3/7/17	3/8/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	93	45-125
DCBP	96	42-131

New England Testing Laboratory, Inc.

Sample: Method Blank		Analyst's Initials: BJ
Case No.: D0306-28		
Date Collected: NA		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	3/7/17	3/7/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg (ppb)	ug/kg (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	71	45-125
DCBP	78	42-131

N.D. = Not Detected

Sample Matrix: Soil				
Subject: PCB	Date Extracted			Date Analyzed
Prep Method: EPA 3546	3/7/17			3/7/17
Analytical Method: EPA 8082A				
Compound	Amount Spiked	Result	Recovery	Recovery
	mg/kg	mg/kg	%	Limits
Aroclor 1016	0.500	0.430	86	55-131
Aroclor 1260	0.500	0.377	75	63-133
Surrogates:				
Compound	% Recovery	Limits		
TCMX	90	45-125		
DCBP	99	42-131		

PCB Laboratory Control Spike

New England Testing Laboratory 59 Greenhill Street West Warwick, RI 02893

1-888-863-8522

Chain of Custody Record

D0306 - 28

Brainat Ma	Brainet Name/I anation	10000				Ē				
15-0754	Newk	Her buryont	ğ귛	auon:		÷ .		:	Tests**	
Client: Str	Stratulic Environmental	ייגר זייע	54	whill Services	Matrix	rix	6			
Report To:	Cglod	i O	t T	ĩ		⊤ *	ovite	_		
)	ר			7		wi y	2617			
Invoice 1o:	Sacebra	ž v	5	chek		- 1		ļ		
Date	Time	Comp	Grab		suosupA lioS	Ofher	Containers	ह्य		
1/19/19	17:48	×		6250-5-1 .		-		×		
1/19/17	84:11			6250 - č - 3 •						
nloch	3:5			6275 - M - 1						
1/20/1	9.65	_		6275 - M - 3		**				
1/11/	11:04			6350 - M - 1		ار في	-			
1119119	11:00			6350 - 11 - 3						
1120117	9:10			6475 - M - B						
21/02/1	G: K			6475 - M - 1 •						
1/20/17	9:15	>		6475-M-3 .	2		A			
			T			•				
			Τ							
			Τ			•				
			Τ			* *				
Sampled By:		Date∕	Lime	Date/Time Received By:	Date/Time		Laboratory Remarks:	Special Instructions:	ctions:	
				M.M.	71/2/E	·· · · · ·				
Relinquished By:	By:	Date/T		Date/Time Received By:	Date/Time	 d n				
		3/(1/12	17	Kan S	トリークト					
Rela -		4.402	£	F	05:31	Teh	Temp. Received: \mathcal{U}^{ullet}		ŗ,	Mary
**Netlab Sub(Bromate, Bro	sentratcts the mide, Sieve	e follo , Saln	wing	**Netlab Subcontracts the following tests: Radiologicals, Radon, TOC, Asbestos, UCMRs, Perchlorate, Bromate, Bromate, Bromate, Sieve, Salmonella, Carbamates	DC, Asb	estos	, UCMRs, Perchlorate	Turnaround Tir	Turnaround Time (Business Davs) - 5 Davs	avs
			I			ſ				

۲

.

+

*

	MassDEP Analytical Protocol Certification Form						
Labo	Laboratory Name: New England Testing Laboratory, Inc. Project #: 15-0754						
Proje	ect Locati	on: Clipper City, Ne	ewburyport		RTN:		
	This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): D0127-19						
Matrie	ces: Gr	oundwater/Surface	e Water x Soil/Se	diment Drinking W	ater Air Other:		
CAM	Protoco	ol (check all that a	oply below):				
8260 VOC CAM II A7470/7471 Hg CAM III BMassDEP VPH CAM IV A8081 Pesticides CAM V B7196 Hex Cr CAM VI B					MassDEP CAM IX A	APH	
8270 SVOC 7010 Metals MassDEP EPH 8151 Herbicides 8330 Explosives CAM II B CAM III C CAM IV B CAM V C CAM VIII A					TO-15 VO CAM IX B	С	
	6010 Metals CAM III A6020 Metals CAM III D8082 PCB CAM VA x9014 Total Cyanide/PAC CAM VI A6860 Perchlorate CAM VII B						
	Affirmativ	/e Responses to (Questions A throu	igh F are required t	for "Presumptive Certa	ainty" stat	us
Α	A Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and x Yes No prepared/analyzed within method holding times?					No	
в		e analytical method(tocol(s) followed?	s) and all associate	ed QC requirements s	specified in the selected	x Yes	No
с				cal response actions s formance standard no	specified in the selected n-conformances?	x Yes	No
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?						
Е	E VPH, EPH, APH, and TO-15 only: a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).						
	b. APH and TO-15 Methods only: Was the complete analyte list reported for each method? Yes No					NU	
F	and evaluated in a laboratory narrative (including all No responses to Questions A through E)?					No	
Responses to Questions G, H and I below are required for "Presumptive Certainty" status							
G Were the reporting limits at or below all CAM reporting limits specified in the selected CAM x Yes No ¹							
<u>Data User Note</u> : Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.							
Н							
I	I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? x Yes No ¹					No ¹	
¹ All ı	negative r	esponses must be a	addressed in an atta	ached laboratory narra	ative.	<u> </u>	
respo	nsible for (sed upon my personal ir al report is, to the best of		
Sign	ature: <u>&</u>	hard		Positio	on: Laboratory Director		_
Print	Printed Name: Richard Warila Date: 2/2/2017						

SAMPLES SUBMITTED and REQUEST FOR ANALYSIS:

The samples listed in Table I were submitted to New England Testing Laboratory on January 27, 2017. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is D0127-19.

Custody records are included in this report.

Sample ID	Date Sampled	Matrix	Analysis Requested
6550-M-0	1/20/2017	Soil	Table II
6525-Е-0	1/19/2017	Soil	Table II
6525-W-0	1/19/2017	Soil	Table II
6450-M-1	1/19/2017	Soil	Table II
6450-Е-0	1/19/2017	Soil	Table II
6450-W-0	1/19/2017	Soil	Table II
6350-M-1	1/19/2017	Soil	Table II
6350-Е-0	1/19/2017	Soil	Table II
6350-W-0	1/19/2017	Soil	Table II
6325-M-0	1/20/2017	Soil	Table II
6275-M-0	1/20/2017	Soil	Table II
6250-M-1	1/19/2017	Soil	Table II
6250-Е-0	1/19/2017	Soil	Table II
6250-W-0	1/19/2017	Soil	Table II
6150-M-1	1/19/2017	Soil	Table II
6150-Е-0	1/19/2017	Soil	Table II
6150-W-0	1/19/2017	Soil	Table II
6125-M-0	1/20/2017	Soil	Table II

TABLE I, Samples Submitted

TABLE II, Analysis and Methods

ANALYSIS	PREPARATION METHOD	DETERMINATIVE METHOD
PCB's	3546	8082A

These methods are documented in:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, USEPA/OSW.

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

PCBs

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

RESULTS: PCBs

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Sample: 6550-M-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/20/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	866	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	65	45-125
DCBP	71	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 6525-E-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	2300	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	72	45-125
DCBP	98	42-131

New England Testing Laboratory, Inc.

Sample: 6525-W-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	227	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	82	45-125
DCBP	79	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 6450-M-1		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	2160	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	82	45-125
DCBP	82	42-131

New England Testing Laboratory, Inc.

Sample: 6450-E-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	960	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	67	45-125
DCBP	67	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 6450-W-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	901	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	83	45-125
DCBP	75	42-131

New England Testing Laboratory, Inc.

Sample: 6350-M-1		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	3530	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	78	45-125
DCBP	82	42-131

New England Testing Laboratory, Inc.

Sample: 6350-E-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	9710	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	68	45-125
DCBP	92	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 6350-W-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	23300	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	71	45-125
DCBP	86	42-131

Sample: 6325-M-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/20/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	39300	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	74	45-125
DCBP	100	42-131

New England Testing Laboratory, Inc.

Sample: 6275-M-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/20/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	24200	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	82	45-125
DCBP	98	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 6250-M-1		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	507	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	66	45-125
DCBP	78	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 6250-E-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	17300	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	58	45-125
DCBP	66	42-131

New England Testing Laboratory, Inc.

Sample: 6250-W-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	9170	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	68	45-125
DCBP	78	42-131

New England Testing Laboratory, Inc.

Sample: 6150-M-1		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	299	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	93	45-125
DCBP	108	42-131

NETTLAB New England Testing Laboratory, Inc.

Sample: 6150-E-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	4070	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	79	45-125
DCBP	76	42-131

New England Testing Laboratory, Inc.

Sample: 6150-W-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/19/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	642	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	64	45-125
DCBP	67	42-131

New England Testing Laboratory, Inc.

Sample: 6125-M-0		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: 1/20/2017		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17, 2/1/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg* (ppb)	ug/kg* (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	3620	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	72	45-125
DCBP	75	42-131

New England Testing Laboratory, Inc.

Sample: Method Blank		Analyst's Initials: BJ
Case No.: D0127-19		
Date Collected: NA		
Sample Matrix: Soil		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3546	1/30/17	1/31/17
Analytical Method: EPA 8082A		
Compound	Concentration	Reporting Limit
	ug/kg (ppb)	ug/kg (ppb)
Aroclor-1221	N.D.	100
Aroclor-1232	N.D.	100
Aroclor-1016	N.D.	100
Aroclor-1242	N.D.	100
Aroclor-1248	N.D.	100
Aroclor-1254	N.D.	100
Aroclor-1260	N.D.	100
Aroclor-1262	N.D.	100
Aroclor-1268	N.D.	100
Surrogates:		
Compound	% Recovery	Limits
TCMX	81	45-125
DCBP	96	42-131

N.D. = Not Detected

Sample Matrix: Soil				
Subject: PCB	Date Extracted			Date Analyzed
Prep Method: EPA 3546	1/30/17			1/31/17
Analytical Method: EPA 8082A				
Compound	Amount Spiked	Result	Recovery	Recovery
	mg/kg	mg/kg	%	Limits
Aroclor 1016	0.500	0.480	96	55-131
Aroclor 1260	0.500	0.552	110	63-133
Surrogates:				
Compound	% Recovery	Limits		
TCMX	94	45-125		
DCBP	114	42-131		

PCB Laboratory Control Spike

N .		
NEW ENGLAND TESTING LABORATORY, INC. 59 Greenhill Street West Warwick, RI 02893 1-888-863-8522	CHAIN OF CUSTODY RECORD	DG127-19
PROJ. NO. PROJECT NAME/LOCATION		
IS-0754 Clipper City - Newbary port CLIENT Strate, c Environmenta REPORT TO: Pat Hughes, Chris Glod INVOICE TO: Pat Hughes, Sandra Puchek DATE TIME O B	A Q J E O T H E CONTAINERS E Q	REMARKS
1/20 9:25 × 6550-M-0		
	• X 1 X	
1/192:16 6525-E-D 1/192:00 6525-W-D		
1/19 1:27 6450-M-1		
V19 1:47 6450-E-0		
1/12 1:15 64TO-W-O		
1/19 12:02 6350-M-1		
1/19 12:10 6350-E-0		
1/19 11:54 6350-W-0		
1/20 9:00 6325-M-0		
1/20 9:05 6275-M-0		
1/10 11:42 6250-M-1		
1/19 11:48 G250 -E-0		
1/19 11:35 1 6250 - W-O		+
Sampled by: (Signature) Date/Time Received by: (Signature) Path 1/20 S:00 Ph Path Relinquished by: (Signature) Date/Time Received by: (Signature)	the formation of the second se	Special Instructions: List Specific Detection Limit Requirements:
Relinquished by: (Signature) Date/Time Received for Laborate NetLab 127/11 1320 0000 **NetLab subcontracts the following tests: Radiologicals, Radon, Asbestos, UC 00000 00000	1/27/17 1320	Turnaround (Business Days) Std. S-day

Page 26 of 27

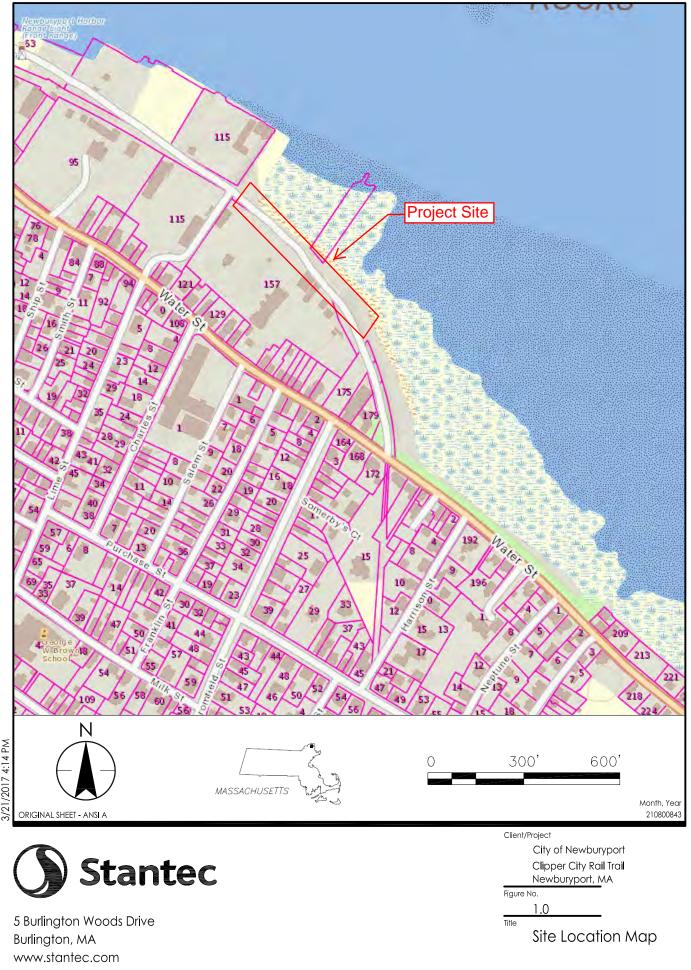
New England Testing Laboratory 59 Greenhill Street

-, ·

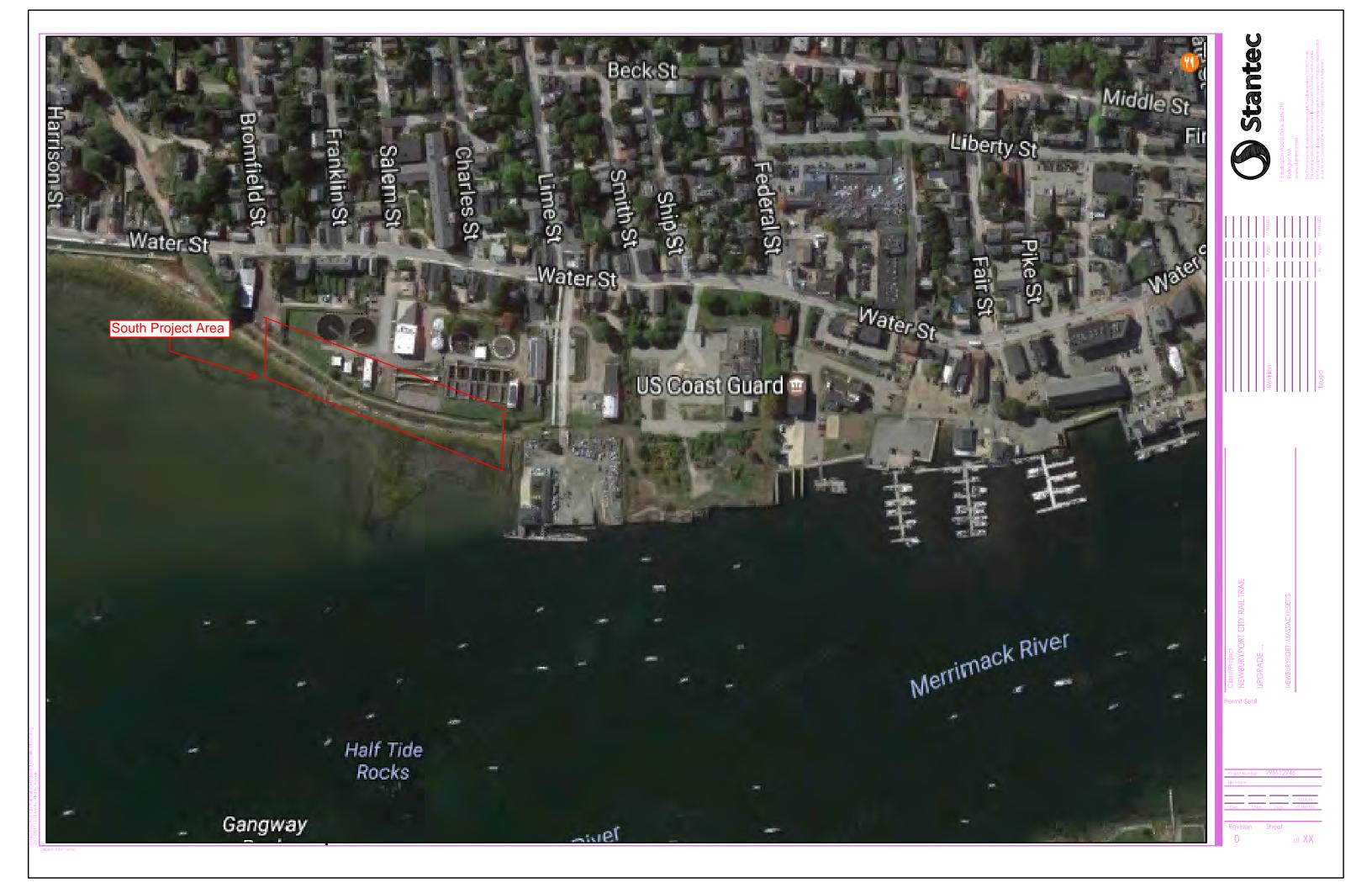
West Warwick, RI 02893

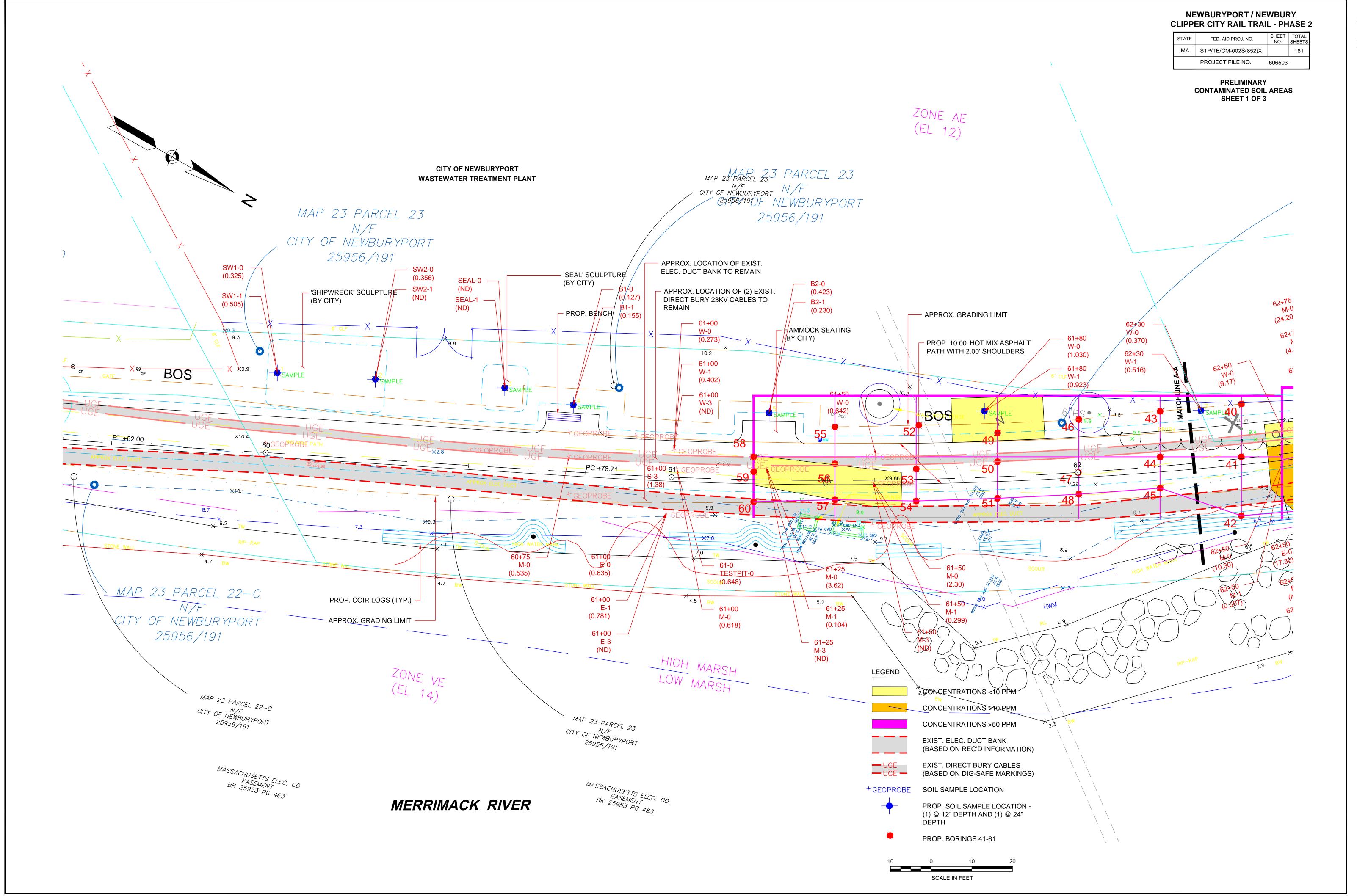
1-888-863-8522

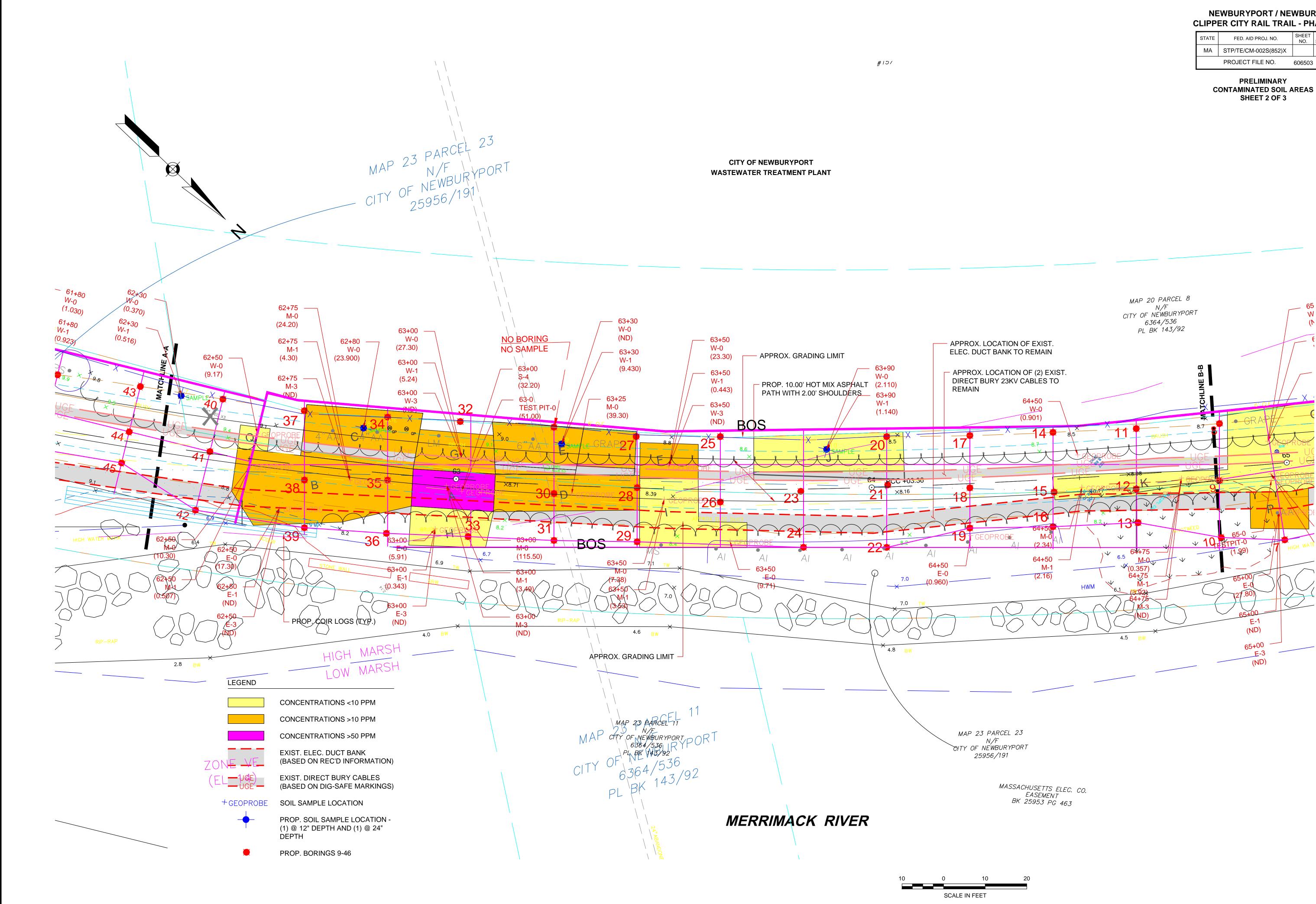
Chain of Custody Record


4

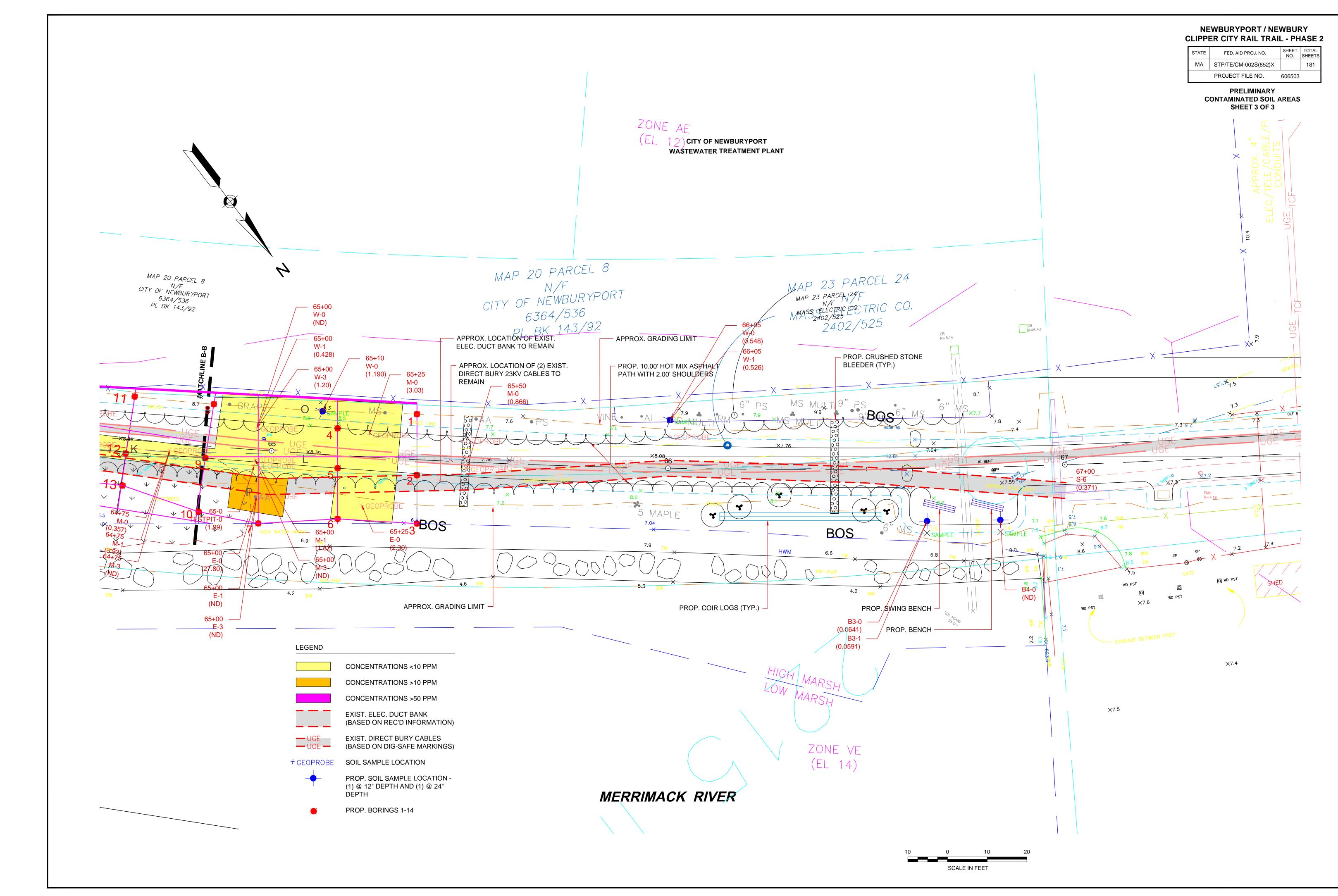
1


DO127-19


Project No. Project Name/Location:	T			1	T	1						
15-0754 Clipper City- Newbury port									Te	sts**	,	
Project No. Project Name/Location: 15-0754 Clipper City-Dewbyry port Client: Strategic Environmental Report To: Pat Hughes	Γ,	Matr	iv					T	1 1	T	1	1
Report To: Pot Hughes			Ϋ́-		e e e	B TRUDUAK						
					/ati	J.						
Invoice To: Pat Hughes Sandra Puchek					Preservative	3						
g g g g g g g g g g g g g g g g g g g	- s			No. of Containers	Les	1						
	noc			Containers	LL_							
Date Time O U	Aqueous	Di l	Other			$ \mathcal{Z} $						
1/19 11:20 × 6150-M-1	Ā		Ō			2						
11:26 × 6150-E-0		ムメ			NO							
11:17 × 6150-10-0	╉╾┨	スメ						 				
1/20 B:52 K 6125-M-0		X			-t						·	
	-										· · ·	
	╉┯┥											
	+-+						_	<u> </u>				
							_	┞──┤				
			•									
							1	<u>├</u> ──┼				
	┼─┼										1,	
Sampled By: Date/Time Received By:	Date/T	ime		oratory Remark			<u> </u>					
FATL 1/20 Spm Robert Rie	1-2	7.	7	hatory Remark	.5.	Special	Instru	ictions	S:			
for an ALAD			(Z					
31 Hourt the	12:1	0										
Reinquished By: Date/Time Received By:	Date/T	ìme										
1.27-17	427	In										
Robert lie 1320 min		"7										
**Notable Subardia (11320 man	1325	-	Гет	p. Received: 🤇	3~ .			÷				
**Netlab Subcontracts the following tests: Radiologicals, Radon, TO Bromate, Bromide, Sieve, Salmonella, Carbamates	C, As	sbes	tos,	UCMRs, Perch	lorate,				w			
- enter, promide, oleve, Sannonella, Carbamates						Turnaro	und Ti	ime [E	Busine	<u>ess D</u> a	ys]: ⁄5	Days


* 4 * 4 * 1

C:\USERS\BFOLEY\DESKTOP\EMAIL TO BOB\NEWBURYPORT LOCUS MAP.DWG 3/21/2017 4:14 PM



NEWBURYPORT / NEWBURY CLIPPER CITY RAIL TRAIL - PHASE 2

STATE	FED. AID PROJ. NO.	SHEET NO.	TOTAL SHEETS
MA	STP/TE/CM-002S(852)X		181
PROJECT FILE NO.		606503	

